The topic that is central to my paper is the role that theory plays in the study of speech sounds. I take it that a study of the speech sounds of a given language must account for, among others, the following three sets of facts: it must yield insights into the articulatory aspects of the sounds; it must concern itself with the acoustic and psychoacoustic character of the sounds, and, finally, it must allow us to make sense of various regularities that can be observed in the behavior of different speech sounds and sets of speech sounds, regularities that have traditionally been referred to as phonological or morphophonological. The task of the student of speech sounds then is to discover a theory that will do justice to these different aspects of speech.

The question whether a single coherent theoretical framework can account for these disparate aspects of speech is an empirical one. It can be argued only by a detailed examination of particular cases. On the basis of my own experience, I am inclined to believe that it is perfectly possible to discover such a single coherent theory. I know of no instance where, upon MATURE REFLECTION (and I must emphasize the phrase mature reflection), it turned out that e.g., articulatory facts had to be explained by one type of theory, whereas the psychoacoustic and phonological facts required a theory that was inconsistent with the former. On the contrary, I can cite many instances where the attempt to account for the different aspects of speech with the help of a single theory has had a significant improvement in our understanding of the matters under discussion.

These assertions are, of course, purely subjective, and that is not only perfectly proper but also unavoidable, for in the last analysis, it is a purely subjective question that each scholar must decide for himself, of whether to approach a topic in one way or another. Each of us is, to a certain extent, attempting to find her or his way

* This work was supported in part by the National Institutes of Mental Health (Grant MH-13390) and the National Institute of Health (Grant 5 T01 HD00111). I am grateful to T.G. Bever for a critical reading of an earlier version of this study.
through an uncharted wilderness and, therefore, can only make guesses as to the direction in which he or she should turn next. And it is quite inevitable that our guesses will often be wrong and that we shall thus be called upon to pay the standard penalty for guessing wrong, which is to have wasted days or months or even years.

While the choice of a particular method of solving a problem must by its very nature be a subjective matter, the failure or success of this method is anything but subjective. There are ways of finding out in science whether you are right or wrong, although it must be said at once that these are quite unlike the marks we get in elementary school for knowing or not knowing the right answer: a considerable effort is often required before one can be sure that a proposed solution to a problem is indeed correct, or more correct than any known alternative.

In what follows I have attempted to illustrate the points just made about theory in general, and about the role that a particular theory plays in the study of the sounds of speech. I am especially concerned here with exhibiting the interaction between theory and fact, in showing how a specific theory leads us to view facts in a specific light, how it leads us to discover new facts, and finally how it leads us to raise questions about the theory itself, about the direction in which it is to be developed further.

I begin with a simple example. There are numerous languages in which tonal contrasts play a crucial role. The simplest of these are the languages that exhibit what Trubetzkoy has termed "register correlation"; i.e., "where every syllable is marked by a definite relative pitch level or register". Languages of this type often distinguish systematically two or three pitch levels. As examples of languages with two pitch levels one may cite Japanese and Otomi (Bernard 1966); whereas Igibira (Ladefoged 1964) and Mixtec (Pike and Wistrand 1971) show three distinct levels of pitch. In view of this, it is clearly necessary that the universal phonetic framework provide for a distinction of at least three pitch levels: high, mid, and low. It has long been known that the articulatory mechanism of pitch distinction must involve the stiffness of the vocal cords. If one assumes that in the neutral position for speech (see Chomsky and Halle 1968:300) the vocal cords have the stiffness appropriate for the mid pitch level, then it follows that to produce a sound with high pitch, the vocal cords must be stiffened beyond that of the neutral position; whereas to produce a sound with low pitch they must be slackened below the neutral stiffness. Accordingly, Halle and Stevens (1971) have proposed that the universal set of phonetic features include the two features STIFF VOCAL CORDS and SLACK VOCAL CORDS.

Since language is a system où tout se tient, the introduction of these two features immediately raises the question of what happens when they are combined with supraglottal articulatory configurations other than those found in the vowels. In particular, one immediately must ask how an obstructed sound produced with stiff vocal cords differs from one produced with neutral stiffness or with slack vocal cords. It turns out that the primary effects of different degrees of vocal cord stiffness under those conditions are not differences in the rate of vocal cord vibration that are perceived as differences in the pitch level, but instead the primary effects in obstruents are the inhibition vs. facilitation of vocal cord vibration: stiff vocal cords tend to make voicing impossible; whereas slack vocal cords facilitate it. In other words, obstruents with the feature [+ stiff vocal cords] are voiceless, while obstruents with the feature [- slack vocal cords] are voiced. It follows from the nature of these features that there are no sounds which are produced with vocal cords that are [+ stiff, + slack], but there can exist sounds which are produced with neutral vocal cord stiffness; i.e., which are [+ stiff, - slack]. Given the framework that has been proposed here we should expect, therefore, three types of obstruent: voiceless, voiced, and intermediate; the first corresponding to the low pitch vowels, the second to the high pitch vowels, and the third, to vowels with mid pitch.

This consequence may on first sight appear somewhat surprising, since voicing in obstruents has often been cited as the example of a binary feature par excellence. It must, however, be recognized that in the papers in which this claim was made, little attention was paid to the phonetic realization of the different sounds. When the phonetic facts are studied in detail — as they have been, for example, in a series of papers by Lisker and Abramson, or by the Danish phonetician Fischer-Jørgensen and her associates — it emerges that there is considerable evidence for the tri-partite classification of obstruents that the framework proposed here appears to suggest. Thus, in terms of the onset time of vocal cord vibrations relative to the stop release, which was studied in considerable detail by Lisker and Abramson (1964) and by Fischer-Jørgensen (1968), the stops fall into three distinct categories. There is one class of stops where the onset of vocal cord vibrations precedes the stop release; a second, where they lag behind the release, and a third, where vocal cord vibrations begin almost simultaneously with the stop release. Although no language appears to make use of all three types, the universal framework must make allowance for all three, since otherwise it will be unable to account for the different choices made by different languages shown in Table 1.

Among the aspirated stops there are three distinct categories with respect to voice onset time. In addition to the familiar voiced and voiceless aspirates where the onset of vocal cord vibration precedes, respectively lags behind, the stop release by a very considerable amount (50 msecs or more), there exists a third type of aspirated stop, found, e.g., in Korean, where the voicing onset lags only very moderately behind the stop release. A similar picture emerges in the plain stops. Here again there are three distinct categories even though the total range of values found is somewhat smaller than in the aspirated stops. As in the case of the aspirated stops we find, in addition to prevoiced stops, two other types of stops where the onset of vocal cord vibrations lags behind the stop release. In one type the lag varies between 0 and 35 msecs, whereas in the other type, exemplified by the voiceless stops of French studied by Fischer-Jørgensen (1968), the lag varies between 12 and 67 msecs. As noted in Halle and Stevens (1971), an analogous tri-partite categorization appears to be required for the various types of glottalized stops.
Tables of Ranges of Voice Onset Times (in msecs) Relative to Stop Release in Stops from Different Languages

(Data from Lisker-Abramsan 1964, except for French data from Fischer-Jorgensen 1968; Negligible values indicate that voicing precedes stop release.)

<table>
<thead>
<tr>
<th>Language</th>
<th>Labials</th>
<th>Dentals</th>
<th>Velars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marathi</td>
<td>—100/—65</td>
<td>—110/—40</td>
<td>—120/—45</td>
</tr>
<tr>
<td>Hindi</td>
<td>—105/0</td>
<td>—150/—60</td>
<td>—160/—40</td>
</tr>
<tr>
<td>Korean</td>
<td>10/35</td>
<td>15/40</td>
<td>30/65</td>
</tr>
<tr>
<td>Aspirated Stops</td>
<td>+slack</td>
<td>—slack</td>
<td>+slack</td>
</tr>
<tr>
<td></td>
<td>—stiff</td>
<td>+stiff</td>
<td>—stiff</td>
</tr>
<tr>
<td>Marathi</td>
<td>40/310</td>
<td>40/85</td>
<td>60/105</td>
</tr>
<tr>
<td>Hindi</td>
<td>65/315</td>
<td>33/100</td>
<td>75/105</td>
</tr>
<tr>
<td>Korean</td>
<td></td>
<td></td>
<td>82/200</td>
</tr>
<tr>
<td>Unaspirated Stops</td>
<td>—slack</td>
<td>—slack</td>
<td>—slack</td>
</tr>
<tr>
<td></td>
<td>—stiff</td>
<td>—stiff</td>
<td>+stiff</td>
</tr>
<tr>
<td>Marathi</td>
<td>0/25</td>
<td>0/25</td>
<td>0/15</td>
</tr>
<tr>
<td>Hindi</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
<tr>
<td>Korean</td>
<td>12/91</td>
<td>18/67</td>
<td>26/61</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In sum, there is some evidence in favor of the suggestion made above that in addition to stops that are [+ slack — stiff] and those that are [— slack + stiff], there are also stops that are [— slack — stiff].

This does not exhaust by any means the evidence in favor of the proposition that pitch level distinctions in vowels and voicing distinctions in obstruents are controlled by the same pair of features. For instance, it has long been known that the development of the tonal system of the Far Eastern languages exhibits a direct correlation between voicing and pitch level. In a paper originally written more than forty years ago, Ronan Jakobson observed (1962:216):

Dans certaines dialectes chinois les consonnes sonores et les consonnes sourdes sont confondues. La corrélation vocale de ces consonnes est remplacée par la corrélation de registre des voyelles suivantes: le ton bas de la voyelle se substitue au caractère sonore de la consonne précédente, le ton élevé correspond au caractère sourd de la consonne en question. La différence de registre, d'après la variation combinatoire, est devenue une propriété de corrélation.

What is of special importance to us here is that the historical development sketched by Jakobson proceeded along lines that are essentially implicit in the feature framework developed here: a low pitch is the reflex of a voiced consonant, whereas a high pitch is the reflex of a voiceless consonant. In other words, the vocal cord configuration — stiff or slack — in the consonant is assimilated by the following vowel subsequent to which the contrast in the consonants is lost.

TABLE 1

<table>
<thead>
<tr>
<th>Language</th>
<th>Labials</th>
<th>Dentals</th>
<th>Velars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marathi</td>
<td>—100/—65</td>
<td>—110/—40</td>
<td>—120/—45</td>
</tr>
<tr>
<td>Hindi</td>
<td>—105/0</td>
<td>—150/—60</td>
<td>—160/—40</td>
</tr>
<tr>
<td>Korean</td>
<td>10/35</td>
<td>15/40</td>
<td>30/65</td>
</tr>
<tr>
<td>Aspirated Stops</td>
<td>+slack</td>
<td>—slack</td>
<td>+slack</td>
</tr>
<tr>
<td></td>
<td>—stiff</td>
<td>+stiff</td>
<td>—stiff</td>
</tr>
<tr>
<td>Marathi</td>
<td>40/310</td>
<td>40/85</td>
<td>60/105</td>
</tr>
<tr>
<td>Hindi</td>
<td>65/315</td>
<td>33/100</td>
<td>75/105</td>
</tr>
<tr>
<td>Korean</td>
<td></td>
<td></td>
<td>82/200</td>
</tr>
<tr>
<td>Unaspirated Stops</td>
<td>—slack</td>
<td>—slack</td>
<td>—slack</td>
</tr>
<tr>
<td></td>
<td>—stiff</td>
<td>—stiff</td>
<td>+stiff</td>
</tr>
<tr>
<td>Marathi</td>
<td>0/25</td>
<td>0/25</td>
<td>0/15</td>
</tr>
<tr>
<td>Hindi</td>
<td>0/25</td>
<td>0/25</td>
<td>0/25</td>
</tr>
<tr>
<td>Korean</td>
<td>12/91</td>
<td>18/67</td>
<td>26/61</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.

It has frequently been pointed out that the feature system provides us with a means not only for designating individual speech sounds, but also for designating particular classes of speech sounds. Thus, for instance, given the feature system developed by Chomsky and Halle (1968), the feature complex [+ syllabic, — consonantal] designates the class of vowels, whereas the feature complex [— syllabic, sonorant] designates the class of obstruents. It is also obvious that there are many logically conceivable classes of speech sounds which can be designated only by very involved and elaborate feature complexes. For instance, a class consisting of the sounds [p, r, y, a] can be designated only with considerable difficulty in the feature system of Chomsky and Halle (1968). It goes almost without saying that one could define a different system of features, where it would be simple to designate the class [p, r, y, a], and difficult to designate a class containing all and only the vowels of the language. Rules of language do not normally affect single speech sounds; they apply rather to whole classes of speech sounds, such as the vowels, the obstruents, etc. It is an important bit of evidence in favor of a proposed system of features that it allows for the convenient designation of classes of speech sounds that figure in the rules of various languages and that it does not make the same provision for classes of...
speech sounds that do not function in this fashion. Thus, for example, a reasonable feature system must provide for the convenient designation of classes such as vowels and obstruents, but must not do the same for the class consisting of [p, t, y, a].

In this section I intend to examine a rule which appears to involve a class that can be designated only with difficulty in the present feature system. I believe that I can show that it is the rule, rather than the feature system, which is in need of modification. The data reviewed in this section thus contrast with those discussed above. Whereas above I attempted to justify a change in the theoretical framework by showing that this change allows for a more satisfactory description of the facts, in this section I shall try to show that it is not the theoretical framework but the proposed description of the facts that is inadequate. I shall argue here that a better understanding of the facts requires a rule where the objectionable class of speech sounds is replaced by a more conveniently designated set, thereby implicitly vindicating the proposed feature system as correct, at least with regard to the relevant features.

The rule of interest appears in the phonology of modern Russian as well as in that of most, if not all, Slavic languages. The rule accounts for alternations such as those in (1).

\[
\begin{align*}
(1) & \quad (a) \text{znaj-}u \text{ zna-l-}a \text{ znat-}; \text{ znul}^1 \text{ zil-}a \text{ zil,} \\
& \quad (b) \text{do-stam-}u \text{ do-sta-l-}a \text{ do-stat-}; \text{ raz-deu-}u \text{ raz-de-l-}a \text{ raz-def}; \\
& \quad \text{za-styu-}u \text{ za-sty-l-}a \text{ za-styt}; \\
& \quad (c) \text{zn-}u \text{ za-l-}a \text{ zat-}; \text{ min-}u \text{ ma-l-}a \text{ mat-}; \text{ na-}n-\text{ na-}n-\text{a} \text{ na-}n-\text{at}. \\
\end{align*}
\]

With the exception of the set of forms in (1c), where in addition to the deletion of the nasal, the vowel [a] appears in the stem, (and about which we shall have something to say below), the facts in (1) appear to be adequately captured by a rule which requires that in position before consonants, stem-final glides and nasals are truncated. (This rule was first formally proposed in Jakobson 1948). The difficulty with the truncation rule just proposed is that a class consisting of glides and nasals, but not including the liquids, can be designated only with difficulty, given the present feature system. To designate such a class we should have to specify that all sounds which are nonsyllabic, sonorant, and either nonconsonantal and nonnasal, or consonantal and nasal. As I have already indicated, I shall now attempt to show that this unnatural class appears in the rule not because of any shortcoming in the feature system, but rather because of a failure to capture certain deeper regularities of the language.

As illustrated in (2), where cognate pairs of perfective and imperfective verbs are given, the differences in verbal aspect for certain classes of verbs are signalled by adding the suffix -aj- to the stem. Moreover, as shown in (2b), when the stem ends in the glide /j/, the suffixation is accompanied by a replacement of this glide by /w/.\footnote{A late rule turns the glide /w/ into /j/.
}

(2) \[
\begin{align*}
(a) & \quad \text{spas-}u \text{ spas-aj-}u; \text{ vy-pal-}u \text{ vy-pal-aj-}u; \text{ po-nog-}u \text{ po-nog-aj-}u; \text{ pere-ziu-}u \text{ pere-ziw-aj-}u \text{ (see fn. 1);}
\hline
(b) & \quad \text{uspej-}u \text{ uspew-aj-}u \text{ (see fn. 1); raz-dej-}u \text{ raz-dew-aj-}u \text{ (see fn. 1);}
\hline
\end{align*}
\]

The facts of (2b) have led Flier (1970) to propose that Russian grammar must include a rule which turns /j/ into /w/ before certain suffixes including the imperfectivizing suffix -aj-.

Consider, in the light of this, the behavior of the verbs ending with a nasal cited in (1b):

\[
\begin{align*}
(3) & \quad \text{ot-deu-}u, \text{ ot-deu-aj-}u \text{ (see fn. 1); za-styu-}u \text{ za-sty-w-aj-}u \text{ (see fn. 1).}
\end{align*}
\]

It is immediately obvious that the addition of the suffix -aj- is in this case accompanied by a replacement of the stem final nasal by /w/. It would appear, therefore, that in these cases, not only the glide /j/ is replaced by /w/, but also the nasal /n/. This is a most difficult rule to state given any reasonable feature framework. If our framework is to do any work for us at all we must take this as a hint that there is something not quite in order with the rule and look for a different, less cumbersome solution.

Such a solution is not hard to find. In fact almost all of the pieces that we require are already at hand. All that we need to note is that in addition to unsuffixed perfective verbs, Russian contains numerous verbs which take the suffix -nu- in the perfective and, like the unsuffixed verbs in (2), form the imperfective by adding the suffix -aj- to the root.

(4) \[
\begin{align*}
& \quad \text{prij-vyk-n-}u \text{ pri-vyk-aj-}u; \text{ is-cez-n-}u \text{ is-cez-aj-}u; \text{ ugas-n-}u \text{ ugas-aj-}u
\end{align*}
\]

In parallel with (4) we can therefore account for the forms in (3) by postulating underlying representations like those in (5):

(5) \[
\begin{align*}
& \quad \text{raz-dej-n-}u \text{ raz-dew-aj-}u \text{ (see fn. 1); za-styu-n-}u \text{ za-styu-w-aj-}u \text{ (see fn. 1).}
\end{align*}
\]

We have already noted that glides delete before consonants, hence there is nothing unusual in the fact that in the present tense the /j/ fails to appear in the output. The only thing that remains to be explained is the disappearance of the -nu- suffix in the preconsonantal forms of (1b). The disappearance before the -t- suffix of the past tense is quite general. Thus, for the verbs cited in (4) we have the past tense forms in (6):

(6) \[
\begin{align*}
& \quad \text{prij-vyk-l-}a \text{ is-cez-}l-\text{a ugas-}l-\text{a}
\end{align*}
\]

The disappearance of the suffix -nu- before the infinitive suffix -t, is then the only unusual fact about the verbs in (1b). This fact will be captured by adding a special subcase to the rule that deletes the suffix -nu- in certain forms.

We have thus shown that the verbs in (1b) do not require that the truncation rule should apply to nasal consonants as well as to glides.
We turn now to the verbs illustrated in (1c) and we note that in these verbs the nasal is not truncated in preconsonantal position, but rather replaced by the vowel /a/. We should, therefore, need a rule of the form (7).

(7) [+ nasal] → /a/ /# X → [-syl] Y#

If rule (7) is to be added to the grammar, there is no longer any reason whatever for extending the truncation rule so that it applies to nasal consonants. There are a number of problems connected with rule (7), which shall be discussed directly. The results of this discussion will, however, not require us to change rule (7) substantially. The conclusion that the truncation rule must not affect nasal consonants can, therefore, be allowed to stand. In sum, the unnatural class of speech sounds that appeared in the earlier formulation of the truncation rule is not a fact of Russian, but rather a consequence of our failure to appreciate fully the nature of the phenomenon we were describing.

In addition to the verbs cited in (1c), Russian includes a small number of nouns which exhibit quite similar alternations between nasals and /a/. A few illustrative examples (the gen. sing. and nom. sing. forms) are given in (8).

(8) *vre,em,,-en',i* vre,em,-a; *im,-en,-i* im,-a; *znam,-en,-i* znam,-a

What we observe here is an alternation between /en/ in prevocalic position and /a/ in word final position. We could capture these facts quite readily if we extended rule (7) in two ways. First we must let the rule apply also in word final position. Secondly, we must let it apply not only to nasal consonants, but also to sequences of vowel + nasal consonant. In fact, the latter extension is almost mandatory since it has been shown by Lightner (1965) that it is necessary in any case to postulate a vowel in the stem of each of the verbs in (1c). Rule (7) must, therefore, be generalized as in (9).

(9) [+ syllabic] [+ nas] → /a/ /# X → [-syl] Y#

There are several aspects of (9) that require clarification. The first of these concerns the manner in which (7) was generalized to apply also in word final position. This was done, quite simply, by enclosing the sequence [-syl] Y in parentheses. In order that this actually be possible it is necessary to justify the appearance of the symbols X and Y which in line with standard convention stand for a sequence of zero or more segments and boundaries, not including, however, the word boundary #. By writing the rules in the form (7) we are making explicit the fact that a rule such as (7) applies to words, but does not apply either to word sequences or to strings that are contained within words. As shown in (9) rules that have the form (7) can readily be generalized to apply also in word final position; whereas rules of the form of (10) can be generalized equally easily to apply also in word initial position.

(10) [+ syl]
- hi
- stress → /a/ /# X [+ back] → Y#

In fact, rule (10) is found in a wide variety of Southern Russian dialects and expresses the phenomenon known as akan’e which consists in the replacement of a non-high unstressed vowel by /a/ after a hard (i.e., [+ back]) consonant. Significantly, in the overwhelming majority of dialects where (10) applies, it extends also to word initial position. This is precisely what the formalism that has been adopted here would make us expect, for it is this formalism which allows us to extend a rule such as (10) to word initial position merely by placing parentheses around the subsequence

\[X \]

The intuition that is implicit in the formalism discussed here is that a left-hand environment of a rule can readily be generalized to include word initial position, whereas a right-hand environment can equally readily be extended to word final position. If this is correct, then this sheds some light on the question as to why processes that take place in pre-obstruent position often also take place in word final position. The answer that has frequently been offered (most recently by R. Lass in a paper significantly titled “Boundaries as Obstruents: Old English Voicing Assimilation and Universal Strength Hierarchies” (Lass 1971)) is that the word boundary possesses the relevant phonetic features of the obstruents. This seems rather an extreme departure from phonetic realism, for, if one thing has been clearly established by the phonetic research of the last twenty-five years, it is that word boundaries have no phonetic properties in common. Thus, in normal English speech, a name and an aim are phonetically indistinguishable. They may, of course, be distinguished by inserting a glottal stop at the beginning of the word aim, or by interposing pauses in the appropriate places, but these are not normal pronunciations. The same is true of such Russian doublets as *vypolz tarakanom* ‘he crawled out like/as a cockroach’ vs. *vypal s tarakanom* ‘he fell out with a cockroach’, both of which are normally pronounced as *vytpolst tarakannom*.

Moreover, it is not correct that word boundaries always function like obstruent-type environments. In fact, there are a number of cases where word boundaries function on a par with vowel type environments. For example, in Latvian morpheme final vowels delete if the next morpheme begins with a vowel, or if they are word final. (See Halle and Zeps 1966). This fact is captured quite naturally by the proposed notational conventions as in (11).

(11) [+ syl] → 0 /# X → (+ [+ syl] Y)#
In Southern Paiute (see Chomsky and Halle 1968:346) under precisely the same conditions, consonants (rather than vowels) are deleted. A comparison of rule (9) with (11) shows immediately that what is common in the environments of both rules is that the right hand environment and word final position go hand in hand (as do left hand environments and word initial position), and not that word boundaries share phonetic properties with any class of speech sounds.

4.

The second aspect of rule (9) that requires comment is that the rule affects at once two segments and merges them into a single one. This is rather unusual in that phonological rules normally affect only single segments. Exceptions to this, such as rules of metathesis, have long been known, but relatively little has hitherto been said about their character.

It was noted in Chomsky and Halle (1968) that rules such as (9) really require part of the power of syntactic transformations and should, therefore, be written in the form (12).

\[
\begin{align*}
\text{rule (12):} & \quad \text{if } X \ [\text{+ nasal}] [\text{+ syl}] [\text{— nasal}] Y \ \# \\
1 \quad 2 \quad 3 \quad 4 \quad & \Rightarrow \\
1 \quad 2 \rightarrow /a/ \quad 3 \rightarrow /0/ \quad 4 \quad &
\end{align*}
\]

The first thing to remark about rules of the form (12) is that the effects that they produce can be captured also by separating them into several distinct rules. Thus, for instance, rule (12) could be replaced by the pair of rules in (13).

\[
\begin{align*}
\text{rule (13):} & \quad (a) \ [\text{+ nasal}] \rightarrow /0/ \ [\text{+ syl}] \ [\text{— nasal}] Y \ \# \\
& \quad (b) \ [\text{+ nasal}] \rightarrow /0/ \ [\text{— nasal}] Y \ \#
\end{align*}
\]

There is, however, no particularly strong argument for doing this, and one can adduce at least one fact against the proposal, namely, that words which are exceptions to (13a) are also exceptions to (13b), which suggests that we are dealing here with a single process and not two separate processes, and that (12) is a more appropriate description than (13).

It is well known that French nasalization is a process quite similar to that captured in rule (12). We shall examine the relevant French facts here because it has been suggested that in French, arguments can be adduced to show that nasalization consists of two distinct parts which must be captured by two rules between which it is necessary to interpose a third rule.

As shown in (14), before consonants and in word final position, vowels are nasalized, if followed by a nasal consonant, and the nasal consonant is then deleted.

\[
\begin{align*}
\text{In certain syntactic environments we encounter what has traditionally been known as liaison; i.e., a situation where word boundaries don't appear to count. Thus, we have (15a) but (15b).}
\end{align*}
\]

\[
\begin{align*}
\text{(15) } & \quad (a) \ [\text{bonami}] \ [\text{bon ami}] \\
& \quad (b) \ [\text{bon amäie}] \ [\text{bon à manger}]
\end{align*}
\]

Dell proposed that cases such as (16) be accounted for by letting the LIASSON rule apply after vowel nasalization (13a), but before the rule deleting nasal consonants (13b). The more common cases illustrated in (14) and (15) would then be handled by derivations in which the LIASSON rule preceded both vowel nasalization and the rule deleting nasal consonants. We have, therefore, derivations with different orders of rules as shown in (17).

\[
\begin{align*}
\text{(17) } & \quad (a) \ [\text{bän # ami}] \\
& \quad (b) \ [\text{män # ami}]
\end{align*}
\]

The argument just presented hinges crucially on the fact that the description must include a special rule stating that the rules of LIASSON and VOWEL NASALIZATION apply in that order in Adj + Noun sequences, whereas elsewhere they apply in the inverse order.

As an alternative to this solution we could postulate that nasalization is a single process embodied in a rule such as (18).
We should then account for the nasality in words such as mon, rien, etc. by supplying it in their lexical entries. Thus, in place of a special rule establishing different orders of application for a pair of rules, the alternative account would contain an extra phonological specification in the lexical representation of words such as mon, rien, etc. These entries would be exceptional only in the sense that in the lexical entries of French there are, otherwise, no nasal vowels. It seems to me that as a general principle, solutions requiring special meta-rules determining the order of application of phonological rules should be less highly valued than solutions that require an additional phonetic specification in the lexical representations of a handful of items. I conclude, therefore, that the preferred solution for French is the one incorporating rule (18) where nasalization is a single rather than a two-step process.3

5.

The nasalization rule just discussed illustrates an interesting effect of some rules which consists in fusing the phonetic properties of two adjoining segments into a single segment. In addition to nasalization we might mention the monophthongization rules, of which the Sanskrit sandhi is perhaps the most famous example, where the sequences /ai/ and /au/ are replaced by /e/ and /o/; i.e., where the result of the fusion preserves the high feature of the first segment, and rounding and backness of the second segment. Fusion rules of this type represent a somewhat aberrant form of behavior, for in the overwhelming majority of phonological processes that have been studied, the domain of a phonological feature is a single segment. There has, of course, been one notable exception to this. In numerous works the so-called 'prosodic' features of tone, pitch and stress have been specifically treated as 'suprasegmental'; i.e., as features whose domain is some unit other than the segment. Until recently such attempts have to my mind, at least, failed to be fully convincing — primarily because they have not excluded alternative solutions in which all features are purely 'segmental'. In this final section of my paper I want to review some data which seem to me to place the issue of suprasegmental features in a new light.

In an attempt to extend the distinctive feature framework to the prosodic features of tone and pitch, Woo (1969) proceeded on the basis of the following two hypotheses:

(19) (a) prosodic features are segmental rather than suprasegmental
(b) on the systematic level all tones are stationary. (Nonstationary tones,

such as 'rising', 'falling', or 'convex', are more or less surface phenomena; they have much the same status as the different formant transitions that are found in a given vowel when it is adjacent to different stop consonants.)

These two hypotheses constrain severely the manner in which tonal phenomena can be treated in phonological descriptions. In particular, they require that phonetic properties such as 'rising' or 'falling' should play no direct role either in underlying representations or in phonological rules. It is, therefore, of some significance that in a number of languages it could be shown not only that these constraints can readily be satisfied, but also that they lead to descriptions that are clearly superior to the alternatives which make use of non-stationary features. Among the facts that the constraints (19a) and (19b) readily explain is the following. In many languages non-stationary tones appear freely on diphthongs and long vowels, whereas on short vowels contrasts between nonstationary tones are systematically excluded.

This is the case in Lithuanian, in classical Greek, in the American Indian languages Otomi (see Bernard 1966) and Northern Tepehuan, and a number of African languages (Maddieson 1971). Observe that, if the theoretical framework requires us to represent non-stationary tones by features such as 'rising', 'falling' etc., then the restriction on the appearance of these tones is just another curious fact. If on the other hand the framework does not contain features such as 'rising', 'falling' etc., then the only way to characterize non-stationary tones is as sequences of stationary tones; i.e., 'rising' would then be characterized as a sequence of low pitch + high pitch, 'falling' as high pitch + low pitch, etc. If, furthermore, the assumption is made that the domain of the feature is the segment, then the absence of non-stationary tones on short vowels is not just a curious fact, but is rather a logical consequence of the theory; for since the only way to represent non-stationary tones is as sequences of stationary tones, a short vowel which can only be represented by a single segment cannot have a non-stationary tone.

The constraints (19a) and (19b) make it possible to handle a whole series of additional facts as well. Details can be found in the studies cited in the preceding paragraph. In certain language areas the facts are so persuasively handled by the proposed constraints that at a recent conference at the University of Ibadan the conference agreed on the propositions "that the introduction of features like (Rise) and (Fall) is not an acceptable method of handling gliding tones (i.e., non-stationary tones)" and "that a better method of handling gliding tones is to deal with them as sequences of level pitches." (Maddieson 1971:80.)

Non-stationary tones arise, however, not only in conditions where it is natural to regard them as the surface manifestation of segment sequences. There are well-attested instances of phonetically rising and falling tones on short vowels where the solution just discussed is not available. In Halle (1971) I showed that at least in two such cases (Serbo-Croatian and Slovenian) this did not require abandonment.

190 MORRIS HALLE

(18) $X' [+syll] [+nas] ([−syll] Y) \neq$

1 2 3 4 \Rightarrow [+nas], 3 \Rightarrow 0, 4 \Rightarrow

2 The essential facts in this section were brought to my attention by E.O. Selkirk, who expects to treat them within the framework of a larger work on French phonology, now in progress.
of the hypotheses in (19). In Serbo-Croatian, phonetically 'rising' tone is found only on an accented syllable followed by a syllable that has 'high' pitch, whereas the 'falling' pitch is found on all other accented syllables. In Slovene, on the other hand, the 'rising' and 'falling' tones, which phonetically are not the same as the identically named tones in Serbo-Croatian, are surface manifestations respectively of 'low' and 'high' level pitches. In both Serbo-Croatian and Slovene I believe that I was able to show that this treatment accounted not only for certain curious distributions of the tones, but that it was also in very close agreement with the phonetic facts themselves.

Since the twin hypotheses (19) constrain quite narrowly the kind of things that can be said about tonal phenomena in linguistic descriptions and are, therefore, readily falsifiable, at least, in principle, the fact that they were not falsified in the case of the languages noted in the preceding paragraphs must be regarded as strong evidence in favor of the hypotheses. It appears, however, that the two hypotheses cannot be maintained, in general; in particular, certain facts from African languages which have recently been reviewed by Leben (1971) lead to the conclusion that the theory must be modified so as to allow prosodic phenomena to be treated also as 'suprasegmental' phenomena. The hypothesis about the exclusively stationary character of prosodic features, on the other hand, appears to be confirmed by Leben's data.

Leben points out that in Mende there are at least five distinct tonal qualities in vowels:

(20) HIGH LEVEL pélé 'house'; LOW LEVEL bélè 'pant-leg'; FALLING mbú 'owl'; RISING FALLING mbá 'rice'

The important thing to observe here is that the vowels with non-stationary tones are short and can under no circumstances be regarded as segment sequences, rather than single segments. In view of this fact it is clear that both hypotheses of (19) cannot be true. We have the choice of either adding the non-stationary features 'rising', 'falling' and 'rising-falling' to our list and thereby giving up (19b); or we can give up (19a) and treat prosodic features as suprasegmental.

Leben shows conclusively that the first alternative is undesirable. Among other things, he points out that in Mende the total contour of compound nouns is determined by a special rule which copies on to the first syllable of the second member of the compound, the last tone of the first member; moreover, the rule assigns 'low' pitch to all other vowels in the second compound. The way the rule operates is illustrated in (21a).

(21) (a) pélé hänl | bélè hänl | mbú hänl | mbá hänl

In (21b) we see that if the last tone of the first member of the compound is non-stationary — i.e., 'rising' or 'falling' — then it is not copied in its entirety; instead, what is copied is the terminal portion of the tone: 'high' in case of 'rising' tone, 'low' in case of a 'falling' tone. In other words, the non-stationary tones behave as if they consisted of a sequence of two level pitches, of which the second gets copied onto the next syllable in accordance with the rule stated above. (I disregard here the effects of a subsidiary process which deletes the second part of the non-stationary tone under certain conditions. As Leben points out, this subsidiary process serves further to support the view that non-stationary tones must be represented by sequences).

If hypothesis (19b) is, therefore, to be maintained, we must give up (19a) and regard the prosodic features as suprasegmental, rather than segmental. In effect this would mean that in addition to a matrix specifying the segmental features of a given formative, there would have to be a second matrix which specifies the suprasegmental features. Thus, the Mende examples cited in (20) might be represented by prosodic matrices such as (22).

(22) |
| high | + | high | mbú | mbá |
| low | - | low | - | - |

The grammar would then have also to include two sets of rules. The first set would treat the suprasegmental feature matrix of a word in isolation from its segmental feature matrix. A rule like the compound Noun rule of Mende illustrated in (21) requires this sort of separate treatment of the suprasegmental feature matrices. In addition, there must also be a second set of rules whose primary function is to map the sequential units of the suprasegmental matrix on to the sequential units of the segmental matrix. The result of this mapping is then a representation much like the traditional phonetic transcription with pitches and tones assigned to vowels and other sonorants in the familiar manner.

Although much remains to be learned about this mapping, two observations of some interest can be made here. First, the mapping of suprasegmental units on to segmental units need not be one-to-one. Thus, in the examples from Mende in (20) we find several instances where more than one suprasegmental unit was mapped on to a single segmental unit. Instances where a single suprasegmental unit is mapped on to two consecutive segmental units have been noted by Leben and others. Even more intriguing are the cases discussed by McCawley (1970) in his note on tone in Tiv, where a sequence of two segmental units is mapped on to three segmental units. In this connection attention must also be paid to the interesting attempt by Sven Öhmann (1967) to account for dialectal differences in the implementation of the Swedish tones by postulating differences in the correspondences between suprasegmental and segmental units. (Thus, in one dialect a suprasegmental sequence of low-high would be mapped on to consecutive vowels in a one-to-one manner, whereas in another dialect the onset of the high pitch would be delayed until the last part of the second vowel). It is obvious that we need a detailed investigation of these
phemonena in order to discover the limitations to which the mapping of suprasegmental on to segmental units is subject.

Secondly, as Leben notes in his paper (1971), the point in a grammar at which the suprasegmental units are mapped on to segmental units may differ from language to language. Languages, such as Otomi or Serbo-Croatian, where the mapping occurs at a very early point in the grammar and where, moreover, the mapping has essentially a one-one character, will give the appearance of obeying the constraint (19a) that all features are segmental, for in these language all prosodic features will function on a par with segmental features. It is only languages such as Mende where the mapping must occur late in the grammar and where it deviates from a simple one-one correspondence that can provide the evidence against constraint (19a).

Finally, it will be recalled that in the first section of this paper I argued that the feature controlling 'high' and 'low' pitch were the same as those responsible for voicing and voicelessness in consonants. This suggests that it will not be easy to draw a sharp dividing line between segmental and suprasegmental features; at least some this is more than an appearance and what it tells us about the nature of language are questions that at present we cannot even properly formulate, let alone answer.

Department of Linguistics
Massachusetts Institute of Technology
Cambridge, Massachusetts

REFERENCES

THEORETICAL ISSUES IN PHONOLOGY IN THE 1970's

DISCUSSION
et, dans un autre cadre que celui de la phonologie générative, la règle est parfaitement réversible. Encore qu’il s’agisse là d’une finesse du traitement qui ne peut se juger dans le cadre du formalisme général dans lequel elle est placée. Par ailleurs, est-ce que le fait d’assigner aux matrices sous-jacentes exceptionnelles un trait phonétique de nasalité au lieu d’un indice diacritique n’ajoute pas une contrainte supplémentaire à la règle ou encore exclut le trait [+ syllabique] de la définition de ces voyelles nasales, ce qui a peut-être des conséquences aussi importantes au niveau du traitement que celles d’utiliser un trait diacritique. La question la plus difficile me semble être celle qui consiste à isoler de façon satisfaisante la fonction morpho-syntaxique du genre dans des cas comme ‘un’ [génafa] et ‘mon’ [mSnani]. Il n’est pas certain, du moins à mes yeux, que la nasalité de la voyelle n’indique pas ici le masculin, tout autant que l’absence de la consonne nasale — ou, dans le traitement de Schane (1968), l’absence de la voyelle [a]. Cette interprétation soulignerait la complémentarité des deux opérations et expliquerait que l’annulation d’une opération ne comporte pas nécessairement l’annulation de l’autre lorsque la syntaxe l’exige. Il en est de même pour un grand nombre de cas, parmi lesquels le plus remarquable est sans doute celui de la liaison avec [f], entre le déictique et le SN ou le pronom personnel et le verbe, liaison que les usagers, si on en croit la grammaire des fautes (cinq-z-enfants, huit-z-étages…), interprètent comme un morphème du pluriel indépendant des unités lexicales. Un autre exemple serait celui du singulier et du pluriel dans des verbes comme: [il vjë il vjen, il pâ il psp], etc. Le problème qui se pose est celui de la prévisibilité car si une transformation énonce un changement prévisible le morphème grammatical est essentiellement imprévisible. Je n’aborderai pas ici la question de la redondance morphologique ni celle des caractères de la ‘naturalité’ dans l’interprétation des fonctions phonologiques; la question est trop complexe et prendrait trop de temps.

Je ne voudrais pas cependant quitter cette tribune sans dire un mot des avances de la recherche en phonologie et en linguistique pour les années 70.

Il me semble que, à côté d’un effort de formalisation et de généralisation, dont on ne peut plus ignorer ni l’existence ni la nécessité dans l’échafaudage correct des hypothèses, il y a place, dès maintenant, pour tout un secteur de vérification des hypothèses auprès d’usagers non avertis ou non initiés à la grammaire. Je pense qu’il est possible d’utiliser les procédés d’expertise mis au point par la psychologie expérimentale et la sociologie pour cerner le sentiment linguistique des usagers à propos de certaines structures syntaxiques, phonologiques ou sémantiques, comme l’a fait partiellement Scholes dans Phonotactic Grammaticality (1966) et l’équipe de Piaget dans ses travaux sur l’acquisition des connaissances et comme j’essaierai de l’expliquer dans un livre en préparation sur la question. Cette nouvelle ‘discipline’ pourrait porter le nom provisoire de ‘Psycho-linguistique expérimentale’ et reposer principalement sur la technique de l’enquête et du test. Elle pourrait donc porter le nom provisoire de ‘Psycho-linguistique expérimentale’ et reposer sur la méthode inductive et que l’étude des faits l’amène à modifier sa théorie.
Le premier exemple concerne la tension des cordes vocales; la conclusion est formulée comme suit:

From the point of view that has been developed here, this is important evidence, for it supports the claim implicit [je souligne] in the theory that the same set of features govern both pitch levels in vowels and voicing in obstruents, and that, therefore, voiceless obstruents and high-pitched vowels form a natural class as do voiced obstruents and low-pitched vowels.

Cette conclusion n'est pas implicite dans la théorie initiale: celle-cì ne concerne que les voyelles, lesquelles sont toujours voisées même si les cordes vocales sont détendues, tandis que les consonnes ne sont pas voisées si les cordes sont détendues. Mais, passant outre à cette différence de nature, M. Halle élabore une nouvelle théorie en se basant sur des faits observés.

Le second exemple de M. Halle concerne la classification des phonèmes russes; je cite ce passage: "I believe that I can show that it is the rule, rather than the feature system which is in need of modification."

Une règle est un élément de théorie, aussi bien que le "feature system"; M. Halle va donc modifier une partie de sa théorie pour la mettre en accord avec une autre partie; et il fait en se basant sur "a better understanding of the facts".

Le troisième exemple part également des faits pour modifier la théorie: "We could capture these facts quite readily if we extended rule (7), in two ways".

Le quatrième exemple se rapporte à des segments qui peuvent se fondre en un seul; je retiens la phrase significative suivante: "We shall examine the relevant French facts here".

Le cinquième exemple cherche la réponse à la question de savoir si le ton est un fait segmental ou supra-segmental. M. Halle cite des faits favorables à la première classification et d'autres faits favorables à la seconde classification; il renonce à conclure, c'est-à-dire à bâtir une théorie. Je retiens qu'il a commencé par étudier les faits.

En conclusion, je ne puis qu'applaudir à la méthode appliquée par M. Halle; chaque fois il est parti des faits pour modifier ou élaborer une théorie. C'est la méthode inductive, la seule qui permette de constituer une science.

Halle

Professor Buyssens' comment attributes to me a view that I am unaware of having consciously espoused. He writes:

Le but de M. Halle est de montrer qu'en partant d'une théorie et en appliquant la méthode dductive, il obtient des solutions à ce qu'il appelle des "empirical questions"; moi, but est de montrer que dans ses cinq exemples, M. Halle applique la méthode inductive et que l'étude des faits l'amène à modifier sa théorie.

I have never been interested in limiting myself to a method that can be characterized as deductive. Moreover, I should regard it as most damaging if it could be shown that the study of the facts did not affect any theory that I might be advancing. Theories that are not affected by the facts have really no place in a science. If anything in my paper gives the impression that I do not view matters in this light, it should be disregarded; and I am grateful to Professor Buyssens for having provided me with the opportunity for correcting misconceptions on this point that might have arisen.

Graham Stuart

The report of Professor Halle should count among the most interesting presented at this congress; it is certainly the most provocative. It is not easy to formulate concisely one's reactions to all of the diverse and surprising proposals that Professor Halle makes. I shall try to group my brief comments under the three major divisions that he made in his presentation.

1. Professor Halle imposes with amazing clarity a very simple pattern of phonological distinctiveness upon the extremely rich range of realities that are demonstrably subject to voluntary control for (1) turning on, (2) sustaining, and (3) turning off phonation, with and without a vocal tract obstruction. The diachronic relation between consonant voicing and syllable pitch in the languages of S.E. Asia is well understood, thanks to Haudricourt. It is a relation comparable to that between distinctive vowel length and word accent in Romance: we find an inheritance of distinctive load. Synchronically, we know that distinctive voicing and distinctive pitch are compatible: it is usual to find both high and low pitch alternating after both voiced and voiceless consonants. Moreover, I cannot see how the consonant systems of the Sanskritic languages or of Korean can be explained in terms of a tripartite opposition of stiff ~ neutral ~ slack vocal chords (cf. my remarks in reference to the paper of Abramson and Lisker, pp. 439-446 of this volume).

Professor Halle notes that the articulatory mechanism of pitch distinction must involve the "stiffness" of the vocal chords. He then asserts that "still" vocal chords inhibit voicing and that "slack" vocal chords facilitate voicing. Of course, the production of voice (the aerodynamic coupling with the vocal tract being constant) is dependent upon a critical relation between the myoelastic properties of the parts of the larynx and the subglottal air pressure. If the resistance of the vocal chords to being blown apart is too great, phonation cannot take place. On the other hand, if the closing force on the vocal chords is insufficient (if they are too "slack"), the vocal chords will be forced apart and will be unable to return to a closed position; again phonation cannot take place.

A concrete example of this latter case, where over-"slack" vocal chords do not "facilitate" but rather "inhibit" voicing, is found in Japanese, which Prof. Halle, repeating a traditional mistake traceable back to Bernard Bloch, has just cited as his first example of a language with two pitch levels. Modern Tokyo Japanese has a free word accent realized in the syllabic pitch pattern. Monosyllables are not distinguishable by their pitch level. Multisyllabic words may have the accent on the first syllable, in which case the second and subsequent syllables are lower pitched.
If the first syllable is not accented, it will be low in pitch and subsequent syllables will be high up to and including the accented syllable, which, if it is not ultimate, will be followed by a fall in pitch and all subsequent syllables will be low. Thus, accented syllables are, in fact, high in pitch, and post-tonal syllables are low in pitch. However, it is typical of Japanese that these low-pitched syllables—presumably produced with 'slack' vocal chords, which should according to Professor Halle, facilitate voicing—are devoted in voiceless contexts. (Example: /hasi/ [ha@] 'chopsticks'—/a@/ [a@] 'bridge').

2. In his discussion of the relation between rules, feature systems, and phoneme categories, Professor Halle gave us a number of valuable insights of which I am keenly appreciative. However, I could not escape the feeling in listening to his examples, and especially in trying to see their bearing on theoretical issues in phonology that are likely to preoccupy us in the 1970's, that the most central issue had been exemplified but not enunciated: surely this issue will be the role of morphophonology in linguistic description and its relation to morphology and phonology. Is there an independence of phonological systems from the grammars for which they provide expression justifying our giving explicit recognition to the first and major discontinuity in the complexity of languages, that between a level of analysis of signs (signes à deux faces) and a level of analysis of sign expressions? I think there is.

3. Professor Halle's final topic raises sweeping questions about the nature of prosodic features. If, as he asserts, prosodic features are segmental, how do they differ as a class from the inherent features? Pitch levels that accrue to individual vowels instead of to syllables or longer constituents would be functionally the same as any other vocalic feature, say lip rounding. On the other hand, how is it possible to say that contrastive features like accent are segmental? Unless we are just playing with words, we should certainly not want to say that an accented vowel is characterized as [+ accent] and the other vocalic features in the word as [- accent].

For all tones to be stationary "on the systematic level", as Professor Halle asserts them to be, would imply a distinction of four or six distinctive tone levels in those languages which are usually described as having rising, falling, and modulated tone contours in two or three registers. This would be plausible only if it were clear from experiments that pitch distinctions are more readily recognized than pitch contour distinctions. The opposite is certainly demonstrably the case: it is easier to recognize differences of direction of change of pitch than differences of pitch.

These difficulties all, it seems to me, arise from focusing in on the phonetic substance rather than its functions in signalling. Vocal pitch could conceivably be either a cue for a prosodic feature or a segmental feature. If the facts of Mende are as Professor Halle has described them, I see no difficulty in recognizing high and low pitch as vocalic features. One might imagine also a system (perhaps realized in some Central Tibetan dialects) in which syllables may begin high or low and end either high or low. Some initial consonants determine the pitch of syllable beginning. From a functional point of view, pitch in such a system would be a feature characterizing, not the syllable nucleus, but the syllable peripheries, hence a consonantal feature. In the same way, I should be prepared to call vocalic nasality a prosodic feature in any phonological system in which (1) monosyllabic words do not distinguish nasality in the vowel, (2) polysyllables must all have at least one nasal vowel, and (3) no word has more than one nasal vowel.

Professor Halle has somewhat misunderstood the proposal concerning laryngeal features which I have discussed. While I have devoted almost exclusive attention here to the features STIFF VOCAL CORDS and SLACK VOCAL CORDS, I never stated that these are the only laryngeal features in the framework. It is obvious that the two features cannot account for glottal opening and closing, which also plays a role in speech production. We have, therefore, proposed in addition the features SPREAD GLOTTIS and CONSTRICTED GLOTTIS (see Halle and Stevens 1971). Sounds produced with spread glottis have a breathy quality: we include here the aspirated stops of Sanskrit and Korean as well as the h-glides and the so-called breathy vowels. Sounds produced with a constricted glottis, on the other hand, include the ejective and implosive stops, the glottalized continuants, the glottal stop and the so-called 'creaky voice' vowels.

I agree with Professor Stuart's comment that the relationship between the rules of the phonological component and those of the morphological (word formation) component is likely to be a major topic of research in the 1970's. As the abstract of my communication published in the Congress program shows, I had hoped to talk about this topic here. Unfortunately my work on this subject has not progressed as rapidly as I had expected so that at present I have little that is new and interesting to contribute on this subject.

I am afraid that Professor Stuart's final comment is again based on a misunderstanding. I did not propose that prosodic features are segmental. In fact, the last part of my paper was specifically aimed at showing that this was a constraint that could not be maintained. I did maintain that on the systematic level there are only stationary tones, but this clearly is a totally different assertion than the assertion
about the segmental nature of features. Unfortunately, I must have spoken so indistinctly here as to confuse these two separate issues in Professor Stuart's mind.

Ladefoged (Los Angeles)
I agree with Professor Halle in his observations concerning the relations between theory and data, and the necessity for mature reflection. I have put in a great deal of mature reflection on the nature of the interaction between voicing in consonants and tone in vowels. It seems to me that Halle is guilty of either faulty reasoning or a kind of conjuring trick. He claims that slack vocal cords aid voicing in obstruents, which may be true; but it does not follow that stiff vocal cords necessarily occur in voiceless sounds. He points out that voiceless consonants are often reflexes of high-tone vowels and voiced consonants of low-tone vowels. This is undoubtedly true. But when he goes on to say 'in other words' stiff vocal cords occur during voiceless sounds, and slack vocal cords during voiced consonants, he may well be deceiving himself and us. There have been several papers at this congress indicating that the vocal cords are probably not adjusted in any special way in making voiced obstruents. There have been absolutely no direct observations of the vocal cords indicating that they are stiff during voiceless sounds. So why does Professor Halle put forward these pseudo-facts? Our phonological theories must be able to account for the relation between voiced and voiceless consonants on the one hand, and low- and high-tone vowels on the other hand. This will probably be done most appropriately by a new set of features. But these features must have a sound phonetic basis.

Halle
I am puzzled by Professor Ladefoged's epitheton ornans "pseudo-facts". While it is certainly true that we do not at present have direct measurements of vocal cord stiffness, this hardly makes vocal cord stiffness a "pseudo-fact". All sciences make use of logical inferences without apologizing for it, and I do not understand why Professor Ladefoged would have phoneticians restrict their considerations to facts that are obtained by direct observation. The evidence in favor of stiffness derives from the following considerations: (a) it explains the coincidence of voicelessness in obstruents and high pitch in the adjacent vowel; (b) given the model of larynx function proposed by Ishizaka and Matsudaia (1968), and by K. N. Stevens, vocal cord stiffness is the appropriate parameter to control both voicelessness and high pitch. It is, of course, possible that this model of larynx function is incorrect, in which case the proposed feature of vocal cord stiffness would have to be re-examined. I note that the commentator has chosen not to address the issue of whether the proposed larynx model is correct, but has limited himself to observing that a specific consequence of the model has as yet not been validated by visual inspection of the vocal cords during speech. This may be due solely to the fact that these adjustments are not evident by visual inspection. If he had suggested an alternative model of larynx function in which vocal cord stiffness did not play the role implied in the paper, this might have raised questions about what was proposed here. Since he has done no such thing, I see the issue in very much the same light as before hearing his comment.

REFERENCE

Fromkin (Los Angeles)
I believe Professor Halle personally illustrates his statement that in science there are ways of finding out whether one is right or wrong. The two constraints on tonal features which he rejects in this paper were put forward by him just a few months ago. He is not to be criticized for putting forth these hypotheses — we would like our theory to be as strongly constrained as possible — but it is rather to be congratulated on giving them up in light of empirical evidence. I think we will also have to, begrudgingly perhaps, give up the notion that only stationary tone features are needed in the set of universal phonetic features. While it may indeed be the case that all 'contour' tones are derivable from underlying 'suprasegmental' matrices specified by stationary tone features, if features have both absolute and relative values then we must include 'rising' and 'falling' (or [+ gliding] such that when a sequence of two tones is marked [+ gliding] on the second tone, one derives a falling tone if the first tone is high and the second low, and a rising tone with the opposite configuration). Unless such a feature is available there is no way to differentiate a sequence of two-register (stationary) tones, from a sequence which is phonetically realized as a glide. There are examples even within one language where this phonetic contrast occurs; that is a sequence of (CV.CV) will be phonetically a fall, but a sequence (CVC.CV) (where the second syllable with a mid tone is deleted after the gliding rule applies) is realized as (CV.CV) with two stationary tones.

Halle
As always Professor Fromkin's comments command one's immediate assent. I must observe, however, that Professor Fromkin did not present actual examples from real languages, but cited only abstract formulas as potential counterexamples to the ideas proposed here. If the evidence her formulas allude to actually stands up in the light of mature reflection, it will be necessary to add non-stationary tonal features, or modify the framework in some other manner.

Trutenau (Legon, Ghana)
While wishing to abstain from all polemics, I should like to refer briefly to that part
of the first section of Prof. Halle's presentation where he "discussed the proposed extension of the feature system". Permit me to put on the record that (with a minor terminological change, using 'tight' rather than 'stiff') the feature system he presents is practically identical to that proposed by me (in consultation with Dr. J. M. Stewart) for the tones of Gâ in the first half of 1970. Due to the communication lag one suffers from in West Africa, I am unable to decide whether his work preceded mine, but I do remember sending a copy of the preprint.

In my paper (forthcoming in Linguistics) I postulate three underlying tones for Gâ and propose rules mapping these onto the two surface tones of the language. However, I shall be pleased to adopt Prof. Halle's terminology of 'stiff' for 'tight', to avoid unnecessary terminological diversity.

Professor Trutenau has apparently moved along paths quite similar to mine. I regret that I am not familiar with his work and that because of this, I might have failed to recognize his claims to priority. I observe, however, that Professor Trutenau's claim appears to be limited to the fact that vocal cord stiffness controls the pitch of vowels, whereas the proposal made by Stevens and me goes considerably beyond that. It asserts that the same features control also the voiced-voiceless distinction. In this connection I would like to make clear my own indebtedness to Dr. LaRaw Maran of Indiana University, who was the first to suggest that voicing and vowel pitch are controlled by the same laryngeal mechanism. I would also like to draw attention to C. Bird's (1971) paper on Mande which arrives at conclusions that are quite similar to the ones I have discussed here.

REFERENCE

Oliverius (Clayton, Australia)

I would like to point out that there is a difference between the element /w/ in /iwiw-u/ and /n/ in /din-u/. The rule truncating glides before C's accounts fully for the following forms: /si/-[sil, silt, silt/; /nil, etc. but in /irad-e-w-a-n/-/; one has first to create artificially the element /n/ to be able to delete it by truncation. It may be easier to presuppose a sort of derivational bifurcation leading on the one hand to /ra[d,e-a-n/-/ and on the other to /ra[d,e-n-u/-, without necessarily linking both forms in a linear chain of derivates.

halle

Professor Oliverius' comment intrigues me but its very summary character makes it impossible for me to react here to it in a useful fashion.

Theoretical Issues in Phonology in the 1970's

DeArmond (Burnaby, B. C.)

I first have a comment and then a question. Further evidence for your analysis that /n/ is a separate suffix in verbs such as stat' ~ staa'nu is found in the fact stress becomes highly predictable in consonantal stems (stems with no thematic suffix). All verbs formed with /n/ in the present and the imperative only have root stress: /st6+n/ → /st6+n/ "become"; /sêd+n/ → /sêd+n/ → /sêd/ 'sit (perfective). In the latter form a root final consonant and /n/ nasalize. Otherwise in the class of non-thematic verb stems, stress occurs on the desinence if the root vowel is lax; e.g., /nes+i+m/ → /nes+i+m/ → /nes+i+m/ 'I carry'. In the latter form a root final consonant and /n/ nasalize. Otherwise in the class of non-thematic verb stems, stress occurs on the desinence if the root vowel is lax; e.g., /nes+i+m/ → /nes+i+m/ → /nes+i+m/ 'I carry'. If the root vowel is tense, the stress retracts if the first suffix added to the stem begins with a consonant: /klôd+e+m/ → /klôd+é+m/ → /klôd+i/ 'I put'; /klôd+i/+ /klôd+i/ → /klôd+i/ → /klôd+i/ 'to put'. Certain other rules also occur which determine stress, and only one or two verbs remain as exceptions.

The question that I have is the following: it has been shown that there is a correlation between tense/lax and voiced/unvoiced in consonants. How do you proposed features of stiff/slack fit in with the features tense/lax?

Halle

I thank Professor DeArmond for bringing out the interesting accentual facts of Russian which I had overlooked. I am afraid that I have no ready answer to his question regarding the relationship between the features tense/lax and voiced/voiceless. The proposed replacement of the latter features by stiff/slack does not seem to shed any new light on this question. Matters, in this respect, are thus in the status quo ante.

Halle's final comment

I am grateful to all who have commented on my paper, for they have either elucidated points raised in my paper or raised issues that I was unable to bring out on my own.