PREDICTING THE INTELLIGIBILITY OF WORDS II

JOHN W. BLACK

The central issue of one series of studies in the Phonetics Laboratories of the Ohio State University has been to determine a relationship between the intelligibility of words and the intelligibility of the constituent phonemes. ${ }^{1}$ If a word is an ordered sequence of phonemes, and if a phoneme is - at least in part - a differentiating feature among words, then it would seem that a word would represent a compounding of the phonemes.
The foregoing relationship is straightforward in treatments of nonsense syllables. Although a particular sound may be more or less intelligible when it follows or precedes other particular sounds the ultimate outcome is that the intelligibility of nonsense syllables is well anticipated by the joint probability, i.e., intelligibility, of the member phonemes. The intelligibility of each phoneme is an average, determined from the transmissions of a number of nonsense syllables.
The words of a natural language, as English, are not nonsense syllables; and the constituent sounds are not randomly assembled. Rather, the order is biased and is amenable to a considerable degree of prediction. Assemblages of speech sounds have been learned as words, and presumably this has been accompanied by the learning of many of the probabilities of one's own language. This latter feat may not be consciously achieved; however, it manifests itself in an individual's orthography, syntax, pronunciation, reading speed, errors (flubs) in oral reading, and pointedly in evaIuation, as right-wrong, of the usages of the language that he hears about him.
The criterion measure in the present series of studies is the intelligibility of a word, that is the identification of a heard word as indicated by a written response.
Preliminary to the present study, closely related work has been reported with the following salient features in methodology ${ }^{2}$: a) two sets of approximately 600 words each were responded to by 200 listeners; b) word- and phoneme-intelligibility values were determined (these were based on all responses in which at least two listeners were in agreement); c) the intelligibility of words was, on the average, equivalent to the

[^0]joint probability (intelligibility) of the relative intelligibility values of the first two phonemes of the word. The author suggested,

The listener is a vocabulary....Apart from context, a phoneme or two, a transition, a pattern of duration, another of intensity - and the listening vocabulary has been tapped. Instead of phonetic "recognizability" (intelligibility) a better concept might be "word suggestion". The amount of suggestion that is needed to elicit a correct word is equivalent to he joint-recognition value of two phonemes.

A disturbing result in the foregoing study arose from one comparison of the obtained intelligibility value of a word and the predicted value of the word, each word separately. The standard deviation of the distribution of discrepancies between these two sets of values was of the same order of magnitude as the standard deviation of the set of obtained word intelligibility values. An assumption followed that if a limited number of words, of speakers, and of listeners were employed experimental error would be at a minimum and the standard deviation of the intelligibility values of a list of words would exceed the standard deviation of the distribution of values representing the discrepancies, word-by-word, between obtained intelligibility scores and predicted values. This assumption inherently attributed some of the imprecision in the earlier reported predictions of intelligibility values to experimental error in the relatively large-scale approach that was used. The projected plan was more economical than the earlier work, which, in turn, was a by-product of the construction of intelligibility tests extending over fifteen years.

PROCEDURE

Five individuals, knowledgeable in phonetics, served as speakers and as listeners The material was 300 English words, all among the 1,000 most-frequently-used words in American English by University students in formal public address. One-half of the words were of one syllable, and one half of two syllables. Daily, Monday through Friday, for four weeks each participant selected unsystematically twenty-five words from the master list. He recorded these on a tape recorder, attempting to maintain a evel of approximately 85 db (re 0002 dyne/ cm^{2}) at a condenser microphone that wa evel of approxim 85 db (re 002 dy positioned along the side of the face and mouth, out of the breath stream. He read a numerical identifying phrase with each word, and read the words at ten-second intervals.
The speaker wrote in IPA symbols the words he recorded
The speaker wrote in IPA symbols the words he recorded.
The participant turned from speaker to listener. He activated a masking noise (white noise) that he heard through a headset along with recorded words at approxim ately $\mathrm{O}-\mathrm{db}$ signal-to-noise ratio. As he listened to the diurnal lists of his four colleagues he held scripts of the words they had recorded, each word written orthographically and in phonetic notation. He kept the list shielded from his view until
he had consciously determined the word that he had heard. He then exposed the corresponding word on the list of stimuli. If the word he uncovered confirmed the judgment he had made, he wrote nothing; otherwise he wrote his error response, and either immediately or later transcribed it phonetically. Although the five participants knew that the signals they heard were English words, they were permitted to pants knew that thonsense syllable or a pair of syllables, phonetically transcribed if the stimulus did not elicit an English word.
the stimulus did not elicing the stimulus and the response and The listener was responsible for comparing and additions. These, as well as the enumerating phonetic substitutions, deletions, ands were tallied by two of the five retentions of
participants.
participants. Recapitulating, each of five participants daill list. Over a fourweek period he read groups of twenty-five words from a 300 -word list. Over a four The participants, fol500 words; in the same span of time he heard 2,00 wiscrepancies and agreements lowing a single set of rules, indicated the phonetic discrepancies and in the followbetween the stimuli
a) relative intelligibility-values of the words;
a) relative intelligibility-values of the words, of the words
c) relative intelligibility-values of the phonemes, based
incorrect responses - called preservation-in-error ($\mathrm{P}-\mathrm{I}-\mathrm{E}$), d) relative inelligibility values of the phonemes, based upon the sums of the two foregoing values for phonemes;
e) a matrix of phonetic substitutions.

In these compilations, values were determined separately for the sounds in initial, medial, and terminal positions within the word.

RESULTS
Tables 1 shows the relative intelligibility scores of the phonemes - consonants and Tables 1 shows the relative intelligibility scores of the sounds in various positions; vowels separately - and gives separate values fore that was derived from correct reit also shows that part of the score of a phound's being preserved in error responses. sponses and the part that arose from the soutial position of 335 of the 10,000 stimuli. By way of illustration, [t] appeared in the initial positiont of the responses; the sound These 335 words were heard correctly in 50.1 per cent of the the intelligibility of the was preserved in 13 of the 167 incorrect responses. sound in the initial position was 57.6 per cent. Moreligibility score based on corespecially in the instance of the vowels, that a high intlligibility score based on the rect responses precluded the possibility of

Table 1. Relative intelligibility, in per cent, of the consonants and vowels of 300 English words of one and two syllables. Partial scores, derived from "words correctly heard" and from "phoneme
preserved in an error response" (P-I-E), are shown; also separate scores for each of the positions in

	$\begin{array}{\|c\|} \hline \text { Intelligibility } \\ \text { From Correct Words } \end{array}$			Intelligibility From P.I.E.			N, Occurrences			Phoneme Intelligibility		
CONSONANTS												
	1	M	F	1	M	F	1	M	F	1	M	F
t	50.1	63.3	61.9	7.5	13.3	18.2^{3}	335	994	1548	57.6	76.6	79.1
d	61.2	68.2	65.9	12.2	12.0	17.3	237	233	805	73.4	80.2	83.2
p	68.7	70.7	62.7	11.6	13.2	7.0	588	431	172	80.3	83.9	69.7
b	70.2	90.1	68.0	11.8	1.5	0.0	363	132	25	82.0	91.6	68.0
k	58.0	68.0	63.2	12.1	12.4	8.4	591	473	332	70.1	80.4	71.6
g	60.6	82.1	-	3.8	5.7	-	206	140	-	64.4	87.8	-
s	54.6	62.6	49.6	14.6	17.2	6.7	828	638	596	69.2	79.8	56.3
z	-	69.3	56.2	--	6.1	7.0	-	114	128	-	75.4	63.2
f	62.2	77.3	68.6	14.4	4.7	2.2	514	212	134	76.6	82.0	70.8
v	65.3	78.0	65.1	0.0	7.4	6.4	26	228	109	65.3	85.4	71.5
θ	65.0	79.4	76.9	0.0	2.7	0.0	40	73	26	65.0	82.1	76.9
б	59.0	73.3	66.6	3.6	7.6	0.0	166	169	3	62.6	80.9	66.6
5	43.9	56.9	-	6.5	2.2	-	107	93	-	50.4	59.1	-
t	47.6	70.2	46.2	3.1	8.5	5.2	63	47	134	50.7	78.7	51.4
d3	58.8	70.5	47.2	1.9	4.4	2.7	51	68	36	60.7	74.9	49.9
h	68.1	93.7	-	14.1	4.5	-	298	44	-	82.2	98.2	
hw	50.0	-	-	1.8	-	-	110	-	-	51.8	-	-
w	82.3	64.1	-	6.7	12.8	-	488	78	-	89.0	76.9	-
m	73.0	75.4	58.7	15.2	6.6	12.5	342	374	216	87.2	82.0	71.2
	66.2	66.7	72.9	4.4	20.6	17.4	246	1516	876	70.6	87.3	90.3
\square	-	50.9	67.3	-	14.5	7.3	-	55	205	-	65.4	78.6
r	56.3	64.5	71.1	9.1	17.7	15.3	142	1489	1039	65.4	82.2	87.0
1	63.8	71.9	77.1	26.5	14.5	9.3	362	787	323	90.3	86.4	86.4
j	67.2	76.9	-	3.4	15.4	-	58	13	-	70.6	92.3	-

\geqslant	86.0	74.6	50.0	7.0	16.6	-	315	1863	10	93.0	91.2	50.0
\wedge	85.9	70.3	-	4.0	15.9	-	99	1074	-	89.9	86.2	-
i	77.2	60.9	41.4	13.9	25.8	26.8	79	562	41	91.1	86.4	68.2
1	71.7	65.6	75.5	20.7	17.0	14.7	251	1178	442	92.4	81.6	90.2
e	90.0	58.5	85.7	6.6	25.7	11.9	30	415	42	96.6	84.2	97.6
ε	84.8	67.0	-	6.8	14.2	-	191	973	-	91.6	81.2	-
æ	66.6	59.0	-	19.0	13.5	-	63	481	-	85.6	72.5	-
a	95.9	68.3	-	0.0	13.2	-	148	452	-	95.9	81.5	
-	88.9	70.7	-	7.7	13.6	-	154	475	-	96.6	84.3	
o	91.8	71.5	89.7	5.8	17.0	6.0	86	341	166	97.6	88.5	95.7
u	-	72.3	-	-	11.8	-	-	152	-	-	84.1	738
,	-	59.6	44.9		13.5	28.9	-	185	69	-	73.1	73.8
au	74.1	71.1	93.3	9.6	14.4	0.0	31	180	45	83.7	85.5	93.3
эை	-	88.0	-	-	0.0	-	-	25	-	-	88.0	-95.9
ar	89.6	56.0	81.3	3.4	26.7	14.6	29	321	75	93.0	82.7	95.9
${ }_{\text {er }}^{\text {er }}$	-	58.0	94.8		4.6	$\overline{5.2}$	-	50	19			100.0

PREDICTING THE INTELLIGIBILITY OF WORDS

Fig. 1. Mean obtained intelligibility of words of one and two syllables and of different lengths.
One fact that can be extracted from Table 1 is that within categories of sounds, - wherever the comparison is applicable as plosive consonants, fricative consonants - what their voiceless counterparts. voiced sounds tended to be more intelligible that their voiceless of the different classes Figure 1 (also Table 2) shows the mean relative intelligibility of in eligibility that acof words. A striking feature of the data is the increment in intellifibats in Table 1 companies two-syllable words. In the light of these data two artifacts is inherently became apparent. It would appear from Table 1 that an initial vowel is inh showed more intelligible than a medial vowel. An invest!gation of the 300 words show in that the initial vowel occurred in two-syllable words six times as frequently asith and vowls is at least in part, attributable to the relatively high intelligibility value . is, with one-syllable words. A simis artifact relates to the apparent advantage of medial consonants over initial conlab ants in intelligibility. Again, medial
words than in one-syllable words. An optimal method for predicting the ine values of Table 1 would arrange the words in terms of intelligibility in the

Table 2. Means and standard deviations of the obtained relative intelligibility values of 300 words; also similar values for intelligibility scores predicted by five methods: 1) initial sound squared; 2) joint probability of the first two sounds, retaining the values peculiar to each position; 3) join probability of the first two sounds, using the value for the initial position only; 4-5) joint probability

ONE-SYLLABLE WORDS

Sounds N, words		2 10	3	4 59	5 11		
Obtained	Mean	57.3	58.5	52.7	56.1		
Value	S.D.	26.3	18.9	17.4	17.2		
Predicted							
Values							
Method 1	Mean	62.0	57.4	57.9	54.8		
Method 2	S.D.	22.7	17.4	16.3	18.8		
Method 3	Mean	65.4	62.1	62.3	60.4		
	S.D.	11.1	10.2	12.9	8.5		
Method 4	S.an	65.0	67.8	66.0	54.0		
	Mean	9.8	11.9	13.8	14.8		
Method 5	S.D.	63.1	66.7	65.4	59.2		
	Mean	63.4	8.1	9.3	9.8		
	S.D.	11.2	68.2	65.7	56.8		

Sounds N , words		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	4 3	5 61	$\begin{gathered} 6 \\ 35 \end{gathered}$	7 10
Obtained Value	Mean S.D.	72.7	$\begin{aligned} & 75.8 \\ & 17.9 \end{aligned}$	70.6 17.2	68.9 16.7	69.6 19.5
Predicted Values						
	S.D.	86.0 1.0	17.1	15.2	17.4	12.0
Method 2	Mean	81.8	73.0	66.8	67.1	65.4
	S.D.	11.7	9.5	9.8	9.8	7.2
Method 3	Mean	64.2	71.0	70.4	64.3	63.9
	S.D.	14.8	9.2	9.8	8.7	10.3
Method 4	Mean	67.5	65.9	68.3	65.3	66.0
	S.D.	8.8	7.3	7.2	6.3	8.3
Method 5	Mean	55.4	65.3	68.1	64.0	55.8
	S.D.	16.6	9.9	10.1	9.4	22.3

order of their empirically derived values, would re-establish the dispersion of value present in the empirically derived ones, and would, as a consequence of these two criteria, show no discrepancy between empirically derived and predicted valuc. Earlier efforts at predicting word intelligibility have pointed towards the formula of using the intelligibility values of the first two phonemes of a word in the manne
predicting the intelugiblity of words
Table 3. The standard deviations of the distributions of discrepancies, word by word, between
 obtained inteliligibilit values ando, retaining the valucs peculiar to each position; 3) joint probability of the first two sounds, using the value for thelinible sounds in the word
two and three most inteligible
one-SYLLABLE words

Sounds N, words	$\stackrel{2}{10}$	3 73	4	$\begin{gathered} 5 \\ 11 \end{gathered}$		
Obtained	26.3	18.9	17.4	17.2		
Predictions:				7.6		
Method 1	14.3	12.7	10.7	5.9		
Method 2 Method 3	8.8 7	13.2 125	12.9 12.3	2.7 7.6		
Method 4 Method 5	7.0 14.8	${ }_{13.1} 12.5$	15.5	10.2		
	TW	YLLA	WOR			
Sounds	3	4	5 61	6 35	7 10	
N, words	4	37				
Obtained	16.1	17.9	17.2	16.7	19.5	
Predictions:			9.9		15.7 9.8	
Method 1	16.1 14.3	10.5	8.8	10.5 9.1	9.8 5.9	
Method 3	9.9	11.0	9.8 10.9	9.1	5.7	
Method 4	7.9 14.1	10.3 11.1	15.1	9.0	10.1	
Method 5						

of joint probability. This method remains plausible - although other possibilities 2-3 as Method 2. Other methods 2-3 for comparison are as follows:
Method 1: the intelligibility of the initial sound squared; Method 3: joint probability (intelligibility)
value of the sound in the initial position ondity the most intelligible sounds Method 4: joint probability (intelligibility)
in the word;
Method 5. joint probability (intelligibility) of the three most intelligible sound in the word.
The first statistical procedure applied to the data was a test of independence The first statistical procedure apped values. This was applied separately to the between the predicted and the obmined by length in syllables and sounds, and again everal groups of words as doled and to the two-syllable words pooled. The hypo the one-syllable words pooled and in all instances except the separate category of hesis of independeund words.
wo-syllable, five-sound words.
empirical and predicted values, word by word. These data are summarized in Table 2. The diminished variance in the distribution of disparities relative to the variance in the original dispersion of obtained intelligibility scores is a hopeful sign that the product of the intelligibility values of the first two phonemes of a word provides a helpful estimate of the relative intelligibility value of a word.

The preceding results are in keeping with an assumption that the member phonemes of a word contribute to the distinctive character of the word. The concept and data relative to "preservation-in-error values" relate further to this matter. The underlined values in Table 1 indicate the sounds that were apparently guiding stimuli in the selection of the error response. Thus all of the medial vowels appeared in the error responses with a frequency that exceeded chance; also particular consonants, especially the plosives and [r], [1] and [s].

SUMMARY

This study represented an economical approach to the task of determining the relative intelligibility of phonemes and then predicting the relative intelligibility of words from these results. A small number of common English words was used; a single listener replaced the usual listening panel; the listeners described their own errors in listening; every response contributed to the outcome, i.e. no response was treated as bizarre or anomalous. The results seem to confirm and strengthen the possibility that the intelligibility of a word relies upon an amount of intelligibilityinformation equivalent to the joint probability (intelligibility) of the first two phonemes of a word.

The Ohio State University

[^0]: 1 This study was conducted at The Ohio State University, Columbus, Ohio, under a contract between the Offices of Naval Research and the Ohio State University Research Foundation. (Contract No. Nonr-495(18) NR 145-993).
 8 John W. Black, "Predicting the Intelligibility of Words," Folia Phoniatrica, 12:260-272 (1960)."

