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Abstract

Multi-band ASR was largely inspired by the extremely high level of redundancy

in the spectral signal representation which can be inferred from Fletcher's

product-of-errors rule for human speech perception. Indeed, the main aim of the

multi-band approach is to exploit this redundancy in order to overcome the

problem of data mismatch (while making no assumptions about noise type) by

focusing recognition on sub-bands estimated to contain reliable, or "clean speech

like", data.

However, multi-band processing also presents the opportunity to introduce

a number of other ideas from phonetics, non-linear phonology and auditory

processing into the recognition process. In particular: we can weight sub-bands,

or sub-band combinations, according to the most likely frequency range of

characteristic features for the phoneme whose presence we are testing for; we can

allow some degree of asynchrony between sub-bands, and we can preprocess

each sub-band according the kind of acoustic features which we expect to find

there.

Besides combining sub-band experts, we can also combine multiple full-

band experts, where each expert is perhaps suited to extracting complementary

sources of speech information or is robust to different kinds of noise. In this

article we present an outline of some of the recent work at IDIAP, and

cooperating institutions, in bringing together ideas from different areas of speech

science within the framework of multi-stream HMM and HMM/ANN based

ASR.
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1. Introduction

Multi-band processing was developed primarily with a view to exploiting spectral
redundancy for the purpose of robust speech recognition in noise (Morris et al., 1999).
However, the sub-band specific processing and asynchronous combination which fit
naturally into the multi-band ASR framework also tie in directly with well established
processing ideas from the areas of speech acoustics, and non-linear phonology
(Mirghafori, 1999). Furthermore, the methods used for combining sub-band experts in
HMM/ANN hybrid ASR systems1 can also be used as a simple means of combining
multiple data streams of any kind, i.e. as many sources of complementary speech
information as we like.

The modelling of evidence combination is a well established field, and before
going into how multi-stream processing can be applied in ASR, we provide a brief
introduction to the principles behind multi-stream processing in general in Section 2.
Then in Section 3 we discuss some of the evidence for multi-stream processing in
human speech recognition. In Section 4 we discuss some of the evidence for multi-
band processing in human speech recognition, and in Section 5 we introduce some
recently developed models for multi-band and multi-stream processing in artificial
speech recognition. In Section 6 we consider some of the different sources of speech
information and some of the techniques by which they can be obtained. The article
ends with a short discussion of the ideas presented, and a conclusion.

2. Multi-stream processing

Multi-expert systems arise in many different fields of data classification and function
approximation in general. These systems have a number of proven theoretical and
practical advantages, of which the following are of particular relevance to ASR:

•  Hierarchical systems of experts reduce problem perplexity: Unsupervised
training can be used to train a hierarchical system of experts together with a
gating network for expert selection. The gating network may be trained to use
large scale features for expert selection, so training each expert on a subregion of

                                             
1 In HMM/ANN based ASR an ANN, typically an MLP, first transforms each acoustic feature

vector into a vector of posterior phoneme probabilities. These posterior probabilities are then
divided by their prior probabilities to provide scaled likelihoods, which are then used by the HMM
for viterbi decoding.
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the input data space, with correspondingly reduced perplexity (Jordan & Jacobs,
1994; Waterhouse & Robinson, 1994).

•  Linear combination of multiple experts can improve generalisation: When
expert outputs are linearly combined (even as a simple average), the expected
committee error always decreases, both in theory (Bishop, 1995), and in practice
(Raviv & Intrator, 1996). Furthermore, "if we can increase the spread of the
predictions of the committee members without increasing the errors of the
individual members themselves, then the committee error will decrease"
(Bishop, 1995, p. 369). Different experts can be obtained by using different
parametric functions and/or by varying the data used to train each expert, by
different preprocessing or by adding different noise.

3. Multi-stream processing in human speech recognition

In any recognition process it is advantageous to constructively combine as many
sources of information as are available (Morgan et al., 1998). It is known that the
human auditory system is hardwired to combine visual with acoustic information, so
that perceived phoneme category is directly influenced by lip movements (McGurk &
McDonald, 1976). ASR experiments have demonstrated that combining mouth shape
with acoustic data can strongly improve recognition performance with noisy speech
(Dupont & Luettin, 1998).

Further clear evidence for the use of multiple experts in the mammalian auditory
system is seen in the cochlear nucleus, the first stage of central auditory processing.
Each fibre in the auditory nerve splits and carries the same data through about seven
different types of specialised nerve cell, each type having a very different
characteristic response (cf. Figure 1). The outputs from these cells are recombined at
higher levels of processing (Pickles, 1988).

There are many possibilities in ASR for combining evidence from different data
streams, such as vision with acoustics, or acoustic features from different time scales
(Wu et al., 1998). See also Table 1.

4. Multi-band processing in human speech recognition

While investigating the effects of band limited noise on human hearing, Fletcher
(1922) established a result, more recently published by Allen (1994), which is now
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commonly known as the "product-of-errors" rule (PoE rule), or Fletcher-Allen
principle:

In human perception, the error rate for full-band

perception is equal to the product of the sub-band

error rates obtained through perception of each sub-

band on its own.

Under the assumption of sub-band error independence, it follows from this rule that:

Full-band classification is correct if and only if

classification is correct in any sub-band.

Figure 1. Different Cochlear Nucleus cell types and PSTH characteristics.

Responses vary not only with cellular morphology, but also with the

number and type of inputs from the auditory nerve or from other

neurons in the cochlear nucleus (Morris, 1992).

(1)
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The product-of-errors rule therefore serves as proof of existence for a system which
combines multiple guesses at the speech sound with an infallible mechanism for
selecting the correct guess when it is present. This has strongly motivated the
development of multi-band ASR.

5. Multi-band processing in artificial speech recognition

While the main motivation behind the multi-band approach is to exploit spectral data
redundancy in a way which reflects the PoE rule for human speech perception, other
potential advantages of the multi-band approach include:

•  Channel specific processing: Different recognition strategies might ultimately
be applied in each sub-band. For example, higher frequencies could use greater
time resolution, and lower frequencies greater frequency resolution. It would
also be possible to use sub-band specific speech subunits (Mirghafori, 1999).

•  Channel asynchrony: Models discussed here use the same phoneme set for
each sub-band expert, and force synchrony between experts, but it would be
possible to permit some level of sub-band asynchrony (Bourlard & Dupont,
1996) (Figure 2).

Figure 2. General form of a K-streams recogniser with anchor points between

speech units (to force synchrony between different streams). Note

that the model topology is not necessarily the same for the different

subsystems.

However, when streams are not frame synchronous the complexity of the
decoding algorithm required may be considerably greater than for a standard
recogniser. Results to date have indicated that allowing asynchrony between
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streams does not give any significant performance improvement (Mirghafori,
1999).

The first multi-band ASR systems were based on the HMM/ANN (Hidden
Markov Model/Artificial Neural Network) model (Bourlard & Morgan, 1994). In
standard full-band ASR an MLP (Multi-layer Perceptron) is first used to transform the
acoustic data into posterior phoneme probabilities2, P(qk|x

n) for each word subunit qk

and data frame xn. Posterior probabilities from the MLP are then passed as scaled
likelihoods into an HMM for decoding. In the early multi-band approach, one MLP is
trained for each frequency sub-band xi and the estimated posteriors                from
each MLP expert (here 4 experts, combined at the frame level) are then combined as
either a weighted sum or product (Bourlard & Dupont, 1996)3:

•  weighted sum, for posteriors combination:

                                             
2 See Nomenclature section for full definition of all mathematical symbols used.

3 Note that both a weighted product rule for posteriors combination and a weighted sum rule for
likelihood combination can be obtained from Eqs. 2 and 3 respectively by direct application of
Bayes’ rule: p(x|q)P(q) = P(q|x)p(x).

Identity when events ci mutually exclusive (2)
and exhaustive.

•  weighted product, for likelihoods combination:

Identity when streams xi  conditionally (3)
independent.

Combined likelihoods from HMM experts, or combined posteriors as "scaled
likelihoods" from ANN experts, are then passed to an HMM for decoding, as with the
full-band system. If the data processed by each expert is both clean and independent
of the data processed by other experts, then this approach is satisfactory. However, the
data in spectral sub-bands is not independent, and independent sub-band processing
cannot access joint spectral information, such as spectral envelope shape, which
carries important information for phoneme discrimination. As a result the above
combination rule does not perform competitively with clean speech. This problem can
be overcome by extending this model to combine experts not just from each sub-band,
but from every sub-band combination (Hermansky et al., 1996; Morris et al., 1999):

P(qk|x  ;Θi)
n
i
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•  full-combination weighted sum, for posteriors combination:

(4)

The "full combination" multi-band approach in Eq. 4 gives a particularly strong
advantage with narrow-band noise, while maintaining state-of-the-art performance in
clean speech (see Section 7).

6. Complementary sources of speech information

Some sources of information, such as harmonicity, synchrony and inter-aural time
delays, are very important for signal-noise separation, but if the signal is clean then
this information is not useful. Other sources of acoustic information which can be
used for distinguishing different speech sounds exist in several forms and over a range
of different time scales:

Table 1. Complementary sources of speech information at different time scales

Scale 0.1-100 ms Scale 10-1000 ms

short-term spectrum + differentials amplitude modulation spectrum + differentials

abrupt energy transitions = pitch abrupt energy transitions = phoneme transitions

voicing, glottalisation phonological / articulatory constraints

Most common ASR systems use only the short-term spectrum and its time
differentials, or some secondary features derived from these, such as MFCCs. One
reason for this is that with clean speech no further information sources are necessary
to achieve an acceptable level of recognition. Another reason is that it is perhaps not
clear how all of these different kinds of information can be constructively combined.
In the multi-stream ASR approach presented here, this combination is very
straightforward.

We briefly describe below how some of these less standard features can be
obtained.
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6.1. Detecting phoneme transitions

Sub-band transitions are detected (Figure 3) using a simple model based on the
function of onset detector cells found in the cochlear nucleus (Morris, 1992).
Phoneme transitions are then detected (Figure 4) by grouping sub-band transitions
into onset or offset clusters.

a. waveform for a typical VCV
utterance [eba]

b. smoothed spectral energy sum
across a single frequency subband
(band 1 of 4)

c. On and Off positions detected at
maxs & mins in energy difference

d. the spectrogram for this signal

Figure 3. Onset and Offset transition detection in each sub-band (Morris, 1992)

Figure 4. Phoneme transition detection: Lines 1 to 5 show onset and offset

transitions detected for the Spanisch word "comun" /kOmUn/ from

the test set. Line 6 shows detected transition cluster centres. Line 7

shows the estimated labelling (Morris & Pardo, 1995).

Table 2 shows the confusion matrix for broad-class phoneme classification using sub-
band transition clusters with a standard unsupervised clustering algorithm (the
Kohonen map) (rr is the Spanish rolled r). This demonstrates that these clusters carry
considerable information for phoneme discrimination.
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Table 2. Broad-class % confusion matrix using sub-band transition clusters in

Spanisch (F=fricative, V=vowel, R=r or rr (columns do not sum to

100 as some data was unclassifiable)

guess \ true FV VF VR RV

FV 90.2 0.0 0.0 0.3

VF 0.0 81.5 0.3 0.0

VR 0.0 0.0 54.5 0.0

RV 0.0 0.0 0.2 62.5

6.2. Detecting glottalisation

In (Hagen et al., 1999), automatic detection of glottalisation (present vs. not
present), using an MLP, achieved 64% frame recognition rate. Glottalisation
(Figure 5) is a distinctive acoustic feature which can be used to complement the usual
set of phonemes.

Figure 5. Two hand-labelled examples of glottalisation from a study (Batliner

et al., 1999) in which six different glottalisation contexts were

identified

6.3. Articulatory feature constraints

Various techniques have been developed to obtain articulatory parameters from
speech acoustics. This problem is known as acoustic-articulatory inversion. If joint
articulatory-acoustic data is available, then a parametric function, such as an MLP,
can be trained to perform this inversion. The speech signal results from acoustic
filtering by the vocal tract of a glottal excitation, so in the common case that
articulatory data is not available, one approach is to apply some form of inverse
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filtering (Schroeter & Sondhi, 1994). Another is to infer the articulatory data by
introducing latent variables into a Bayesian Network in a causal structure which
suitably reflects the role of the articulators (or any other kind of explanatory variables
for that matter) in speech production, as shown in Figure 6 (Zweig, 1998; Conwell et
al., 1999) – although this would normally require two-pass recognition.

Figure 6. Articulatory parameters can be inferred from acoustics in a Bayesian

network

Whichever way the articulatory parameters are obtained, they have not yet been
widely accepted by the speech community as a reliable way of improving ASR
performance. However, in the context of multi-stream combination, what is important
is not whether these features are sufficient on their own for robust ASR, but whether
they can add any information which is not already provided by the standard acoustic
features.

6.4. Phonetic features constraints

It has often been attempted to replace acoustic features with phonetic features
(Stephenson, 1998; King et al., 1998). For each phonetic feature class (e.g. manner)
an ANN expert is trained to classify acoustic data into probabilities for each phoneme
feature sub-class (e.g. manner>nasal). In recognition the acoustic vector for each
frame is replaced by a vector consisting of the concatenated vectors from each ANN
expert.
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Table 3 shows the phonetic feature categories assigned to two of the phonemes
in the TIMIT database. Table 4 shows the confusion matrix which results when an
MLP is trained to distinguish sub-classes of the manner class.

Table 3. Example phonetic features for two TIMIT phonemes (The number in

"centrality, 4" etc. refers to the number of values each feature can take)

centrality
4

continuant
3

front-back
4

manner
6

phonation
3

place
14

roundness
3

tense
3

aa central cont back vowel voiced low unrounded tense

b nil non-cont front occlusive voiced labial unrounded non-tense

Table 4. Typical feature state confusion matrix (true class = row, recognised

class = column)

manner sil approx fric nasal occl vowel

sil 89.2 1.4 2.0 1.0 3.2 3.1

approx 0.8 70.8 1.7 1.1 1.2 24.3

fric 2.1 1.1 87.7 0.8 5.0 3.3

nasal 2.1 3.1 2.3 79.9 3.3 9.2

occl 3.0 1.0 5.0 1.8 87.0 2.3

vow 0.5 5.2 1.2 0.8 0.9 91.4

As with articulatory features, recognition results based on phonetic features generally
do not fulfil their expectations. This may be another source of information which is of
more use in complementing standard ASR experts than it is standing on its own.

7. Some recognition results

Test results for some of these multi-stream and multi-band ASR methods are shown
below. The abbreviations used in Tables 6 and 7 are explained in Table 5. Table 6
shows results from Ellis (2000b). Table 7 shows results from Christensen et al.
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(2000). Table 8 shows previously unpublished multi-band results recently obtained at
IDIAP.

Table 5. Candidate acoustic features used in MLP expert combination tests

Candidate Features Abbreviation

Mel Frequency Cepstral Coefficients mfcc

Perceptual Linear Prediction plp

J-Rasta-PLP (plp with noise suppression) jrplp

amplitude Modulation SpectroGram msg

long-term TempoRAl Pattern trap

Table 6. (plp, msg, trap) features, with AURORA HMM baseline ASR system

Stream components Avg WER ratio % to baseline

best 1-expert: msg 60.7

best 2-expert: plp + msg 49.4

best 3-expert: plp + msg + trap 44.9

Table 7. (plp, jrplp, mfcc) features, with STRUT hybrid baseline ASR system

Stream components clean WER

best 1-expert: plp 6.57

best 2-expert: plp + jrplp 6.17

best 3-expert: plp + jrplp + mfcc 6.02

Table 8. Multi-band ASR, noise in band 4 only, plp features, equal weights,

vs. STRUT baseline

ASR system snr 0 dB WER clean WER

full-band HMM/ANN hybrid ASR baseline 32.7 8.0

4 band full-comb multi-band hybrid ASR 13.5 9.3
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Of their nature, these results are rather scattered and can only be compared within
each table. However, all baseline models here are state-of-the-art HMM or
HMM/ANN systems, so any improvements over these represent new records in ASR
performance for each system.

8. Discussion

We have described how the multi-band and multi-stream approaches have arisen
through combining ideas from many fields, including linguistics, psychoacoustics,
auditory physiology and information theory, in the search for noise robust methods in
ASR. The way in which different sources of speech information are combined in these
multi-stream models does not take any account of the nature of the information being
combined and will therefore be suboptimal in many specific cases. However, the
simplicity of the combination procedure allows us to focus instead on the importance
of bringing together a set of maximally complementary sources of speech information.

Having acquired a number of information streams, the question arises of which
sources should be concatenated and processed as a single stream, and which should be
processed by separate experts before the speech category probabilities output from
these experts are combined. A reasonable hypothesis (Ellis, 2000a) is that data
streams should be concatenated if their data is highly dependent, but should otherwise
be processed independently.

Another basic question concerns stream weighting. There are a large number of
candidate procedures for stream weighting. For some types of data (e.g. acoustic or
visual) it would seem reasonable to base weighting on a running SNR estimate. But
another very simple approach, which is also adaptive and does not depend on the
nature of the data, is to base the weight for each expert on the entropy (distribution
flatness, or mean negative log probability) of the posterior probability distribution
which it outputs.

9. Conclusion

Application of a priori knowledge in recognition often involves tailoring an existing
system in some task specific way which is therefore inherently limited to one domain
of application. The multi-stream HMM/ANN hybrid recognition paradigm provides
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us with a simple model which enables us to bring together and combine expert
knowledge from any number of sources in a single framework. Much of the generality
of this approach derives from the powerful non-linear modelling capability and
discriminative training of MLPs. In the hybrid system this is combined with the
proven time series modelling ability of HMMs. Both the ANN and HMM paradigms
are undergoing continual development and this can only improve the prospects for
multi-stream combination.
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ci

Appendix A: Nomenclature

P(x) probability of "event x" occurring

p(x) probability density atx  of a continuous value

p(x;Θ) function with parameters Θ used to estimate P(x)

qk speech unit whose presence is being estimated

P(qk|x) probability that data x is from qk

x, xn data window vector at time step n

d number of spectral sub-bands

xi ith sub-band of x, i = 1...d

ci ith sub-band combination i = 1...2d

x ith sub-band combination of x, i = 1...2d

P(ci) probability that combination x  is best (largest

clean) subset of x, i = 1...2d
ci


