
SPEECH RECOGNITION
VIA PHONETICALLY-FEATURED SYLLABLES

Simon King, Paul Taylor, Joe Frankel & Korin Richmond

Centre for Speech Technology Research, University of Edinburgh, UK
Simon.King@ed.ac.uk, http://www.cstr.ed.ac.uk

Abstract

We describe recent work on two new automatic speech recognition systems. The

first part of this paper describes the components of a system based on phonological

features (which we call Espresso-P) in which the values of these features are

estimated from the speech signal before being used as the basis for recognition. In

the second part of the paper, another system (which we call Espresso-A) is

described, in which articulatory parameters are used instead of phonological

features and a linear dynamical system model is used to perform recognition from

automatically estimated values of these articulatory parameters.

1. Phonological feature-based system: Espresso-P

The �rst 5 sections of this paper report work on the components of a two stage

recognition architecture based on phonological features rather than phones. While

phonological features have been proposed before as the basis of a speech recogni-

tion system (see section 1.2 for a review), the use of features has been out of favour

until recently because there had been little success in extracting them from speech

waveforms and because of a lack of suitable models with which to perform actual

recognition. This paper reports a set of experiments which show that phonological

features can be accurately and robustly extracted from speech; furthermore, we

have shown that this is possible for speaker independent continuous speech.

Phonus 5, Institute of Phonetics, University of the Saarland, 2000, 15–34.
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1.1. The theoretical basis of phonological features

Most speech recognisers today are based on phones (or phonemes), which, in our

opinion, are often given undue legitimacy in the speech community, particularly

with respect to the assumption that a sequence of acoustic observations can be

synchronised with a sequence of phones. Often phones are seen as being the

\atoms" of speech in that they are the set of units from which all else (that is,

word sequences) can be built. But just as with atoms in physics, it is now widely

accepted in phonology that phones are decomposable into smaller, more funda-

mental units. There is no consensus as to what these units are, but the most

popular view is that phones can be constructed from a set of phonological dis-

tinctive features. Phones are a useful representation because words can easily be

re-written as phones using a lexicon. We argue here however that it is inappropri-

ate to directly link acoustic observations to HMM states and phones: the HMM

paradigm is not valid.

The principle of distinctive features was �rst proposed in the classic work of

Jakobson, Fant and Halle (1952). Although this work gained much attention when

published, many (e.g. Jones, 1957) regarded features as no more than a useful

classi�cation scheme, whereby one could refer to the class of \nasal phones" or

\voiced phones". The power of features became evident with the publication of

The Sound Pattern of English (hereafter SPE) by Chomsky and Halle (1968),

where the authors showed that what were otherwise complex phonological rules

could be written concisely if features were used rather than phones. The goal of

feature theory in phonology has been to discover the most basic set of fundamental

underlying units (the features) from which surface forms (e.g. phones) can be

derived; a small number of simple features can be combined to give rise to the

larger number of phones, whose behaviour is more complex.

1.2. Related work on phonological features

The idea of using phonological features for speech recognition is not new, as many

others have seen the basic theoretical advantages laid out above. Among oth-

ers, the CMU Hearsay-II system (Goldberg & Reddy, 1976) made some use of

features, as did the CSTR Alvey recogniser (Harrington, 1987). Often these sys-

tems used knowledge based techniques to extract their features and in the end

the performance of these systems was poor on speaker independent continuous
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speech. Some more recent work has continued in this vein. For example, Bitar

and Espy-Wilson (Bitar & Espy-Wilson, 1995; Espy-Wilson & Bitar, 1995; Bitar

& Espy-Wilson, 1996) used a knowledge-based approach to extract phonetic fea-

tures from the speech signal. Lahiri and Reetz (Lahiri, 1999; Reetz, 1999) use a

bottom-up rule based approach to extract phonological features from the speech

signal which are subsequently decoded into lexical words. There is still no evi-

dence that the techniques advocated have anywhere near the performance levels

achieved by the statistical approaches of the techniques described in this paper or

of those reviewed below.

Kirchho� (1996) proposed a system which used HMMs to estimate feature

values which are bundled into syllable units. In Kirchho� (1998, 1999), Kirchho�

describes a di�erent system, somewhat similar to that described here in which a

neural network is used to predict manner and place features. She showed that

the feature based recogniser performed comparatively better under noisy condi-

tions and that a combination of a phone based recogniser and feature recogniser

was better than either alone. Koreman et al. (1999) use Kohonen networks to

map between MFCCs and phonetic features, using these as observations in HMM

monophone models.

A similar, but distinctly di�erent approach has been to use articulatory fea-

tures in recognition. They share some interesting properties with phonological

features, for example with respect to asynchronicity at phone boundaries. Deng

and colleagues (Deng & Sun, 1994; Deng & Wu, 1996; Erler & Freeman, 1996)

have modelled feature spreading explicitly in an HMM system via changes to the

HMM topology. Harrington (1987) considers in detail a range of acoustic cues for

automatic recognition of English consonants. Kirchho� and Bilmes (1999) exam-

ined conditional mutual information (CMI) between pairs of observations (MFCC,

LPC, etc.), conditioned on various co-articulatory conditions: speaking rate, stress

type and vowel category. CMI is used as an indicator of co-articulatory e�ects

in the speech signal. As expected, higher speaking rate, unstressed syllables and

central/lax vowels all exhibit greater co-articulation. Papcun et al. (1992) infer

articulatory parameters from acoustics with a neural network trained on acous-

tic and X-ray microbeam data. Their articulatory parameters were very simple:

vertical co-ordinates of the lower lip, tongue body and tongue dorsum. Zacks and

Thomas (1994) use neural networks to learn acoustic{to{x-ray microbeam map-

ping, then do vowel classi�cation on the output by simple template matching.

Soquet et al. (1999) report an increase in accuracy when appending articulatory

and aerodynamic features to MFCCs in a speaker-dependent HMM recogniser.
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Figure 1. Deriving phonological feature values from phone labels.

2. Neural networks for feature detection

This section describes the basic principles of our feature based approach. Perhaps

the most useful way of describing the approach is by comparison with hybrid

neural network/HMM recognisers such as Abbot (Robinson et al., 1996). In these

hybrid systems, the network performs a 1-from-N classi�cation over the set of

phones. In our approach, the network has an output for each feature, and more

than one feature can be \on" at any time. At run-time, the outputs of the trained

network range continuously from 0 to 1 and this can be interpreted as a posterior

probability. Another interpretation is that the network is performing a non-linear

mapping problem from one space (acoustic) to another (phonological).

2.1. Network outputs

Neural networks are typically trained by presenting successive pairs of known input

and output patterns. The weights of the network are adjusted using the back

propagation algorithm so as to minimise the mean squared error between network

output and the target output. In our case each pair of patterns comprises an input

of one frame of Mel cepstral coeÆcients and a phonological feature description

for that frame. The cepstral coeÆcients can be directly calculated using signal

processing on a frame by frame basis from the speech waveform, but the provision

of the target output values is more tricky.
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Our training corpus is fully labelled and segmented: we know the identity

and boundaries of all phones. For each feature, the target is set to 1 if the feature

is present in the canonical representation, and 0 otherwise. The outputs can

therefore be interpreted as specifying a probability for each feature, which during

training are either 0 or 1, but during run time, the outputs will take continuous

values between 0 and 1. We interpret this as the probability of a feature being

present. Figure 1 shows how we derive the target phonological descriptions from

phone labels.

2.2. Experimental setup

Our experiments used the TIMIT database (Garofolo, 1988). The speech was pa-

rameterised as 12 Mel-frequency cepstral coeÆcients plus energy for 25ms frames,

with a 10ms frame shift. All our experiments used networks with time-delaying

recurrent connections, which give the network some \memory" from one pattern

to the next. All networks had a single hidden layer. To allow optimisation of

network size and training parameters, a validation set of 100 utterances was taken

from the training set, leaving 3548 utterances for training network weights. None

of the test speakers are in the training set, and hence all experiments are speaker

independent.

3. Chomsky-Halle binary features

In experiment I we used the binary feature system from Chomsky and Halle's

\Sound Pattern of English" (1968). There are 13 features in this system and each

pronunciation unit is represented by a binary combination of these features. A

single network was trained to recognise all features simultaneously, with one out-

put for each feature and an additional network output for silence. A network with

250 hidden units and approximately 150 000 connections was found to give the

best performance (measured on the validation set). The results for this network

on the full test set are given in table 1. It is clear from the table that the general

recognition accuracy is high and in all cases substantially above chance level. The

performance on training and testing portions of the database did not di�er greatly

{ this indicates that the network learned to generalise well. The chance level is
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Table 1. Results for the SPE feature system.

Feature
Frames

correct (%) chance (%)
vocalic 88 71
consonantal 90 52
high 86 75
back 88 76
low 93 86
anterior 90 66
coronal 90 74
round 94 92
tense 91 78
voice 93 63
continuant 93 62
nasal 97 94
strident 97 85
silence 98 86
Average over all features 92 76
All correct together 52 14
Mapped to phone accuracy 59 14

the prior probability of the most likely value for a feature (given as a percentage)1.

The \all correct together" �gure gives the percentage that all features are correct

for a given frame. This means that the network has found the right combination

52% of the time from a possible choice of 214 = 16384 feature combinations. The

vast majority of these feature combinations don't give rise to valid phones. By

forcing every frame to have a valid feature value combination (that is, a phone

in the language), we can increase the phone accuracy from 52% to 59%. This is

achieved by replacing invalid feature value combinations with the nearest valid

combination (using a simple Euclidean distance measure). These two �gures are

only meant as a guide to overall network accuracy as they of course take no account

of the asynchronous nature of the features: simple frame-wise phone classi�cation

is not our aim. Figure 2 shows the network output for an utterance from the test

set, along with the canonical values (those that would have been used for targets

had this utterance been in the training set).

4. Multi-valued features

Experiment II investigated the use of a more traditional multi-valued feature

system. In this system, there are fewer features, but each can take one of many
1If we gave the most likely feature value to all frames, we would get the chance level of frames correct.
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vocalic    
consonantal
high       
back       
low        
anterior   
coronal    
round      
tense      
voice      
continuant 
nasal      
strident   
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

vocalic    
consonantal
high       
back       
low        
anterior   
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round      
tense      
voice      
continuant 
nasal      
strident   
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

Figure 2. Example network output for the words“...economic cutbacks” for SPE feature
system. The top plot shows the target values as derived from the canonical
phone representation. The bottom plot shows the output of the neural net.

values. In this experiment one network was trained for each feature in, so each

network is performing a 1-of-N classi�cation task. The size of each network was

determined using the validation set, as for the previous experiment. The net-

works for roundness and centrality had 20 hidden units, for phonation 40, and place,

frontback and manner each had 80.

While the average per feature performance shown in table 2 is worse for these

features than for the SPE features (86% as opposed to 92%), the average chance

level is much lower also. The \all correct together" �gures are about the same

as for SPE, showing that performance of the networks on both feature systems is

quite similar. Figure 3 shows the network output for an utterance from the test

set, along with the canonical values (those that would have been used for targets

had this utterance been in the training set).
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Table 2. Results for the multi-valued feature system.

Feature Possible Values
Frames

correct (%) chance (%)
centrality central full

85 47nil
continuant continuant noncontinuant 86 45
frontback back front 84 59
manner vowel fricative

approximant 87 34
nasal occlusive

phonation voiced unvoiced 93 63
place low mid

high labial
coronal palatal 72 25
corono-dental labio-dental
velar glottal

roundness round non-round 92 78
tenseness lax tense 87 65
Average over all features 86 52
All correct together 53 14
Mapped to phone accuracy 60 14

vowel      
fricative  
approximant
nasal      
occlusive  
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

vowel      
fricative  
approximant
nasal      
occlusive  
silence    

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

Figure 3. Example network output for the words“...economic cutbacks” for the manner
feature of the multi-valued feature system. The top plot shows the target
values as derived from the canonical phone representation. The bottom plot
shows the output of the neural net. Compare withfigures 2 and 4.
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Table 3. Confusion matrix for themanner feature of the multi-valued system. Each
row is for a correct feature value, and columns show the automatically deter-
mined values; for example, 4.7% ofvowel frames were labelledapproximant.
All figures are percentage of frames correct.

si
l
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el

silence 89.0 1.3 2.3 1.3 3.1 3.0
approximant 0.9 68.6 1.8 1.8 1.3 25.7

fricative 1.9 0.9 88.2 1.1 4.6 3.1
nasal 1.8 1.9 2.1 84.4 2.6 7.3

occlusive 3.1 0.8 5.6 2.3 85.8 2.4
vowel 0.5 4.7 1.2 1.2 0.9 91.5

5. Government phonology primes

In Government phonology (Harris, 1994), or simply GP, sounds are described by

combining primes in a structured way, and phonological phenomena are accounted

for by the fusing and splitting of primes within a sound. GP also accounts for the

combination of sounds into onset-rhyme groups; this allows elegant descriptions

of phonological rules which operate on these structures. The primes A, I, U and

@ are known as the resonance primes, and capture consonant and vowel sounds.

They are derived from examination of the spectral properties (formant structure)

of vowels (Olive et al., 1993). The ? prime is present in sounds with a closure or

any abrupt and sustained decrease in amplitude. Frication (acoustically evident

as aperiodic energy) is indicated by the presence of the h prime, and the nasal

prime N is present in sounds with an articulatory oral closure and acoustically

with zeros in the spectrum. The H prime indicates unvoiced sounds, where the

vocal folds are sti� and not vibrating periodically.

The vowels /a/, /i/, /u/, /@/ are represented by just a single prime while

all other sounds are made by fusing primes. For example, fusing A and U gives

/o/ and fusing A and I produces /e/. More complex sounds, like diphthongs,

require the primes to be arranged in a structured way. As well as simply fusing

two or more primes, one of the primes can optionally be made the head of the ex-

pression, denoting its greater signi�cance both phonologically and in determining

the phonetic realisation of the sound. As the GP representation is heavily struc-

tured, detecting the primes is not enough to distinguish all sounds. In experiment

III, rather than attempt to recognise the structure directly, we have taken the

approach of encoding the structure information as a set of pseudo-features. We

allow three of the primes to be the head: A, I and U. Table 4 shows the results

for the GP system and �gure 4 shows the network output for an utterance from
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Table 4. Results for Government Phonology primes.

Feature
Frames

correct (%) chance (%)

Primes

A 86 62
I 91 79
U 88 79
@ 88 75
? 92 72
h 95 79
H 95 79
N 98 94

Head
a 97 94
i 96 90
u 96 94

Average over all features 93 82
All correct together 59 14
Mapped to phone accuracy 61 14

A
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h
H
N
a
i
u

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

A
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U
E
S
h
H
N
a
i
u

iy kcl k  ix n  aa m  ix kcl k  ah pcl b  ae kcl k  s  pau

Figure 4. Example network output for the words“...economic cutbacks” for the govern-
ment phonology system. The top plot shows the target values as derived from
the canonical phone representation. The bottom plot shows the output of the
neural net. Compare withfigures 2 and 3.
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Figure 5. Example EMA data for the word “pod” . Vertical lines show phone bound-
aries. The y coordinate is vertical (increasing y means upward movement),
and the x coordinate is horizontal (increasing x means forward movement).

the test set. Again all features are recognised with high accuracy compared with

the chance levels.

6. Articulatory parameter-based system: Espresso-A

Now we turn to the second system, in which articulatory parameters take the

place of phonological features. We use recurrent neural networks to automatically

estimate articulatory parameter values from speech; linear dynamical systems are

employed to perform recognition.

6.1. Data

The data consists of TIMIT-like sentences (read text, continuous speech) recorded

at Queen Margaret University College, Edinburgh. Articulatory measurements
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were recorded using a Carstens Electro-Magnetic Articulograph (EMA), along

with high-quality audio. The raw acoustic and articulatory data is processed for

use with the neural network by: endpoint detection (during silent stretches, the

mouth may take any position and this would adversely a�ect network learning);

�lterbank analysis (16 coeÆcients for 16ms frames every 8ms); resampling of EMA

data 8ms frame rate; normalisation. The current system uses speech from a single

speaker. 70% of the data is selected at random and used as training data. The

remaining 30% is split into validation and testing sets of equal size.

7. Automatic estimation of articulatory parameter values

Researchers have sought to recover articulation from the acoustic signal for some

time. Early work was typically based on analytical techniques, such as inverse

�ltering (e.g. Wakita, 1973). Recently, the development of x-ray microbeam

(XRMB) cinematography and electromagnetic articulography (EMA) have en-

abled a few studies using machine learning techniques in conjunction with real

human data, for example Papcun et al. (1992), Hogden et al. (1996). Similar

to Papcun et al., we use a large input \context" window of 25 acoustic frames

and a network with two hidden layers, and a single output unit for each articu-

lator track. A key di�erence was the introduction of Elman-style context units

(recurrent in time) for the second hidden layer.

7.1. Results

Figure 6 shows an example from the test set for one articulatory parameter. Qual-

itatively, this shows that an accurate mapping is achieved. Table 5 gives quanti-

tative results: the root mean squared error (RMSE) is given both in millimetres

and as a percentage of the total range of movement for each articulator. The

correlation �gures indicate the similarity in the shape of the two trajectories.
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Figure 6. Actual and automatically estimated articulatory parameter (tongue tip height).

Table 5. Quantitative results for automatic estimation of articulatory parameter values.

Articulator av. RMSE mm Correlation
Upper lip X 1.6 (25%) 0.84
Upper lip Y 1.6 (25%) 0.89
Lower lip X 3.6 (35%) 0.85
Lower lip Y 2.3 (22%) 0.86
Lower incisor X 2.9 (32%) 0.84
Lower incisor Y 1.5 (18%) 0.90
Tongue tip X 3.3 (18%) 0.88
Tongue tip Y 3.9 (18%) 0.88
Tongue body X 3.9 (23%) 0.88
Tongue body Y 2.5 (16%) 0.87
Tongue dorsum X 3.2 (18%) 0.89
Tongue dorsum Y 3.2 (19%) 0.84
Velum X 3.2 (26%) 0.91
Velum Y 1.7 (18%) 0.90

8. Linear dynamical systems

The second stage of the process revolves around modelling these trajectories. We

have chosen a linear dynamic model described by the following pair of equations:

yt = Hxt + vt

xt = Fxt�1 + wt

with xt representing the hidden state and yt the observation at time t. x's evolution

from time t�1 to t is governed by the matrix F and some normally distributed error

wt, with non-zero mean �v and covariance C. This is projected onto the observation

space via the matrixH and more normally distributed error vt with non-zero mean

�w and covariance D. One set of parameters H, F , C, D, �v, and �w describe the

articulatory motion for one segment of speech; so far, the segments used have been
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phones; a di�erent model is used for each phone. We chose this form of model

for two reasons: the state space evolves in a continuous fashion (this is highly

desirable given the nature of the physical system it describes); the observations yt

are in the articulatory domain, so a linear mapping from x to y is reasonable (and

makes parameter estimation much simpler). Parameter estimation is performed

using a Markov Chain Monte Carlo technique (which is a Bayesian method): the

Gibbs sampler. This is an alternative to the more obvious choice, Expectation-

Maximisation (EM). It has some advantages over EM: given appropriate priors,

a unique solution is found; it is less susceptible to local maxima; changing the

form of the model or the nature of the distributions on individual parameters is

trivial. During recognition, we compute the probability of the observations, given

the model parameters.

8.1. Results for classification from real articulatory parameter values

8.1.1. Nasal vs. non-nasal

A three way classi�cation of segments into nasal, non-nasal and silence was per-

formed using only the velum y-coordinate. The training set consisted of 8980

tokens from 259 utterances from a single female speaker, and the testing set had

2299 tokens from 66 utterances. Results are almost identical when testing is done

on the training set, which suggests that the models have not been over-learning.

Table 6. Nasal classification from real articulatory parameter values.

classified as
nasal silence non-nasal % correct

segment
nasal 134 43 8 72
silence 41 222 1 84
non-nasal 515 61 1274 69

Total 71
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Figure 7. Linear dynamical models in action: solid line shows actual velum height for
a token of /m/; predicted velum height from a model of /m/ is shown by the
dotted line and for a model of /b/ by the dashed line.

8.1.2. Phone classi�cation

In this experiment, the task was to classify tokens of /b/ and /m/. The training set

consisted of 366 tokens from 259 utterances, and the testing set had 100 tokens

from 66 utterances. Results are shown in table 7. Figure 7 shows the models

performing classi�cation on a token of /m/.

Table 7. Phone classification from real articulatory parameter values.

classified as
b m % correct

segment b 35 8 81
m 2 55 96

Total 90

8.2. Results for classification from automatically estimated articulatory parameter values

In our most recent experiments, the automatically estimated articulatory parame-

ter values were used for phone classi�cation, in an experiment otherwise similar to

that in section 8.1.2. The training set consisted of 146 tokens from 230 utterances,

and the testing set had 69 tokens from 49 utterances. Results are shown in table

8.
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Table 8. Classification from automatically estimated articulatory parameter values.

classified as
b m % correct

segment b 21 7 75
m 4 37 90

Total 84

9. Discussion

We now discuss some issues concerned with actual recognition, that is, the con-

version of feature descriptions for an utterance into linguistic units such as words

or phones. Our long term goal is to develop new statistical models designed to

work with phonological features or articulatory parameters. These models will

make explicit use of the bene�ts of features, for example by assuming conditional

independence between the di�erent feature values in a frame, and by modelling

co-articulation with reference to the theory of critical articulators, etc. While this

is the subject of current and future work, it certainly is reasonable to ask at this

point what evidence we have that we are on the right track and that we have not

simply developed an interesting representation.

9.1. Phone recognition

A simple way of testing the information content of a feature representation is to

treat it as a normal acoustic feature representation and train standard models. To

this end, we performed a phone recognition experiment on TIMIT with a simple

HMM speech recogniser. This used tied-state, cross word triphones, and a single

Gaussian was used to model the observation density. A phone bigram language

model was used. Our baseline system used Mel-scale cepstral features and using

these as observations the phone accuracy was 63.3%. While this �gure is lower

than state of the art for TIMIT phone recognition, it should be noted that no

particular optimisation of the recogniser was performed for the phone recognition

task. An equivalent experiment was performed using exactly the same recognition

architecture, but using multi-valued features rather than cepstra. That is, the

trained neural network (as described in section 2) was used to produce multi-

valued feature descriptions, and these were used as observations in the HMM

system. This system gave a higher2 phone recognition accuracy of 63.5%.

2Not significantly different
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9.2. Randomised features

How do we know that the phonological feature-detecting neural networks are not

simply doing phone classi�cation in disguise? We repeated the experiment using

SPE features from section 3 but with a randomised phone-to-feature-value table.

Framewise accuracy drops from 52% to 37%. If the net was (internally) performing

phone classi�cation, then mapping to a binary representation, we would expect

the two results to be the same.

9.3. Conclusion

While we do not actually advocate that phonological features should simply be

used instead of acoustic features in a HMM recogniser, what this experiment shows

is that they are at least as useful a representation, and the mapping from acoustics

to features performed by the network has not been at the expense of information

useful for recognition. Kirchho� (1999) has also tried this approach and used fea-

tures similar to ours in place of acoustic observations in Hybrid NN/HMM and

HMM recognition systems. Her results show a similar pattern to ours, in that the

systems using features have very close performance to systems using cepstra for the

same recognition architecture. A number of interesting models have recently been

proposed for use with acoustic features which we think would be suitable to serve

as the basis of a phonological recognition model. A number of these approaches

have been developed with the intention of modelling asynchrony. Multi-stream

models (Bourlard & Dupont, 1996; Tibrewala & Hermansky, 1997) examine fre-

quency bands separately and exploit the fact that listeners can perform partial

recognition on individual bands and recombine the evidence relatively late in pro-

cessing. In separate work, Sagayama et al. (1999) have proposed asynchronous

transition HMMs (AT-HMMs) which model the temporal characteristics of each

acoustic feature component separately. Their system uses a form of the successive

state splitting algorithm (Takami & Sagayama, 1992; Ostendorf & Singer, 1997) to

learn the temporal and contextual characteristics of each feature. Using mel-scale

cepstra as observations, they report a signi�cant reduction of errors compared to

a standard HMM approach. These approaches are ideally suited to our task as

they model asynchrony inherently. Our own work has been with linear dynamical

system models, as described in section 8.

It is useful at this stage to say something about the nature of the features
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with regard to asynchrony. While the neural networks were trained on feature

values which switched instantaneously at phone boundaries, it is clear from their

output that even when the networks are performing well, features often do not all

change at phone boundaries, (for example the transition between /n/ and /aa/

in �gure 2). To measure the size of this a�ect, we calculated the frame-wise

classi�cation accuracy if the features values were allowed some leeway near phone

boundaries. We automatically corrected feature value transitions that were up

to 20ms away from the phone boundary (but which had the correct value before

and after the transition). Using this reclassi�cation on the SPE features from

section 3, the accuracy �gure for \all frames correct" changes from 52% to 63%,

and the �gure for mapping to the nearest phone increases from 59% to 70%.

These signi�cant di�erences in performance show that asynchronous feature value

changes are common, and indicate that recognition models which can model this

properly should achieve signi�cantly higher performance than the standard, frame

synchronous HMM system reported above.
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