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Abstract

The goal of this research is to improve the performance of a speaker-independent

Automatic Speech Recognition (ASR) system by using directly measured

articulatory parameters in the training phase. This paper examines the need for a

multi-channel/multi-speaker articulatory database and describes the design of

such a database and the processes involved in its creation.

1. Introduction

There has been growing interest within the ASR community in using articulatory
parameters, either as a supplement to or substitute for spectrally based input
parameters. However, despite a call (Rose et al., 1994) by the ASR community for a
combined articulatory/acoustic corpus, no database suitable for the task of speaker-
independent continuous speech ASR training currently exists. This is mainly because,
until recently, measurement equipment had not been developed to the stage where the
recording of large multi-channel corpora was feasible. Hitherto, research in this area
has been confined either to inferring articulatory features from the acoustic data using
vocal-tract models (Schmidbauer et al., 1993; Ramsay, 1998; Richards et al., 1995) or
linguistic rules (Deng & Erler, 1992; Deng & Sun, 1994; Kirchoff, 1996) or using
restricted articulatory datasets (Papcun et al., 1992; Zlokarnik et al., 1995; Jung et al.,
1996; Zacks, 1994; Zlokarnik, 1995; King & Wrench, 1999). Several research groups
are predicting that speech production modelling will enhance the performance of ASR
systems (McGowan & Faber, 1997). Studies supporting the theory of Articulatory
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Phonology (Jung et al., 1996) suggest that variation in the extent and timing of
articulatory gestures can account for many segmental deletions and assimilations
commonly encountered in casual speech. This provides a theoretical basis for
supposing that articulatory parameters could prove to be more robust to inter- and
intra-speaker variability.

1.1. ASR based on directly measured articulatory data

So far, the majority of attempts to develop articulatory feature based models for ASR
have been implemented using acoustic data with feature values derived from linguistic
rules. By comparison, there have been fewer experiments using small amounts of
directly measured articulatory data (summarised in Table 1). Papcun et al. (1992),
whose work is based on the Articulatory Phonology theory of Browman and
Goldstein (1992), were the pioneers in this area of research. They used x-ray
microbeam data to train a very small scale ASR system. The task of the system, based
on a neural net, was to identify articulations of English stop consonants. Separate 2-
hidden-layer perceptrons were trained to model the movement of the lower lip, tongue
tip and tongue dorsum using 25 frames (~200ms) of bark scaled FFT bins. They
reported gesture recognition scores, stopping short of providing phone identification
scores.

None of the published tasks have been very realistic, with the most difficult task
being speaker-dependent isolated syllable recognition. Zlokarnik (1995) used an
HMM-based speech recognition system that made use of simultaneously recorded
acoustic and articulatory data, gathered by means of Electromagnetic Articulography
(EMA). The data described the movement of small coils fixed to the speakers' tongue
and jaw during the production of German V1CV2 sequences. The coordinates of the
coil positions, their first derivatives, mel cepstra and acoustic energy were weighted
according to their ability to discriminate between phonemes and concatenated in
various combinations to form acoustic/articulatory feature vectors. These acoustic and
articulatory feature vectors were evaluated for two subjects (one male and one female)
on a speaker-independent isolated word recognition task. When the articulatory
measurements were used as input on their own, the word error rate increased by a
relative percentage of 300%. The recognition rate dropped from 85.8% using the
acoustic input to 56.7% using the coil positions and their first derivatives. However,
the discriminant power of the combined representation was capable of reducing the
error rate of comparable acoustic-based HMMs by a relative percentage of more than
60%. The recognition rate rose from 85.8% using the acoustic input to 94.8%.
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Soquet et al. (1999) used a larger corpus (1536 CVCVs vs. 165 VCV's), but did
not measure tongue movement data, relying instead on 3 EPG contact coefficients
(anterior, posterior and central). The Movetrack articulography system provided upper
lip, lower lip and jaw movement data and this was supplemented with air pressure
measured within the oral cavity. The articulatory data performed poorly on its own
(36.8%), but when combined with the acoustic data the word recognition rate rose
from 44.6% to 83%.

These results provide a basis for optimism. However, the recognition tasks are
simple and the baseline system performances are not state-of-the-art. It is well
understood that the better the baseline recogniser performance, the harder it is to make
gains. Speaker independent recognition and continuous speech recognition using
directly measured data remain to be seriously tested. In the project introduced in this
paper, we hope to extend the promising work of Zlokarnik. Firstly, by creating a
database with the additional articulatory information provided by an
Electropalatograph (EPG), Laryngograph and EMA. Secondly, by using a corpus
which represents English read speech, incorporating a broad coverage of co-
articulation in sentence structures. Thirdly, by using a baseline speaker independent
continuous speech recognition system tuned to provide state-of-the-art before
comparisons between acoustic and articulatory feature vectors are made.

1.1.1.  Acoustic to articulatory mapping

As well as recognition experiments, there have also been some studies focussing on
the estimation of articulatory data from acoustic data (Zacks & Thomas, 1994;
Hogden et al., 1996; Roweis, 1997; Richmond, 1999). This process forms an essential
step towards a practical ASR system based on articulatory data. To date these
experiments have been single speaker experiments. With the exception of Zachs &
Thomas and Zlokarnik, who tested estimated articulatory data as input to an ASR
system, the acoustic-to-articulatory results are assessed by measurement of r.m.s error
and Pearson product-moment correlations making it difficult to evaluate their efficacy
as input to an ASR system.

In Zlokarnik's experiment, the articulatory movements during the testing phase
were estimated using a multilayer perceptron that performed an acoustic-to-
articulatory mapping. Under these more realistic conditions, when articulatory
measurements are only available during the training phase, the error rate could be
reduced by a relative percentage of 18 to 25% (cf. 60% with directly measured data).
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Table 1.  Summary of ASR experiments using directly measured articulatory data
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Table 1 (cont.). Summary of ASR experiments using directly measured articulatory data
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2. Articulatory Database

2.1. Background

Directly measured multi-channel articulatory data in large enough quantities to train
speaker-independent ASR systems is rare due to the difficulty of keeping sensors
attached to the tongue and soft palate and the cost of purchasing and running the
measurement instrumentation. Lack of a database has severely restricted the nature of
the research in this area to date. The only large database with tongue movement data
which has been made available for continuous speech recognition experiments is the
Wisconsin x-ray microbeam database, which consists of 60+ speaker datasets. Each
dataset contains a set of tasks including: two prose passages (13%); counting and digit
sequences (6%); oral motor tasks (8%); citation words, near-words, sounds and sound
sequences (33%) and sentences (40%). The sentences consist of 21 TIMIT sentences
and 19 other sentences with varying numbers of repetitions. This is not enough
continuous speech data to perform ASR training on a comparable basis to state-of-the-
art ASR systems.

2.2. Edinburgh Speech Production Recording Facility

In 1995 a speech production facility was set up in Edinburgh with one of the main
goals being the recording of a large multi-channel multi-speaker articulatory database.
The facility consists of a purpose-built sound damped studio and control room with a
Carstens AG100 Electomagnetic Articulograph system, a Laryngograph, an
Electropalatograph (EPG) and a microphone. The Laryngograph and microphone
signals are recorded as two channels directly onto computer through a Soundblaster
card installed in a PC. Another two PC's are used to record the EMA and EPG data
directly. The three systems are synchronised using serial port communication
combined with signal post-processing. The time available in a given session is limited
at about 2.5 hours due to EMA sensors becoming detached. In this time it is possible
to record up to 460 sentences.
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2.3. MOCHA Database

The MOCHA (Multi-CHannel Articulatory) database is evolving to provide a
resource for training speaker-independent continuous ASR systems. The planned
dataset includes 40 speakers of English each reading 460 TIMIT sentences (British
version). The articulatory channels include EMA sensors directly attached to the
upper and lower lips, lower incisor (jaw), tongue tip (5-10mm from the tip), tongue
blade (approximately 2-3cm posterior to the tongue tip sensor), tongue dorsum
(approximately 2-3cm posterior to the tongue blade sensor) and soft palate. The
Laryngograph measures changes in the contact area of the vocal folds, providing pitch
and voiced/voiceless information. EPG provides tongue-palate contact data at 62
normalised positions on the hard palate, defined by landmarks on the maxilla. EPG
includes lateral tongue contact information which is missing from the EMA data.

2.3.1. Recording setup

The recording facility consists of a sound-damped studio and adjacent control room.
The recording engineer initiates recording by a single key press on the EMA PC. The
recording software then sends a serial port signal to start the acoustic/laryngograph
recording on a second PC. Once the acoustic recording is initiated a confirmation
signal is sent back to the recording software which then generates a 1kHz 20ms tone
in the recording studio before sending a serial port signal to start the EPG recording
on a third PC and then starting the EMA recording. The acoustic data is recorded
using an Audio-technica ATM10a microphone placed approximately 40cm in front of
the speaker. Both the laryngographic and acoustic signals are recorded directly onto a
16bit Soundblaster card at 16kHz. The EPG is recorded at 200Hz and the EMA at
500Hz.

2.3.2. Post-processing

Post processing is carried out to synchronise the channels and correct for EMA head
movement. In order to synchronise the acoustic signal with the EMA, the start of the
1kHz tone is detected by correlating each utterance with an extracted sample of the
tone, then the duration of the tone is subtracted from the acoustic recording. The
laryngographic and acoustic signals are synchronised by correlating the residual
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signals generated from inverse filtering each signal. The inverse filter coefficients are
generated every 10ms by 10th and 18th order LPC for the laryngograph and acoustic
signal, respectively.

Rotation and translation of the 2D EMA sensor data is performed to ensure that
the two reference coils (one on the upper incisors and one on the bridge of the nose)
are coincident across all frames for a given speaker. This removes any component of
head movement from the EMA data. A further rotation is performed to align the bite
plane with the x-axis and a translation sets the origin at the position of the upper
incisor reference coil.

The EMA coils placed on the tongue and soft palate are liable to become
detached during the recording session. It is often possible to observe a coil in the
process of becoming detached and to consolidate the bond before it falls off
completely. In cases where the coil becomes completely detatched, it is replaced as
close to the original location as possible. If necessary the EMA data can be post-
processed to correct for discrepancies in coil placement. This is done by calculating
the mean and variance of the x- and y-coordinates of the coil for each sentence and
plotting them. If there is an observable discontinuity between the values before and
after the coil is replaced then an offset and gain are applied to the coil data for the
sentence after the coil is replaced in order to equalise the mean and variance. Offset
and gain values are estimated separately for the x- and the y-coordinates. A coil is
usually only replaced once during a session as the build-up of adhesive prevents
satisfactory adhesion if subsequent replacement is attempted.

2.3.3. Subjects

The recording process requires a lot of co-operation from each subject during
preparation and recording, particularly in the attachment of sensors, and consequently
the subjects have to be willing and committed. To ensure these characteristics,
subjects are mainly recruited from the student body, academic and support staff within
the institution and from speech and language therapists who have connections with
the institution. Candidates are screened for their ability to tolerate touching the soft
palate and to obtain a Laryngograph trace. No attempt has been made to exclude
subjects on the basis of dialect.
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2.4. Labelling

Although, the presence of articulatory data may in the future allow automatic feature
or gesture labelling, the initial labelling objective is to provide a phonetic labelling
and a phonemic dictionary as is provided with TIMIT.

The labelling procedure currently consists of forced alignment of a phone
sequence generated from a "Keyword" dictionary and word level transcription using
flat-start monophone models.

2.4.1. Keyword pronunciation  dictionary

The variety of dialects presents a challenge to the labelling procedure for the database.
Pronunciation lexicons for use in speech synthesis and recognition are readily
available for General American and Received Pronunciation (RP). Although rules can
be generated to convert a standard lexicon (e.g. RP) to a target dialect semi-
automatically (Fitt, 1997) the rules have to be substantially rewritten for each new
accent. A modified solution is described by Fitt (Fitt & Isard, 1998; Fitt, 1999), based
on Wells' keyword system (Wells, 1982).

"Wells describes the vowels occurring in different

accents in terms of keywords, so rather than saying

that 'pool' contains the phoneme /u/ in RP and /%/ in
Scottish accents, he simply says that the word

contains the GOOSE vowel."

Fitt's work is intended to generate dialect-specific lexica for synthesis, but can be
used to provide a basis for pronunciation dictionaries for ASR as well.

For the task at hand a keyword pronunciation dictionary was generated for the
460 TIMIT sentences. Separate lexical rules for conversion of keyword symbols to
phonemes have so far been generated for General American, Southern American,
Welsh, Scottish, Northern English and Southern English. The postlexical rules which
are applied to the dictionary in order to create phonemic sentence transcriptions are
designed to cope with rhotic and non-rhotic dialects. Since phonetic realisation is
speaker-dependent and therefore difficult to predict, no lexical or postlexical rules are
currently applied at this level.
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Figure 1 shows how a phonemic transcription might change for a given utterance
according to dialect.

Keywords dh @ | p r ow l @r r | w our r | @ | s k ii | m ah s k | f @r r | d i s g ae z

S. England & ' | p r a( l '   | w  )  r | ' | s k i | m *  s k | f '   | d + s g a+ z

SW. England & ' | p r a( l ' r | w  )  r | ' | s k i | m æ s k | f ' r | d + s g a+ z

Scotland & ' | p r a( l ' r | w '( r | ' | s k i | m æ s k | f ' r | d + s g a+ z

Figure 1. Dialect-specific phonemic transcriptions for the sentence "The prowler

wore a ski mask for disguise."

3. Discussion

The baseline ASR system is currently being tuned using the Entropic HTK V2.1
system trained and tested on a single female speaker from the MOCHA database to
achieve state-of-the-art phone recognition rates. The forced alignment method
produces sufficiently accurate segmentation and labelling for the baseline ASR system
to achieve phone recognition scores of 68%. However, a casual study of the label files
reveals a significant number of transcription errors (approximately 2 per sentence) due
to pronunciation variants not catered for in the single pronunciation dictionary (e.g.
learned : /l , r n d/ or /l , r n + d/); reading errors (e.g. 'the' for 'a') and co-articulatory

processes. A principled method of improving the automatic transcription generation
process is being sought.
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