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FOREWORD

The tenth volume of PHONUS presents a combined Phonetics and Com-
putational Linguistics thesis which was accepted by the Philosophical
Faculties of the Universitidt des Saarlandes in 2005. It demonstrates how
speech-technology methods and linguistic-phonetic knowledge can be fruit-
fully combined in order both to increase our understanding of the prosodic
structuring of speech and to improve the performance of speech-technology
applications. The author applies machine-learning procedures to the pros-
odically labelled data of the ‘Kiel Corpus of Read Speech’ in order to predict
the prosodic properties of German read texts. Two different prediction
procedures are developed and evaluated in a systematic comparison with
the corpus data. In a second evaluation step, 20 sentences are synthesized
using both procedures and, together with a third version synthesized using
a standard synthesis system, are measured in terms of their acceptability
against a copy-synthesis version.

William Barry & Jiirgen Trouvain, Saarbriicken, February 2006

VORWORT

Der zehnte Band in der Reihe PHONUS présentiert eine kombinierte pho-
netische und computerlinguistische Arbeit, die im Jahre 2005 von den Phi-
losophischen Fakultidten der Universitit des Saarlandes angenommen wur-
de. Die Arbeit zeigt, wie sprachtechnologische Verfahren und linguistisch-
phonetische Kenntnisse fruchtbar zusammenwirken konnen, um sowohl un-
ser Verstiandnis der prosodischen Strukturierung von gesprochener Sprache
voranzubringen als auch die Qualitat sprachtechnologischer Anwendungen zu
verbessern. Die Verfasserin setzt eine Reihe von maschinellen Lernverfahren
ein, um aus den etikettierten Daten des ‘Kiel Corpus of Read Speech’ pros-
odische Eigenschaften fiir gelesene deutsche Texte in zwei unterschiedlichen
Verfahren vorherzusagen. Die Vorhersagen werden in einem systematischen
Vergleich mit den Korpusdaten getestet. In einem zweiten Schritt werden 20
Satze gemaf der beiden Verfahren synthetisiert und in einem Perzeptions-
test zusammen mit der Ausgabe eines Standardsynthesesystems gegen eine
Copy-Synthese-Version gemessen. Die Perzeptionsergebnisse bestétigen die
grofserere Akzeptabilitdt der von der Kandidatin erarbeiteten Verfahren.

William Barry & Jiirgen Trouvain, Saarbriicken, Februar 2006



v



IMPROVING PROSODY PREDICTION
FOR SPEECH SYNTHESIS

WIiTH AND WITHOUT SYMBOLIC PROSODY FEATURES

Caren Brinckmann

vorgelegt als
Magisterarbeit im Fach Phonetik und Phonologie
Diplomarbeit im Fach Computerlinguistik

zum Thema

“The ‘Kiel Corpus of Read Speech’ as a Resource for Speech Synthesis”

Dezember 2004

Fachrichtung 4.7 Allgemeine Linguistik

Universitat des Saarlandes



Vi

Verfasserin:

Betreuer:
Zweitgutachter Magisterarbeit:

Zweitgutachterin Diplomarbeit:

Erstellungszeitraum:

Webseite:

Caren Brinckmann
Forsterstr. 50
66111 Saarbriicken

caren@brinckmann.de

Prof. Dr. William J. Barry
PD Dr. Henning Reetz

Dr. Sabine Schulte im Walde
23. Mérz — 23. Dezember 2004

http://www.brinckmann.de/KaRS/



Vil

Abstract

The naturalness of synthetic speech produced by a text-to-speech (TTS)
system depends strongly on the prediction of appropriate prosody, i.e. speech
rhythm and melody. In many TTS systems the following prediction tasks
contribute to the prosodic structure of the generated output: prediction of
symbolic prosody features (such as accents and prosodic phrase boundaries),
postlexical phonological processes, and acoustic parameters (duration and
fundamental frequency F0). This thesis shows how to improve the prosody
prediction of the German TTS system MARY, using the German speech
database “Kiel Corpus of Read Speech” (KCoRS) comprehensively for all

prosody prediction tasks.

The KCoRS comprises over four hours of labelled read speech. The ori-
ginal annotation includes sentence and word boundaries, realised and under-
lying (lexical) phonemes, orthography, and punctuation marks. The prosodic
annotation incorporates the following domains: lexical stress, accent, intona-

tion contour, prosodic phrase boundaries, and pauses.

The original annotation of the KCoRS was extended automatically with
the following additional features: sentence type, syntactic phrases, gramma-
tical functions, part-of-speech, word frequency, and syllable boundaries. On
this extended database, a set of classification and regression trees (CART)

were trained for all prosody prediction tasks.

For the perceptual evaluation of the prediction models, 20 German ut-
terances were each synthesised with MARY using four different prosody pre-

diction methods:

e copy synthesis: phoneme, duration and F0 values were extracted from
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the KCoRS and copy-synthesised with MARY

e MARY: existing MARY system without any modification

e symbolic: all trained prosody predictions models were used, including
prediction of symbolic prosody features (accents, prosodic phrase boun-

daries, and phrase-final intonation contours)

e direct: direct prediction of postlexical processes, duration, and F0 va-

lues without using symbolic prosody features.

The perceptual evaluation showed that the overall perceptual quality of
MARY can be significantly improved by training all models that contribute
to prosody prediction on the same database. More importantly, it showed
that the error introduced by symbolic prosody prediction perceptually equals
the error produced by the direct method that does not exploit any symbolic
prosody features. Thus, it can be concluded that the symbolic level of prosody
prediction can be safely skipped, and the decision whether or not to include
the symbolic prediction can be based entirely on the purpose of the TTS

system.
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Zusammenfassung

Die Prosodiemodellierung, d.h. die Vorhersage von Sprechrhythmus und -
melodie, ist ein entscheidender Einflussfaktor fiir die Natiirlichkeit synthe-
tischer Sprache. Die vorliegende Arbeit untersucht die Einsatzmdglichkeiten
des ‘Kiel Corpus of Read Speech’ (KCoRS) fiir die Prosodiemodellierung
in der Sprachsynthese und zeigt, wie die Prosodievorhersage des deutschen
Sprachsynthesesystems MARY verbessert werden kann. Dabei wird der Be-
griff der Prosodiemodellierung weit gefasst und beinhaltet sowohl die Vor-
hersage symbolischer Prosodiekategorien (Akzente und prosodische Phrasen-
grenzen), als auch die Modellierung postlexikalischer phonologischer Prozesse
und die Vorhersage der akustischen Parameter Lautdauer und Grundfrequenz
(F0).

Das KCoRS besteht aus mehr als vier Stunden Lesesprache. Es ist anno-
tiert mit Laut-, Wort- und Satzgrenzen, zugrundeliegenden und tatsdchlich
realisierten Lauten, Orthographie und Interpunktion. Die prosodische Anno-
tation umfasst lexikalischen Wortakzent, Satzakzent, Intonationskonturen,
prosodische Phrasengrenzen und Pausen.

Die bestehende Annotation des KCoRS wurde automatisch mit folgen-
den Informationen ergéanzt: Satztyp, syntaktische Phrasen und grammati-
sche Funktionen, Wortart, Worthaufigkeit und Silbengrenzen. Auf dieser er-
weiterten Datenbasis wurden mit dem maschinellen Lernalgorithmus CART
Klassifikations- und Regressionsbaume fiir alle Teilaufgaben der Prosodiemo-
dellierung trainiert.

Fiir die perzeptuelle Evaluation der Prosodievorhersagemodelle wurden
mit Hilfe des deutschen Sprachsynthesesystems MARY und den trainierten

Klassifikations- und Regressionsbiumen 20 AuRerungen synthetisiert. Jede



Auferung wurde mit vier verschiedenen Methoden erzeugt, wobei jeweils die-

selben diphonbasierte MBROLA-Stimmen verwendet wurden:

e Copy-Synthese: Phonemsymbol, Dauer und FO-Werte wurden aus dem
KCoRS extrahiert und mit MBROLA in MARY synthetisiert.

e MARY: Verwendung des bestehenden MARY Systems ohne Modifika-

tion.

e Symbolisch: Verwendung aller trainierten Modelle, inklusive der sym-
bolischen Prosodievorhersage von Akzenten, prosodischen Phrasen-

grenzen und phrasenfinalen Intonationskonturen.

e Direkt: Direkte Modellierung der postlexikalischen Prozesse, Lautdau-
ern und FO-Werte ohne Verwendung symbolischer Prosodievorhersage-

modelle.

Die perzeptuelle Evaluation ergab, dass die Sprachausgabe von MARY
durch den Einsatz der automatisch trainierten Modelle signifikant verbessert
werden kann. Aufserdem wurde gezeigt, dass sich die Methoden Symbolisch
und Direkt perzeptuell nicht unterscheiden. Je nach Anwendungszweck des
Synthesesystems kann also auf die symbolische Prosodievorhersage verzichtet

werden.
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Introduction

The first text-to-speech (TTS) systems relied mostly on rules that were hand-
crafted by human experts. The construction of these rules was based on in-
trospection, carefully controlled production experiments, and manual inspec-
tion of speech corpora. The parameters of these rules were often adjusted
through a trial-and-error procedure by listening to synthesised utterances.
Some of the first T'TS systems were barely intelligible, but even if they gen-
erated clearly understandable utterances, they sounded quite monotonous
compared to human speech.

For more than a decade, these hand-crafted rules have been successively
replaced by models that are automatically trained on annotated corpora with
machine learning (ML) methods. For example, a speech corpus that is anno-
tated with information about accent placement can be used to train a model
that predicts which words in an utterance carry an accent. These models are
usually more complex than the hand-crafted rules, resulting in the output of
more varied speech.

The creation of suitable databases has become very important. These
databases can be exploited for training models that solve specific prediction
tasks. Large annotated speech databases can also be used for non-uniform
unit selection synthesis, in which speech segments of different sizes are con-
catenated to generate natural sounding speech.

The German speech database “Kiel Corpus of Read Speech” (henceforth
KCoRS) was chosen for the present study. With only half an hour of speech
per speaker, the KCoRS is too small to serve as a reliable speech database for
unit-selection synthesis (cf. Brinckmann, 1997). Nevertheless, it can be used

for the training of the following T'T'S modules contributing to prosody predic-
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tion: symbolic prediction of accents and prosodic boundaries, prediction of
postlexical phonological processes (i.e. pronunciation modelling), and predic-
tion of acoustic parameters (duration and FO values). For the present study,
two diphone-based voices of the German TTS system MARY (Schroder &
Trouvain, 2003) were used to generate synthetic speech with the values pre-
dicted by the trained models.

An impressively large number of previous studies focussed on the im-
provement of models for one particular prediction task, e.g. symbolic prosody
prediction, duration prediction, or prediction of FO values. Pronunciation
modelling has been almost entirely neglected for speech synthesis applica-
tions. Only very few studies use one database comprehensively for all prosody
prediction tasks. The evaluation of the automatically trained models was
mostly corpus-based, i.e. the predictions of the respective model were com-
pared with the actual realisations in a database. However, formal perceptual
evaluation is needed to determine whether the corpus-based improvements
are perceptually relevant in a complete TTS system. For example, Brinck-
mann & Trouvain (2003) showed that the corpus-based differences of two
duration prediction models could not be discerned by listeners as soon as the
symbolic input to the duration models was not flawless, because it had been
generated by a T'TS system. Since the ultimate goal in TTS is to improve
the overall quality, “T'TS quality is still assessed best by human listeners”
(Strom, 2002).

Goals

The major goals of this thesis are to show the following:

e The KCoRS can be used for machine learning-based training of prosody
prediction models by expanding its original annotation with features
that can be derived with pre-existing tools in a reasonable amount of

time.

e The overall perceptual quality of the German TTS system MARY



can be significantly improved by training all models that contribute

to prosody prediction on the same database, namely the KCoRS.

e The error introduced by symbolic prosody prediction perceptually
equals the amount of error produced by a direct method which does

not exploit any symbolic prosody features.

Outline

In Chapter 1, this thesis starts with a brief introduction to the general archi-
tecture of a TTS system, focussing on the German TTS system MARY. The
next section describes the core concepts and methods in machine learning,
explaining a particular machine learning algorithm, CART, which was used
to train classification and regression trees for prosody prediction. The selec-
tive summary of previous studies illustrates the diversity of machine learning
methods that have been applied to prosody prediction tasks. Finally, the
first chapter concludes with remarks on error accumulation within a T'TS
system and outlines two approaches to reduce it.

Chapter 2 motivates the choice of the KCoRS as a database for prosody
prediction. It gives a detailed description of the original annotation in the
KCoRS and explains the features that were added semi-automatically with
pre-existing tools and tailored Perl programs. It concludes with some remarks
on the limitations of the KCoRS and further possibilities.

Chapter 3 describes the methods that were applied to train classification
and regression trees for the following prosody prediction tasks: prediction of
prosodic boundaries, accent location and type, phrase-final intonation con-
tours, postlexical phonological processes, duration, and FO values. Two types
of prediction models were trained: The first one, called Symbolic, uses sym-
bolic prosody features for the prediction of segmental features (i.e. realised
phoneme, duration, and F0). The second one, called Direct, is a method
which predicts the segmental features directly without using any symbolic

prosody features. The predictions of all models were evaluated by comparing
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them to the actual realisations in the KCoRS.

Chapter 4 explains the perception experiment that was carried out to
evaluate the predictions of the automatically trained models perceptually.
The results of the perceptual evaluation show that the output of the German
TTS system MARY can be significantly improved by training all models
that contribute to prosody prediction on the KCoRS. More importantly, they
show that the error introduced by the level of symbolic prosody prediction
perceptually equals the amount of error produced by the direct method that
does not exploit any symbolic prosody features.

This thesis concludes with an outlook on future directions in speech

synthesis.



1. Fundamentals

1.1. Text-to-Speech Synthesis

Speech synthesis can be defined as the automatic transformation of a sym-
bolic representation into an acoustic signal that sounds similar to human

speech (Zboril, 1997). Two concepts have to be distinguished:

1. A speech synthesis system produces speech from written text (text-

to-speech: TTS) or a conceptual representation (concept-to-speech:
CTS).

2. A speech synthesiser produces speech from a representation of con-
trol parameters. The speech synthesiser is usually the last module of a

speech synthesis system.

MARY (Schroder & Trouvain, 2003), the TTS system utilised for this study,
uses the speech synthesiser MBROLA (Dutoit et al., 1996). The architecture
of the German MARY system, which is shown in Figure 1.1, can be regarded
as a typical TTS architecture (cf. Dutoit, 1997). MARY accepts plain text
as input and is also able to parse speech synthesis markup such as SABLE
(Sproat et al., 1998) and SSML!.

Due to the modular architecture, single modules can be replaced easily.
An interface? allows the user to control each processing step and to change
the input to each module manually. All MARY modules are described in the
following sections (see Schroder, 2004, for further details). Except for the

"http://www.w3.org/TR/speech-synthesis/
“http://mary.dfki.de
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part-of-speech tagger and the chunk tagger, all modules within MARY are

realised with hand-crafted rules.

plain text SABLE text SSML text
| |

Sable Parser SSML Parser
MaryX ML mérkup skeleton

Tokeniser

tokens &Lsentences

Preprocessing
expanded, pronéunceabl eforms

Tagger+Chunker

I
paits-of-speech & syntactic phrases

Inflection Endings

v
Lexicon unknown Prosody
|
k”(fwn Letter-to-Sound
phonemes, word stress, pitch accents,
syllable boundaries prosodic phrases
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Phonol. Processes
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Acoustic Parameters
. |
duration S;FO values

Synthesis

v
sound

Figure 1.1.: Architecture of the MARY TTS system (from Schroder, 2004).
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1.1.1. Preprocessing

Tokeniser As a first step, the text is cut into separate tokens, namely
words, numbers, special characters, and punctuation marks. MARY uses a
set of hand-crafted rules to disambiguate periods into sentence-final periods,

decimal number delimiters, and parts of ordinal numbers or abbreviations.

Text normalisation The text normalisation module (termed “Preprocess-
ing” in Figure 1.1) converts numbers and abbreviations into pronounceable

forms.

1.1.2. Natural Language Processing
Part-of-Speech Tagging

Part-of-speech (POS) tagging is carried out with the statistical tagger TnT
(Brants, 2000). The German language model of TnT was trained on the an-
notated NEGRA corpus (Brants et al., 1999) using the Stuttgart-Tiibingen
tag set (STTS, see Appendix B.1; Schiller et al., 1995). TnT uses second or-
der Markov models, where the states represent tags and the outputs represent
words. Smoothing is carried out with context-independent linear interpola-
tion of unigrams, bigrams, and trigrams. Unknown words are handled by
suffix analysis, where tag probabilities are set according to the word’s final
sequence of characters, with different estimates for uppercase and lowercase

words.

Chunk Tagging

The chunk tagger described by Skut & Brants (1998) is used to recognise
syntactic structures of limited depth (“chunk phrases”), namely the phrasal
categories used in the NEGRA corpus. The chunk tagger uses a generalised
Markov Model-based tagging method based on the part-of-speech informa-

tion provided by TnT and simple morphological information.
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Grapheme-to-Phoneme Conversion

MARY uses the phonetic alphabet SAMPA3 for German (Wells, 2004) for
the phonemic transcription, adding also lexical stress and syllable bound-
aries. First, inflection endings are added to ordinals and abbreviations by a
unification-based module. Second, the word is looked up in a lexicon derived
from CELEX (Baayen et al., 1995). If needed, a simple compound treat-
ment is performed. Unknown words, which cannot be phonemised by lexi-
cal lookup or compound treatment, are analysed by grapheme-to-phoneme
rules, using a statistical morphological parser, syllabification rules, and lexi-
cal stress assignment rules. The resulting transcription represents the canonic

pronunciation, i.e. it does not contain any segmental reductions.

Symbolic Prosody Prediction

The “Prosody” module assigns symbolic GToBI labels (Grice et al., 2005).
GToBI* is an adaptation of ToBI (Tones and Break Indices; Silverman et al.,
1992) for German, which describes the perceived intonation contour in terms
of high and low tonal targets. Break indices are used to mark prosodic
boundaries of intermediate phrases (break index 3) and intonation phrases
(break index 4). All tonal targets must be related to either an accented
syllable (accents) or the edge of a prosodic phrase (edge or boundary tones).
GToBI accents are either simple tonal targets (H* and L) or complex accents
(L+H*, L*x+H, H+L#, and H+!H*; H and L relate to high and low targets, and
* is used to mark the tone of the accented syllable). GToBI boundary tones
also include complex tones.

MARY’s hand-crafted prosody rules were derived through manual cor-
pus analysis and are mostly based on part-of-speech and punctuation infor-

mation. Intermediate and intonation phrase breaks are inserted at punctu-

3Throughout this text, all transcriptions are given in SAMPA notation. For ease of read-
ing all pronunciations are given between slashes (e.g. /a:/), irrespective of phonemic
or phonetic status.

‘http://www.coli.uni-sb.de/phonetik/projects/Tobi/gtobi.php3
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ation marks and at certain chunk phrase boundaries. Some parts-of-speech
(e.g. nouns and adjectives) always receive an accent, others are only accented
if the respective intermediate phrase contains no noun or adjective. The ac-
tual GToBI accents and boundary tones are assigned according to sentence
type (statement, wh-question, yes/no-question, and exclamation) and posi-

tion of the accent within the prosodic phrase.

Postlexical Phonological Processes

Once the prosodic boundaries, accents, and boundary tones are determined,
the canonic pronunciation can be changed by postlexical phonological pro-
cesses (cf. Kohler, 1990). These processes restructure the utterance on the
segmental level as well as on the prosodic level. Examples of postlexical

processes include

e segmental deletions and replacements, e.g. haben is pronounced as

/ha:b=m/
e vowel reductions, e.g. der is pronounced as /d@/
e reducing the number of accents and phrase boundaries for fast speech.

Currently, MARY applies no postlexical rules. The models trained for the
prediction of postlexical processes (see Section 3.3.2) deal with segmental

changes only.

1.1.3. Calculation of Acoustic Parameters

MARY uses the MBROLA diphone synthesiser for synthesising the utter-

ances. MBROLA processes a list containing the following information:

e phoneme in SAMPA
e duration in ms

e fundamental frequency (F0) targets in Hz.



10 1. Fundamentals

An example of the MBROLA input format within MARY is given in Figure
1.2. After each phoneme, its duration is listed. The F0O values are given as
pairs (relative time in %, F0 in Hz). For example, the first phoneme /h/
in Figure 1.2, has a duration of 72 ms, and an FO target value of 189 Hz
at the very beginning of the phoneme. Phoneme /E/ in the example even
carries two FO target values: The first one (204 Hz) is reached in the middle
of the phoneme (50%), the second one (150 Hz) is reached at its end (100%).
Intensity and spectral quality of the phonemes cannot be controlled with
MBROLA.

72 (0,189)

72 (87,167)

63

: 121 (50,205)

67

162 (50,204) (100,150)
55

66

410

¢t Mg o+ P &

=+

Figure 1.2.: Example of the MBROLA input format.

Duration and F0O values are predicted by the module “Acoustic Param-

eters” from the symbolic output of the preceding modules.

Duration Prediction

The duration of a sound segment depends on a variety of linguistic, pragmatic
and phonetic factors (cf. Kohler, 1992b), e.g.:

e global speech tempo
e semantically important parts of an utterance are produced more slowly

e stress and accentuation: stressed syllables are longer than unstressed

ones

e final lengthening at the end of a prosodic phrase
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e a stressed syllable is shorter if it is followed by one or more unstressed

syllables within the same word

e phonological quantity: phonologically long segments (tense) are longer

than phonologically short segments (lax)
e phonetic context, e.g. segmental duration before fortis/lenis

e intrinsic segmental duration: high vs. low vowels, plosives vs. fricatives,

fortis vs. lenis obstruents.

The duration rules currently implemented in MARY are a version of the Klatt
rules (Klatt, 1979) adapted to German (Brinckmann & Trouvain, 2003).
Klatt rules predict the segmental duration by multiplying the intrinsic dura-
tion of a given phoneme with a context-dependent factor. The result is then
added to a phoneme-specific minimal duration, which can also be multiplied
by a context-dependent factor. The adaptation of the context-dependent

factor values to German was achieved by a manual trial-and-error procedure.

FO Prediction

Rules to transform abstract ToBI labels into fundamental frequency (FO0)
values were described by Anderson et al. (1984) for English. For each prosodic
phrase an FO topline and an F0 baseline are assumed, both descending over
the course of the utterance. H targets lie on the topline, whereas L targets are
positioned on the baseline. Topline and baseline can be varied, e.g. according
to the sex of the speaker or the sentence type (cf. Brinckmann & Benzmiiller,
1999). Because of the declination of both lines, the F0O value of a phoneme in
an accented syllable depends on the position of the syllable in the prosodic

phrase.

1.1.4. Synthesis

MBROLA (Dutoit et al., 1996) is a speech synthesiser based on the con-

catenation of diphones. It takes a list of phonemes as input, together with
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prosodic information (duration of phonemes and F0 values), and produces
speech samples at the sampling frequency of the diphone database used.
The original F( values of the diphones in the database are transformed by a
time-domain algorithm with diphone smoothing capabilities. In this study,

MARY’s MBROLA diphone databases de6 (male) and de7 (female) are used
for synthesis (see Section 4.1.2).

1.2. Machine Learning

Machine learning (ML) is an area of artificial intelligence concerned with
the development of techniques which allow computers to “learn” through
experience by finding and describing structural patterns in data. Machine
learning methods take training data and form hypotheses or models that can
be used to make predictions about novel data.

A training dataset consists of several instances, i.e. representations of
objects. Instances are described by feature vectors. Features can be categor-
ical (having a finite number of discrete values) or continuous (numeric).

Machine learning methods can be applied to the following tasks:
e classification: learn to put instances into pre-defined classes

e numeric prediction: learn to predict a numeric quantity instead of a

class
e agsociation: learn relationships between features
e clustering: discover classes of instances that belong together.

The TTS modules described in Section 1.1 solve classification tasks (part-of-
speech tagging, chunking, symbolic prosody prediction, postlexical phonolog-
ical processes) and numeric prediction tasks (calculation of acoustic parame-
ters). The machine learning algorithm CART (Classification and Regression
Trees; Breiman et al., 1984) can be applied to classification tasks (training

of classification trees) as well as numeric prediction (training of regression
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trees). CART was used for all tasks relating to prosody prediction described
in Chapter 3.

Machine learning algorithms can be divided into supervised and unsu-
pervised methods. Supervised methods are used to learn the relationship
between independent features and a designated dependent feature. Classifi-
cation and numeric prediction algorithms are supervised methods. Unsuper-
vised learning techniques group the instances of the training data without a
pre-specified dependent feature. Clustering algorithms are usually unsuper-
vised. Nevertheless, even for unsupervised methods human intuition cannot
be entirely eliminated, because the designer of the task must specify how the
data are to be represented and what mechanisms will be used to search for

a characterization of the data.

1.2.1. Evaluation

When evaluating machine learning models there are some basic procedures

to follow.

1. The dataset is divided into a (bigger) training set and a (smaller) test
set. The training set is used to train the model, whereas the test set is

used for evaluation only.

2. If the ML algorithm needs an additional dataset for a procedure against
overfitting (e.g. pruning in CART, see Section 1.2.2), a three-fold di-
vision into training set, validation set, and test set is needed. The

validation set is used (for pruning) during the training process.

3. Since annotated databases are very time-consuming to produce, one
does not want to “waste” precious data for testing. The solution to this
dilemma is k-fold cross-validation: The corpus is divided into k mu-
tually exclusive subsets (the “folds”) of approximately equal size. The
model is trained and tested k£ times. Each time it is trained on the

dataset minus a fold and tested on that fold. The accuracy estimate
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is the average accuracy for the k folds. Stratified cross-validation en-
sures that each class is properly represented in the respective training
and test sets. After evaluation, the final model for implementation is

trained on the complete dataset.

Different performance metrics that can be used for evaluation are described

in the following section.

Performance Metrics

Classification and numeric prediction are evaluated with different perfor-
mance metrics. Confusion matrix, accuracy, recall, precision, and F-measure
are used for the evaluation of classification models. Root mean squared er-
ror (RMSE) and correlation coefficient (cc) are used for evaluating numeric

prediction models.

Confusion matrix A confusion matrix is a matrix showing the predicted
and actual classifications. A confusion matrix is of size L x L, where L is
the number of different class values. The confusion matrix in Table 1.1 is for

L =2

predicted
actual | positive negative
positive a b
negative c d

Table 1.1.: Two-by-two confusion matrix for a class with 2 different values
(positive and negative).

Accuracy Accuracy is defined as the rate of correct predictions made by
the model on a test set (usually given in %). Using the variable names from

Table 1.1, the formula for accuracy is: (a 4+ d)/(a + b+ ¢+ d).
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Precision and recall If the values of the predicted class are not evenly
distributed, precision and recall of each class value are more informative than

overall accuracy:

e precision of class value “positive” = a/(a + ¢)
e recall of class value “positive”— a/(a + b)
e precision of class value “negative” = d/(b+ d)

e recall of class value “negative”= d/(c + d)

If just one precision value is reported, it is usually the precision of the “posi-

tive” value (e.g. “boundary” in case of prosodic boundary prediction).

F-measure Precision and recall are combined in the F-measure:

F-measure = (2 X recall X precision)/(recall + precision).

RMSE The root mean squared error is used for the evaluation of numeric
cted— 2
predictions: RMSE = \/E(predzcted actual)

n
RMSE is similar to the mean absolute error, but tends to exaggerate the

effect of outliers.

Correlation coefficient Correlation determines the extent to which the
actual and the predicted values are linearly related to each other. The value
of correlation, the correlation coefficient, does not depend on the specific mea-
surement units used. For example, if the predicted values are all multiplied
with 100, the correlation with the actual values remains the same. Therefore,

RMSE is usually reported in addition to the correlation coefficient.

1.2.2. CART

CART (Breiman et al., 1984) is a machine learning algorithm for automati-

cally building classification and regression trees. Classification trees predict



16 1. Fundamentals

categorical features, while regression trees are used to predict numeric fea-
tures.

Classification and regression trees contain a question about some feature
at each node in the tree. The leaves of the tree contain the best prediction
based on the training data, usually a single member of the predicted categor-

ical feature (classification) or a predicted mean value (numeric prediction).

relative position
between punctuation
marks

< 94% > 94%
no boundary
<1940 > 1940
boundary
s 2423 > 2423
no boundary boundary

Figure 1.3.: Classification tree example (simplified from Figure 3.1). Nodes
are marked with ellipses, leafs are presented in rectangles.

For example, the classification tree in Figure 1.3 can be used for the pre-
diction of prosodic boundaries, i.e. it predicts whether a word is followed by a
prosodic boundary or not. The root node (the topmost node) partitions the
data according to the feature “relative position between punctuation marks”.
If an instance has a value < 94% for that feature, i.e. if it is not directly
followed by a punctuation mark (that would result in a value of 100%), a leaf
is reached, and the classification tree predicts that the respective word is not
followed by a prosodic boundary. If the relative position between punctuation
marks is > 94%, the next node further down the tree concerns the feature
“word frequency”. If the word frequency of an instance is < 1940 (the word

frequency feature is explained in Section 2.3.1), another leaf is reached, and
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the tree predicts that the respective word is followed by a prosodic boundary.
If the word frequency is > 1940, another question concerning word frequency
has to be answered. The next node partitions the data into instances with
a word frequency value < 2423 and those with a value > 2423. The former
instances are predicted to be followed by no prosodic boundary, whereas the
latter ones receive the predicted value “boundary”.

CART is a powerful machine learning algorithm because it

e permits both categorical and continuous features (as input features and

predicted features)

e automatically selects the most significant features (but see Section
1.2.3)

e allows human interpretation of the result (up to a certain extent).

The basic CART building algorithm starts with the complete training
set and determines the feature that splits the data minimising the mean
“impurity” of the partitions. This splitting procedure is applied recursively
on each partition of the data until some stop criterion is reached (e.g. a
minimal number of instances in the partition). Since it chooses the locally
best discriminatory feature at each stage in the process, CART is a greedy
algorithm. This is suboptimal but a full search for a fully optimised set of
questions would result in a very high computational cost. Because of the
stepwise partitioning of the data, the size of the dataset that is considered
at each node becomes smaller and smaller down the tree. Therefore, data
sparsity can be a serious problem for CART, if the gaps in the training data
are accidental rather than systematic.

Standard impurity measures are
e for categorical features: entropy x number of instances

e for continuous features: variance X number of instances.5

A very basic form of the tree building algorithm would lead to a fully

*Entropy or variance alone would favour overly small partitions.
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exhaustive classification of all instances in the training set, and the resulting
tree would owerfit the data. A method to build trees that are more suitable
to make the right predictions for new, unseen data is called pruning. This
method holds out a portion of the training data (the wvalidation set). The
trained tree is pruned back until evaluation on the validation set does not

improve any further.

Tools

The following software tools were used for the training of classification and

regression trees for prosody prediction (as described in Chapter 3):

e Weka (Witten & Frank, 2000), version 3.4.2 with Java SDK 1.5.0.
Weka is a collection of machine learning algorithms and contains tools
for data pre-processing, classification, regression, clustering, associa-
tion rules, and visualisation. Weka is open source software implemented

in Java.

e wagon (King et al., 2003), version 1.2.3. wagon is an executable

C/C++ program, part of the Edinburgh Speech Tools Library.

The CART algorithm implemented in Weka allows multiply branching
nodes, whereas wagon trains only binary branching trees. Weka has been
developed as an instructional tool for machine learning algorithms. There-
fore, and because of the implementation in Java, the CART algorithm in
Weka is comparatively slow and very memory-intensive. For the prosody
prediction models described in Chapter 3, Weka was used for the training of

classification trees, whereas regression trees were trained with wagon.

The tailored program that was used to extract the information from
the database in the necessary format was written in Perl (Wall et al., 2000).
Perl was also used to implement a prototype that incorporates the trained

classification and regression trees for prosody prediction.
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1.2.3. Feature Selection

In theory, most machine learning algorithms learn automatically which are
the most appropriate features to make their predictions. For example, CART
should never select irrelevant features, so that adding more features should
only lead to better classification performance, never to worse results. How-
ever, John (1997) reported that classification accuracy of the CART algo-
rithm deteriorates (typically by 5% to 10%) when a random binary feature is
added to standard datasets. Even more surprisingly, sometimes the inclusion
of highly relevant features can also diminish the classification accuracy (by
1% to 5% in the situations tested). Naive Bayes, another classification algo-
rithm, assumes that all features are independent of each other. Therefore it
robustly ignores irrelevant features, but its classification accuracy is damaged
heavily when redundant features are added.

Since most machine learning algorithms are negatively affected by irrele-
vant or redundant features, it is important to precede training with a feature
selection stage that selects only the most relevant features for the prediction
task. “The best way to select relevant attributes is manually, based on a
deep understanding of the learning problem and what the attributes actually
mean. However, automatic methods can also be useful.” (Witten & Frank,
2000).

Filters and Wrappers Automatic feature selection methods can be di-
vided into filter methods and wrapper methods. Filter methods select the
best features according to a reasonable criterion that is independent of the
task. For example, a filter can select those features that are most linearly
correlated to the target class. Wrapper methods apply a chosen machine
learning algorithm (e.g. CART) to every subset of features. The best subset

is the one with the best evaluation measures.

Greedy Search Since the number of possible feature subsets increases ex-

ponentially with the number of features, exhaustive search is impractical in
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most cases. Therefore the feature space is searched greedily, either starting
with an empty feature set and adding one feature at a time (forward selec-
tion), or starting with the complete feature set and deleting features one at a
time (backward elimination). The greedy search stops if the performance of
the trained model does not increase anymore (or some other stopping crite-
rion is reached). Forward selection usually results in smaller feature subsets

than backward elimination.

Complexity The CART algorithms implemented in Weka and wagon both
allow using a feature selection wrapper. Wrappers are potentially very time
consuming, because the machine learning algorithm is carried out numerous
times. The number of classification or regression trees that are trained during
feature selection depends on the number of features in the original feature set
(m) and the number of selected features (k). The forward selection wrapper
starts out with testing each feature, thus building m trees. The feature
that was used for building the best tree is retained, so that in the next step
m — 1 trees are built, and so on until the feature selection stops, because
the performance of the trees does not increase anymore. At that point,
(2m — k)(k + 1)/2 trees have been built. In the worst case (kK = m), the
number of trees to be built during feature selection is quadratic to the size
of the original feature set (O(m?)).

The time needed to build a single tree depends on the number of in-
stances in the dataset (n) and the size of the feature set (m). The com-
putational cost of the CART tree induction algorithm (including pruning)
is O(mn log n) + O(n (log n)?) (Witten & Frank, 2000). The smallest
dataset used for the training of prosody prediction models (see Section 3.2.1)
consisted of 4750 instances with 52 features (word-level prosodic boundary
prediction), whereas the largest dataset consisted of 22094 instances with
83 features (phoneme-level duration prediction). Thus, wrapper-based auto-
matic feature selection was only feasible in a reasonable amount of time for

prediction tasks on word or syllable level (i.e. symbolic prosody prediction).
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The phoneme-level classification and regression trees were trained without

prior automatic feature selection.

1.3. Prosody Prediction with Machine
Learning Methods

In this thesis, the term “prosody prediction” is defined rather broadly as the
group of all prediction models that contribute to the rhythm and the melody
of a synthesised utterance. More precisely, it includes all prediction models
from symbolic prosody prediction, over the prediction of postlexical phono-
logical processes to the prediction of acoustic parameters. The prediction of
acoustic parameters is limited to the prediction of duration and FO values,
because these are the only two parameters that can be controlled for each
phoneme using the MBROLA synthesiser. Other acoustic parameters that
contribute to the perception of rhythm are intensity and spectral character-
istics (e.g. steeper spectral tilt for reduced vowels).

Various machine learning algorithms have been applied to different
prosody prediction tasks. Unless two algorithms are applied to the same
dataset, the reported results are hard to compare because of the idiosyn-
crasies of the different datasets used for training. Nevertheless, the reported

evaluation measures illustrate the difficulty of the respective task.

Prediction of Prosodic Boundaries

Fordyce & Ostendorf (1998) used transformation-based learning (TBL) and
classification trees (CART) for the prediction of prosodic boundary locations.
TBL is a supervised machine learning formalism introduced by Brill (1995)
for part-of-speech tagging. It finds an ordered sequence of rules which succes-
sively change an initial classification of the data. These rules are chosen by

a greedy search over the entire corpus to minimise the overall classification
error. Both TBL and CART were trained on the Boston University Radio
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News Corpus (Ostendorf et al., 1995). In terms of accuracy, the classification
tree slightly outperformed TBL (84.1% vs. 82.6%).

Atterer & Schulte im Walde (2004) developed a relatively simple prob-
abilistic context-free grammar (PCFG, cf. Manning & Schiitze, 2001, ch. 11)
for assigning intonation phrase boundaries to German text using STTS part-
of-speech tags. To determine the probabilities of the grammar rules, the
PCFG was trained in four iterations on 6,000 words (380 sentences) of the
IMS Radio News Corpus (Rapp, 1998). The PCFG was compared with an ap-
proach based on Hidden Markov Models (HMMs; similar to Taylor & Black,
1998) using a window of POS-bigrams and a context length of 6. Evalua-
tion showed that the PCFG was inferior to the HMMs (F-measure: 0.741
vs. 0.843).

Fackrell et al. (1999, 2001) used classification trees (CART) and two-
layer neural networks (NN) to predict prosodic phrase boundary strength be-
tween words, values ranging from 0 to 3. Both were trained on databases of
six different languages (Dutch, English, French, German, Italian, and Span-
ish). The evaluation measures over all languages showed that both methods
performed equally well. The accuracy rates for the German database were
74.8% (NN) and 72.7% (CART).

Zervas et al. (2003) used CART, Naive Bayes and a Bayesian Network to
predict prosodic boundary locations in a corpus of Modern Greek. CART (F-
measure 0.608) and Naive Bayes (0.629) were outperformed by the Bayesian
Network (0.704).

Accent Prediction

Fordyce & Ostendorf (1998) also used transformation-based learning (TBL)
and classification trees (CART) for the prediction of pitch accent locations
in the Boston University Radio News Corpus. For accent prediction, TBL
outperformed CART (accuracy: 86.8% vs. 85.6%).

Fackrell et al. (1999, 2001) used regression trees (CART) and two-layer
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neural networks (NN) to predict word prominence, values ranging from 0 to
9. Evaluation on databases of six different languages showed that CART
performs slightly better than NN. The accuracy rates (exact classification
+/-1) for German are 74.5% (NN) and 74.8% (CART).

Hirschberg & Rambow (2001) used a propositional rule learner, RIPPER,
(Cohen, 1995) to predict pitch accent locations (i.e. whether a word carried
an accent or not). The model is expressed as an ordered set of if-then-rules
(i.e. each rule only applies if the preceding ones do not) which contain each
a conjunction of conditions and a consequent classification. RIPPER was
trained on a corpus of read Wall Street Journal texts, which were transcribed
and annotated with ToBI labels. The best feature set used for training led

to an F-measure of 0.903.

Postlexical Phonological Processes

Most studies dealing with pronunciation variation are concerned with auto-
matic speech recognition (ASR). Some synthesis-related studies used pronun-
ciation modelling for improved labelling of large databases for unit-selection
speech synthesis (Bennett & Black, 2003; Jilka & Syrdal, 2002; Breuer,
2000). Whenever possible, these databases are labelled automatically, so
that an accurate pronunciation prediction is important. Otherwise the re-
alised phonemes are always labelled with their canonic counterparts, not
taking into account any reductions.

Hoste et al. (2000) used TBL and CART to extract phonemic knowl-
edge and rules from pairs of pronunciation lexicons for Northern Dutch and
Flemish. The motivation was to adapt speech synthesis systems to regional
variants. The overall accuracy in predicting the pronunciation of a Flemish
word pronunciation from the Dutch pronunciation was 89% for TBL and 92%
for CART.

Miller (1998) inferred individual postlexical phonologies from labelled

corpora of read American English using a recurrent neural network. The
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main postlexical phonological processes to be modelled were glottalisation,
vowel reductions and the reduced realisation of /t/ (e.g. as flap). The highest

accuracy reached was 89.6%.

Duration Prediction

One of the first machine learning techniques that was applied to duration pre-
diction is CART (Riley, 1992). The regression trees trained by Brinckmann
& Trouvain (2003) reached an RMSE of 22.46 ms (male voice) and 21.40 ms
(female voice), performing significantly better than the tested Klatt rules.
Nonetheless, this difference was not perceptible once the duration prediction
models were implemented in MARY.

Since data sparsity can pose a problem for CART, other machine learn-
ing techniques have been suggested for duration prediction. M6bius & van
Santen (1996) applied a sums-of-products model (a supervised, data-driven
approach) to the Kiel Corpus of Read Speech. The overall correlation be-
tween observed and predicted durations is 0.896. Riedi (1997) used Multi-
variate Adaptive Regression Splines (MARS) to predict segmental durations
from a corpus of German read speech. The resulting model has a correlation
coefficient of 0.90.

Goubanova & Taylor (2000) compared a Bayesian Network (BN) to
CART and to a sums-of-products model. All three models were trained
on a database of American English read speech. BN achieved a RMSE of 5
ms, outperforming both CART (20 ms) and the sums-of-products model (9

ms).

FO Prediction

Black & Hunt (1996) predicted three FO values for every syllable with linear
regression models, using features representing ToBI labels, lexical stress and
syllable position. The linear regression models were trained on the Boston
University Radio News Corpus (Ostendorf et al., 1995). The FO contours
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generated by this method have a correlation coefficient of 0.62 and 34.8 Hz
RMSE when compared with the original realisations, whereas a previous rule-
driven method (Anderson et al., 1984) resulted in a correlation coefficient of
0.40 and 44.7 Hz RMSE.

The F0 prediction described by Dusterhoff & Black (1997) used CART to
predict parameterised descriptions of the FO contour using the Tilt intonation
model (Taylor & Black, 1994). Evaluation on the Boston University Radio
News Corpus resulted in a correlation coefficient of 0.60 and 32.5 Hz RMSE.

Syrdal et al. (1998) compared three different FO prediction methods,
namely one primarily rule-based approach and two data-driven approaches,
on a corpus of read prompts and Wall Street Journal texts. The rule-based
approach was based on manually corrected ToBI labels, the two data-driven
approaches used parameterised descriptions of the FO contour with Tilt or
PalntE parameters (Parametric Intonation Events; Mohler & Conkie, 1998).
All methods were compared in a formal listening test. PalntE received the
highest mean opinion scores (on a 5-point scale), followed by the rule-based

approach and the Tilt method, which received the lowest scores.

1.4. Error Accumulation

As can be seen in Figure 1.1, a T'TS system consists of several modules. All
those modules make predictions that are not 100% perfect. Whenever one
module makes an error, the modules that follow further down the process-
ing chain “inherit” this error. If their predictions depend on a feature that
was predicted incorrectly, they are likely to produce a follow-up error. For
example, if the part-of-speech tagger predicts that a word is a content word
rather than a function word, the symbolic prosody prediction will probably
put an accent on that word, even though it should not be accented.
Automatic training of statistical models is usually carried out on corpora
that have been labelled semi-automatically, i.e. where the annotations were

checked manually. Thus, the annotations are near-perfect. Therefore, the
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statistical models that were trained on perfect data make their predictions
based on the assumption that their input is perfect. When these models are
then implemented into a TTS system, they will most certainly get input that
contains some errors. Some of these errors will have no further effect, some
will lead to follow-up errors. Two methods aiming at reducing error accu-
mulation in a TTS system are explained in the following sections: The first
one uses only automatically predicted features during training, the second
one predicts the acoustic parameters directly without using any intermediate

symbolic prosody features.

1.4.1. Training on Automatically Predicted Features

The first method uses the same tools and models that are implemented in
the respective T'TS system to label the training data. For example, for the
training of the symbolic prosody prediction model, the automatic predictions
of the POS tagger and the chunk tagger are used without any manual correc-
tions. In addition, the newly-trained prosodic boundary prediction model is
used to relabel the training data, i.e. whenever the model predicts a prosodic
boundary, this is annotated in the database. The accent prediction model is
then trained on this partly erroneously labelled database. The predictions
of the accent model are in turn used to re-label the database with accent
information for the training of duration and F0 prediction models.

Training the models on automatically predicted features has the follow-
ing advantage: Since the models are trained on erroneous data, they can
“learn” to make right predictions from erroneous input (as long as the errors
are not random). When implemented in a complete TTS system, the predic-
tions for duration and F(O might be better than those from models that were
trained on perfect data.

Fordyce & Ostendorf (1998) compared two models for accent prediction:
The first model was trained on a database containing manually corrected

prosodic boundaries, the second model was trained on automatically pre-
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dicted boundaries. The accuracy of the first model deteriorated from 86.8%
to 86.3% when it received automatically predicted features as input, whereas
the second model reached an accuracy of 86.7% on automatically predicted
features. They concluded that most of the loss in accuracy can be regained by
retraining the accent prediction model on automatically predicted features.

In a forced-preference comparison listening test, Fackrell et al. (1999)
compared the following two methods for the prediction of duration and FO:
The first method (called MAN) used models that were trained on a manually
corrected database, whereas the second method (called AUT) used only au-
tomatically labelled training data. Both methods were compared with each
other, as well as to copy-synthesised utterances (i.e. duration and F0 values
were copied from a recording) and a pre-existing TTS system. Fackrell et al.
(1999) found that the difference between MAN and AUT is not significant,
and that the copy-synthesised originals are significantly better than MAN
and the pre-existing TTS system.

Both studies suggest that prediction models can be trained on auto-
matically predicted features without resulting in a deteriorated performance.

However, there are two potential problems to be addressed:

1. The models are trained on data containing very system-specific er-
rors. Whenever a model further up the processing chain is changed, all
models that depend on its output have to be retrained. In contrast, a
model that is trained on manually corrected data can be applied more

generally.

2. If the TTS system is not used as a “black box”, but rather as an instruc-
tional or research tool (such as MARY), the user is able to manually
change intermediate representations. This can lead to rather strange
behaviour of models that have been trained on automatically predicted
data. Consider the following example: For some reason the symbolic
accent prediction always wrongly predicts a peak (high) accent instead

of a valley (low) accent under certain conditions. Imagine that the FO0
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prediction has learned to correct this error by assigning a low FO value
under these conditions, even though the symbolic accent prediction
predicts a peak accent. If a user now explicitly assigns a peak accent,
it might happen that the produced output will have a low F0 value for
the phonemes in the affected syllables.

As described in Section 3.2.2, the importance of using manually cor-
rected features was tested in a preliminary experiment. As shown in Table
3.3, the differences in accuracy between prediction tasks using only automat-
ically predicted features vs. using manually corrected features were rather
small.

Therefore, and as a solution to the problems described above, the final
symbolic prediction models described in Section 3.2 were trained on auto-
matically predicted features, whereas the so-called Symbolic duration and
FO prediction models described in Section 3.3 were trained on correct sym-

bolic prosody features.

1.4.2. Direct Prediction

The second method aims at reducing error accumulation simply by predicting
duration and F0 values directly without intermediate symbolic prosody pre-
diction. So-called Direct prediction models, which do not use any symbolic
prosody features, are described in Section 3.3. Both the Symbolic and the
Direct models are included in the perceptual evaluation (Chapter 4), showing
that they do not differ significantly.

Nevertheless, the Direct prediction method is not a viable solution for
TTS systems that are to be used as instructional or research tools, because
it does not offer an intermediate symbolic prosody representation that could

be manipulated by the user.
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As illustrated in Section 1.3, different machine learning algorithms often lead
to similar results as long as the chosen database (corpus) contains the infor-
mation needed for training. The choice of a suitable corpus and the repre-
sentation of the data is of utmost importance. In order to train models for
prosody prediction we need a speech corpus that is annotated with informa-

tion about:
e word boundaries
e syllable boundaries
e phonemic (even better: phonetic) segmental labels
e pauses
e prosodic phrase boundaries
e accents (location and type)
e boundary tones or phrase-final intonation contours
e lexical stress.

Unfortunately, corpora of read speech with these levels of annotation
do not abound for German. Apart from the “Kiel Corpus of Read Speech™,
which is described in detail in the following sections, I know of only two other
German annotated speech corpora: the “IMS German Radio News Corpus”
(Rapp, 1998) and the “Siemens Synthesis Corpus (SI1000P)"2. Both contain

read speech of professional broadcasting announcers. The former consists of

"http://www.ipds.uni-kiel.de/publikationen/kcrsp.en.html
’http://www.phonetik.uni-muenchen.de/Bas/BasSI1000Peng.html
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radio news items and is available upon personal request. The latter contains
1000 newspaper sentences, and the license is rather expensive. Both corpora
are only partly annotated with the required information, and the automatic

segmental annotations were not manually verified for the whole material.

The KCoRS has several advantages: It is publicly available at a low
price, it is almost completely annotated with the information needed for
prosody prediction, and the annotations are manually verified. Nevertheless,
it has one drawback: It consists mostly of isolated sentences (there are just
two complete texts). Prosodic phenomena that depend on paragraph or
information structure cannot be modelled with the KCoRS. Pause modelling
is also practically impossible (cf. Section 3.1). However, those shortcomings
are outweighed by the very comprehensive and consistent annotation.

Another question that arises when choosing a suitable corpus is whether
one should base the prosodic models on read or rather on spontaneous speech.
The Institute of Phonetics and Digital Speech Processing (IPDS) at the Uni-
versity of Kiel also offers the “Kiel Corpus of Spontaneous Speech” (KCoSS),
which is annotated in the same way as the KCoRS. So, why not use the
KCoSS, since its contents are much closer to speech occurring in real life
than the ones of the KCoRS? One of my goals was to improve MARY, a
German text-to-speech system, which is a reading machine, rather than a
communication machine. Of course, MARY could be used as the output de-
vice of a dialogue system. However, an important prerequisite would be that
the generated utterances are also “spontaneous”. To my knowledge, breath-
ing, back-channel utterances, grunts, hesitations and similar characteristics
of conversational speech are not implemented in current dialogue systems.
So, for the time being, it makes more sense to train the statistical models on
read speech rather than on spontaneous speech.

It is very important to get to know the details of a database before
starting to train any models. For example, the first German synthesiser that
was built for the unit-selection synthesis system CHATR (Black & Taylor,

1994) was very unsatisfactory (sometimes even unintelligible) mainly for two



2.1. The Kiel Corpus of Read Speech 31

reasons (Brinckmann, 1997):

1. We had not realised that the two speakers who had read the complete
textual material of the KCoRS were each named with two different
IDs in different parts of the corpus (kko and k61 for the male speaker,
and rtd and k62 for the female speaker). Thus, less than half of the

available speech material was used at first.

2. We did not know that the segmental labelling in the KCoRS is mostly
phonemic (with only a few phonetic additions). For example, we be-
lieved that a segment labelled with /i:/ is always a tense long vowel,
when in fact it is often realised as a short schwa-like vowel in function
words. So, when such a reduced variant was used by CHATR within an
accented, unreduced syllable, the resulting synthesised speech became

almost unintelligible.

In Section 2.1 and 2.2 the material and the original annotation of the
KCoRS are described in detail. These two sections are mainly written for
those who would like to use the KCoRS themselves but are daunted by the
labelling format, which can be rather confusing for first-time users. In Section
2.3, I describe the features that I added to the KCoRS and the tools I used
for these additions. Finally, I conclude with some remarks on the limitations

of the KCoRS, and why some features were not added.

2.1. The Kiel Corpus of Read Speech

The KCoRS is a corpus of read German, which was collected and annotated
at the IPDS. It comprises over four hours of labelled read speech and is
available on CD-ROM (IPDS, 1994).

The KCoRS originates from the PHONDAT project, preparatory works
starting in 1989. The aim of the project was to build a phonetic database of

spoken German as a resource for automatic speech recognition and general
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linguistic, phonological and phonetic questions (Kohler, 1992d). Within the
PHONDAT project, the same textual material (described in Section 2.1.1)
was used for recordings at four different universities in Germany — Bochum,
Bonn, Kiel and Miinchen. Only the speech material recorded at the Univer-
sity of Kiel constitutes the KCoRS.

2.1.1. Textual Material

The textual material® consists mostly of isolated sentences taken from a va-

riety of contexts.

e Phonetically balanced material (398 sentences!): The starting
point for the compilation of phonetically balanced material were the
‘Berlin and Marburg sentences’ (Sotscheck, 1984). These are short
sentences with high-frequency vocabulary, which contain all German
phonemes and many of the phoneme pairs that are allowed according
to the phonotactic restrictions of German (Kohler, 1992¢). The other
sentences of the phonetically balanced material were chosen so that all

possible German phoneme pairs are covered.

e Two short stories (22 sentences): “Die Buttergeschichte” and “Nord-

wind und Sonne” (German version of “The Northwind and the Sun”).
e Train timetable queries (204 sentences):

— “Siemens sentences” invented, grammatically correct sentences,
e.g. Ich brauche fir tiberndachsten Montag nachmittag eine Zug-

verbindung von Baden-Baden nach Oldenburyg.

— “Erlangen sentences™ selected transliterations of recorded spon-

taneous dialogues (not always grammatically correct), e.g. Griff

3The complete textual material of the KCoRS is listed on the following web pages:
http://www.phonetik.uni-muenchen.de/Bas/BasPD1Contents
http://www.phonetik.uni-muenchen.de/Bas/BasPD2Contents

“In the KCoRS, everything that ends either in a full stop, a question mark, or an excla-
mation mark counts as a sentence.
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Gott, ich brauchte eine Fahrkarte nach Hamburg und wollte fra-

gen, also wann der Zug abgeht dann.

In total, these are 624 sentences, containing 4932 word tokens and 1673
word types (i.e. orthographically different words). The main textual char-
acteristics are summarised in Table 2.1. With a mean value of 7.9 words,
the sentences are relatively short. The shortest sentences consist of only one
word, and all of them are “Erlangen sentences” (e.g. nein or danke). This
illustrates that one-word utterances are quite possible in spontaneous speech.

The longest sentence contains 29 words and is part of the short story “Die

Buttergeschichte”.
complete phonetically  rest
material  balanced
mean sentence length (in words) 7.9 6.2 11.0
frfzquency of sentences 99.3% 10.1% 43.8%
with at least one comma
frequency of 16.3% 58%  35.0%
Interrogative sentences
frequency of exclamations 4.6% 6.5% 1.8%

Table 2.1.: Characteristics of the KCoRS textual material. Figures are given
for the complete textual material and two subsets: the phoneti-
cally balanced material and the rest of the corpus (i.e. short stories
and train timetable queries).

The histogram of sentence lengths in Figure 2.1 shows that the single
most frequent sentence length is 5 words (sentences with a length of 5 words
make up more than a quarter of the whole corpus), but this peak is almost
entirely caused by the phonetically balanced material. Within the rest of
the textual material, the sentence lengths are much more evenly distributed.
Only 22.3% of the 624 sentences contain a comma, which is mainly due to
the general shortness of the sentences. The KCoRS includes 102 interroga-
tive sentences (sentences ending with a question mark) and 29 exclamations

(sentences ending with an exclamation mark).
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[] stories and timetable queries
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Figure 2.1.: Histogram of sentence lengths (counted in number of words) in
the textual material of the KCoRS. Notice the difference between
the phonetically balanced material (mostly short sentences) and
the short stories and train timetable queries (longer sentences,
more evenly distributed sentence lengths).

All of these textual characteristics have to be kept in mind as possible
influencing factors for the performance of the statistical models that were

trained on the database.

2.1.2. Recordings

The PHONDAT project was carried out in two phases. For PHONDAT1 the
phonetically balanced material and the short stories were recorded. PHON-
DAT?2 covered the train timetable queries.

At the IPDS, 53 speakers (26 female, 27 male, all older than 20 years)
were recorded in a sound-treated room. One female and one male speaker
read the whole textual material, each of the remaining 51 speakers read a
subcorpus of the 624 different sentences. Every speaker was advised to read
carefully but fluently. If an error occurred, the recording was interrupted by

the supervisor and the sentence was repeated.
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The signals were digitized at 16kHz sampling frequency with 16-bit res-
olution. They were stored in separate files for each sentence and associ-
ated with exactly one label file with the following file naming conventions:
xxxyyyyy .16 for the signal files and xxxyyyyy.s1ih for the label files, where
xxx is the speaker ID and yyyyy the sentence ID®. For the PHONDAT1 ma-
terial, the speaker ID follows the format k<-number >, and information about
the speaker is coded as follows:

e even number — female speaker
e odd number — male speaker
e number <= 30 — speaker is not older than 30

e number > 60 — speaker is older than 30.
This coding convention was abandoned in PHONDAT2, so that the two
speakers who read the whole corpus each have two different speaker IDs,
depending on the part of the corpus: the female speaker is named k62 and
rtd, the male speaker has the speaker IDs k61 and kko. For the training
of the prosody models (cf. Chapter 3), only the data of those two speak-
ers is used. The complete speech material of kko/k61 is 43.5 minutes long,
rtd/k62’s material amounts to 41 minutes. Deducting all pauses (most of
them are at the beginning and at the end of a file), this leads to 29 minutes

(kko/k61) and 26 minutes (rtd/k62) of ‘pauseless’ speech material.

2.2. Original Annotation

The character set used in the label files is 7-bit ASCII, where German umlauts
are represented with special characters (e.g. “}” for “d”). As can be seen in

the example in Figure 2.2, the label files have the following syntax:

<name of label file>
<orthography >

oend

’For the PHONDAT?2 material, the sentence ID consists only of four digits (yyyy)-
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< canonical transcription>

kend

<realised form>

hend

<start sample> <label> <start time>

<start sample> <label> <start time>

The canonical transcription was derived semi-automatically from the
orthography by manually correcting the output of the grapheme-to-phoneme
conversion module of the German text-to-speech synthesis system RULSYS
(Kohler, 1992a).

The field <realised form> contains the sequence of all labels from the
<label > section without any position markers. Aiming for brevity, the la-
bels are very compact and rather hard to decipher for first-time users of the
KCoRS. For example, #&1 ( labels an early peak accent with the accentua-
tion level 1, whereas #&1. denotes the intonation contour “mid fall”. In the
following sections, all annotation symbols for the field <label> are described

in detail.

2.2.1. Orthography

The orthographical representation of the words is given at the very beginning
of the label file in the field <orthography>. Within the <label> section, the
following symbols relating to the orthography are used:

e Word boundaries: The symbol of the first phoneme of a word is marked
with a prefixed ##. All labels within a word are prefixed with $, all
others start with #.

e Sentence boundaries are labelled with #c: with the same sample num-

ber as the first phoneme of the sentence.
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e Punctuation marks are always preceded by #. ' 7 . , are anno-
tated as they appear in the <orthography >, other punctuations marks
(e.g. the colon) are labelled with , .

k61be022.s1h
Achte auf die Autos!

oend

Q’axt@ QaU f+ di:+ Q ’aU t o: s !

kend

c: &2( Q-’axt-h@ & Q- auU f+ &0 d -h i:+ &1. &2)

Q- -q ’al t -h o: s ! &2. &PGn

hend
8455 #c: 0.5283750
8455 #&2( 0.5283750
8455 ##Q- 0.5283750
8455 $’a 0.5283750
9853 $x 0.6157500
11308 $t 0.7066875
12181 $-h 0.7612500
12431 $@ 0.7768750
13378 #&0 0.8360625
13378 ##Q- 0.8360625
13378 $aUl 0.8360625
14881 $f+ 0.9300000
15839 #&0 0.9898750
15839 ##d 0.9898750
16445 $-h 1.0277500
16632 $i:+ 1.0394375
18001 #&1. 1.1250000
18001 #&2) 1.1250000
18001 ##Q- 1.1250000
18001 $-q 1.1250000
18001 $’aU 1.1250000
20987 $t 1.3116250
21886 $-h 1.3678125
22588 $o: 1.4116875
25240 $s 1.5774375
29161 #! 1.8225000
29161 #&2. 1.8225000
29161 #&PGn 1.8225000

Figure 2.2.: KCoRS label file k61be022.s1h
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2.2.2. Morpheme Boundaries and Parts-of-Speech

Only those morpheme boundaries that are connected with particular phonetic
characteristics (e.g. lengthening or aspiration) are marked using $# before the
phoneme symbol.

Function words are marked by placing the symbol + after the symbol of

the last phoneme of the word (e.g. $1:+ at sample 16632 in Figure 2.2).

2.2.3. Phonemes

The segmental labelling of the KCoRS is “broad phonetic” (Barry & Fourcin,
1992), i.e. the segmental label inventory is “essentially phonological with a

J

small number of phonetic additions” (Kohler et al., 1995). It is based on the

6

canonical transcription, and the phonemes® are transcribed with a modified

version of SAMPA (Speech Assessment Methods Phonetic Alphabet; Wells,
2004):

e 21 vowels (7 short vowels, 8 long vowels, 3 diphthongs, 2 schwas, 1
nasal vowel’): T, Y, E,9,a,0,U, i:,y:, e:,2:,E:,a:, 0:,u:, al, 0Y,
al, @, 6, a~

e 15 /6/-diphthongs (short or long vowels followed by the vocalised r
/6/,
e.g. /1:6/ in Bier): 16, Y6, E6, 96, a6, 06, U6, 1:6, y:6, e:6, 2:6,
E:6,a:6,0:6,u:6

e 22 consonants, including the glottal stop /Q/: p, b, t, d, k, g, Q, m, n,
N, f v,s,2 5 7,C, x,r, h j, 1

Whenever the realised form deviates from the canonic transcription, the fol-

lowing symbols are added:

6Since the transcription in the KCoRS is mostly phonemic, I refer to the labelled sounds
as “phonemes” throughout this text and refrain from distinguishing between phones
and phonemes.

"German SAMPA has symbols for four different nasal vowels, but only one of them
appears in the KCoRS.
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e Deletions are marked with a hyphen after the symbol of the deleted

phoneme, e.g. Q-.

e Insertions are marked with a hyphen before the symbol of the inserted

segment, e.g. -t.

e Replacements are marked with a hyphen after the symbol of the canonic
form, followed by the realised form, e.g. n-m (where n is realised as m).
Only phonemic changes (e.g. reduction from a full vowel to schwa) are
labelled this way, phonetic variations in vowel quality or quantity are

not marked.

Table 2.2 lists the percentage of deletions, replacements and insertions of all
canonic phonemes. The most commonly deleted canonic phonemes are /Q/
(kko/k61: 64% vs. rtd/k62: 54%), /@/ (38% vs. 47%), and plosive releases
(36% vs. 39%).

deletions replacements insertions
kko/k61  12.2% 2.0% 0.17%
rtd /k62  13.7% 2.1% 0.05%

Table 2.2.: Percentage of deletions, replacements and insertions of all canonic
phonemes for speakers kko/k61 and rtd /k62.

In addition to the canonic labels, the following labels are used to mark

phonetic aspects of the realised segments:
e Glottalisation / creaky voice is labelled with -q.

e Nasalisation is labelled with -~, only if a nasal has been deleted and

the neighbouring realised phonemes are nasalised.

e Hesitational lengthening: If a segment is hesitationally lengthened, the
label z: 1is placed at the sample number of the following phoneme

(i.e. after the lengthened phoneme).
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e Plosive release: The closure and the release phase of a plosive are la-
belled separately. The release is always transcribed with -h, regardless
of the respective plosive. If the plosive is followed by a fricative, the
plosive release phase is usually not labelled separately but assigned to

the duration of the fricative.

e Uncertainty: If the beginning of a phoneme cannot be determined with

certainty, the corresponding label is prefixed with 9.

2.2.4. Prosody

The KCoRS is annotated with the prosodic labelling system PROLAB (Koh-
ler, 1995; Peters & Kohler, 2004), which is based on the pitch contour-based
Kiel Intonation Model (KIM; Kohler, 1997). It incorporates the following
domains: lexical stress, accent, intonation contour, prosodic boundaries, and
pauses. Labels for accent, intonation contour and prosodic boundaries always

contain & in order to separate them from the segmental labels.

Lexical Stress

There are no syllable boundaries marked in the KCoRS. Therefore, primary
and secondary lexical stress is indicated by prefixing the symbol of the vowel
of the stressed syllable with * or " respectively (e.g. $’a at sample 8455 in
Figure 2.2).

Function words receive no lexical stress marking, even though there are
several multi-syllabic function words in German (e.g. warum, desto, wegen).
If a function word carries a sentence accent (see below), the label $°° is
inserted before the vowel of the stressed syllable.

If the realised lexical stress position in a word deviates from the canonical
transcription, this is marked the same way as phonemic changes (see Section
2.2.3, e.g. a-’a:).
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Accent

Sentence accent is usually an attribute of the whole word. Therefore, the
accent labels are placed before the respective word and prefixed with #&. If
a word carries more than one accent and one accent label must be placed
within a word, it is prefixed with $&. Usually, the accent falls on the syllable
with primary stress. If a vowel is preceded by the label $’7, the accent
falls on the syllable containing that vowel. If a word carries more than one
accent, a sentence accent marker is provided for each accent, either before the
respective morpheme boundary (if present), or directly before the accented
phoneme.

Within one accent label, the following information is coded: accentua-
tion level, accent type, alignment, and upstep. A complete list of all PRO-
LAB accent labels that occur in the KCoRS is given in Appendix A.1.

Accentuation level Four levels of accentuation are distinguished:

0 unaccented

1 partially accented

2 accented

3 reinforced.

As shown in Figure 2.3, the most frequent accentuation level is 0, closely
followed by 2. Speaker kko/k61 produced only 39 reinforced accents com-
pared to 136 reinforced accents for speaker rtd/k62.

Accent type and alignment Any syllable that is not unaccented (i.e. is
labelled with an accentuation > 0), carries one of three possible accent types:
flat, peak, or valley. In addition, peak and valley labels carry information
about their alignment, i.e. the position of the maximum or minimum in the
F0O contour with respect to the accented syllable.

Flat accents show very little change in FO across several phonemes or

syllables, even though an accent can be perceived. Kohler (2003) calls this
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Figure 2.3.: Absolute frequency of accentuation levels for speaker kko/k61
and rtd/k62.

type of accent force accent in order to distinguish it from pitch accents, which
are always associated with an FO movement. In PROLAB, flat accents are
labelled with -.

Peak accents have a local maximum in the FO contour in the neighbour-
hood of the accented syllable. Three values for alignment are available for
peak accents: early, mid, and late, with the respective FO maximum before,
within, and after the nucleus of the accented syllable. The PROLAB labels
are: ) (early peak), * (mid peak), and ( (late peak). Figure 2.4 shows that
peak accents are the most frequent accent types for both speakers (kko/k61:
85.8%, rtd /k62: 85.2%).

Valley accents have a local minimum in the FO contour in the neighbour-
hood of the accented syllable. Only two types of alignment are distinguished
for valley accents: ] (early valley: FO minimum before the nucleus of the
accented syllable) and [ (non-early valley: FO minimum within or after the

nucleus of the accented syllable).

Upstep As a default, the FO minima and maxima of the accents are ex-
pected to decline over the course of an utterance, so that the first peak accent
in an utterance is higher than the second one and so on (for a detailed discus-

sion of declination cf. Cohen et al., 1982). Therefore, this regular ‘downstep’
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Figure 2.4.: Absolute frequency of accent types for speaker kko/k61 and
rtd/k62 (n.e. valley — non-early valley).

of accents is not labelled. However, when an accent’s minimum or maximum
is higher than, or as high as the preceding accent, it is labelled with upstep:
|. All accents with an accentuation level greater than 0 can be upstepped.

Only 5.2% of kko/k61’s accents and 5.8% of rtd/k62’s accents are upstepped.

Intonation Contours

Concatenation and phrase-final contours PROLAB labels for intona-
tion contours between accented words (so-called “concatenation contours”)
and at the end of a prosodic phrase (phrase-final contours) always end with
a punctuation mark: ; is used to label a minimal rise (“pseudo-terminal con-
tour”; Peters, 1999), , denotes a low rise, 7 marks a high rise and . is used
for several types of falls. The . is preceded by a digit to denote the strength
of the fall: 0 (level), 1 (mid fall), and 2 (terminal fall). All fall categories
can be combined with all rise categories resulting in 9 additional, complex
intonation contours. All intonation contour labels are listed in Appendix
A.2. As shown in Figure 2.5, falls form the most frequent class of intonation

contours, whereas high rises are very infrequent.
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Figure 2.5.: Absolute frequency of simplified concatenation and phrase-final
contours (simplification as described in Section 3.2.2).

Phrase-initial contours Most prosodic phrases begin with several unac-
cented syllables, the “pre-head”. As a default, the FO contour of this pre-head
is lower than the FO maximum of the first accented syllable. Two “high pre-
head” categories are labelled in PROLAB: HP1 marks a pre-head with a FO
contour that is as high as the following accent, whereas HP2 is used for a
pre-head starting with a high FO contour that falls steadily until the first
accented syllable is reached. If the first accent is a valley, it is not possible to
distinguish between low and high pre-head. In these cases, the default (low

pre-head) is assumed.

Prosodic boundaries, register, and speech rate

Prosodic phrase boundaries are marked with PGn. They are phonetically
signalled by phrase-final segmental lengthening and usually by FO resetting
after them. They often coincide with pauses (see below). Phrase boundaries
are not further divided into subclasses with differing boundary strengths (a
division into PG1 and PG2 was planned, but has not been carried out to date).

Usually, the declination of the accents is reset at the beginning of a
prosodic phrase and the downstep starts anew. If there is no reset after a
prosodic phrase boundary, the boundary is labelled with =PGn.

If a speaker deviates from his or her normal F( range, this is labelled



2.2. Original Annotation 45

with HR (high register) or LR (low register). Similarly, deviations from the
normal speaking rate of the speaker are marked with RP (rate plus) or RM (rate
minus). Since register and speech rate labels are very rare in the KCoRS (they
were introduced to PROLAB mainly for spontaneous speech), they were not

used for statistical modelling.

Pauses

The following types of pauses are labelled in the KCoRS:
e silent pause (p:)
e pause filled with
— breathing (h:)
— clicking or lip-smacking (s:)
segmental material because the speaker stumbled or misread a
word (v:).

The vast majority of the pauses produced by the selected speakers
kko/k61 and rtd/k62 are silent pauses (95% and 97% respectively), which
is not surprising given the fact that most sentences are rather short and
produced in isolation. Speaker kko/k61 produces more pauses than speaker

rtd /k62, which is in line with his slower speech rate.

prosodic boundary type

no boundary reset no reset total
kko / rtd kko / rtd kko / rtd  kko / rtd
pause 0/1 673 /653 2 /4 675 / 658
no pause 3967 / 3905 236 / 311 54 /58 4257 / 4274
total 3967 / 3906 909 / 964 56 / 62 4932

Table 2.3.: Co-occurrences of following prosodic boundaries and pauses per

word for speaker kko/k61 and rtd/k62.

Summarising the co-occurrences of pauses and prosodic boundaries in

Table 2.3, we can formulate the following sets of simple rules:
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1. prediction of pauses from boundaries (accuracy: 94.4%)
e no boundary = no pause
e “no reset” boundary = no pause

e reset boundary = pause

2. prediction of boundaries from pauses (accuracy: 93.2%)
e pause = reset boundary

e no pause = no boundary

Since most pauses occur at the beginning or at the end of the speech
files, we have very little data about the duration of pauses. Therefore, the

KCoRS is not a suitable training database for pause modelling (cf. Section

3.1).

2.3. Added Features and Changes

Although the KCoRS already contains a lot of information and is annotated
very consistently, I added several features® that are important for prosody
prediction. Concerning the textual data these are: sentence type, part of
speech, syntactic phrases, grammatical functions, and word frequencies. The
annotation of the speech signal was enriched with information about syllable
boundaries and FO median values. In addition to some minor changes to the
orthography, I changed the annotation of lexical stress and some phoneme
labels. All these additions and changes are described in detail in the following
sections.

Since the models that are trained on these features shall eventually be
implemented in MARY as an alternative prosody prediction, the tools I chose
for automatically adding features to the KCoRS had to satisty one of the
following conditions: They had to be either:

8All files containing the added features are available from
http://www.brinckmann.de/KaRS/.
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e already implemented in MARY (part-of-speech tagger, syntactic chunk
tagger)

e casily implementable with a small algorithm (sentence type, syllable

boundaries)
e publicly available (word frequencies from CELEX)

e available within the DFKI (SCHUG parser for grammatical functions).

Some of the automatically added features were corrected manually (part-
of-speech, syntactic phrases, grammatical functions, syllable boundaries),
others were not corrected, either because this would have been too time-
consuming (F0 values) or because it is unnecessary (sentence type, word fre-
quencies). Both automatically derived and manually corrected feature sets
were tried out for symbolic prosody prediction (cf. Section 3.2) in order to
estimate the amount of error introduced to the models by erroneous feature

values.

2.3.1. Textual Data
Orthography

In order to facilitate textual processing, the orthography was changed in the

following cases:

e spelling mistakes were corrected, e.g. Jung’s in sentence mr006 was

changed to Jungs

e numbers were expanded, e.g. 11. in sentence cn020 was converted into
elften

e spellings of denominations for the time of day were harmonised follow-
ing §55(6) of the new regulations of German orthography (IDS, 1996):
denominations for the time of day are capitalised when they follow

heute, (vor)gestern or (iber)morgen, e.g. heute Abend.
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Sentence Type

Brinckmann & Benzmiiller (1999) showed that in German scripted speech the
four utterance types statement, wh-question, yes/no-question, and declara-
tive question differ significantly concerning final boundary tone, F0 range,
and FO slope. Therefore, every sentence in the textual material of the KCoRS
was automatically labelled with one of the following sentence types: state-
ment (ends with a full stop), exclamation (ends with an exclamation mark),

or question (ends with a question mark). The questions were further subdi-

vided into the types listed in Table 2.4.

2. Database

type description example
wh-question contains an interrog- Wann — geht  der
ative pro-form nachste  Zug nach
Mannheim?

yes-no question

negative yes-no q.

alternative question

declarative question

polite request

inflected verb at the
beginning of the sen-
tence

contains nicht or kein

presents two possible
answers  connected
with oder

same word order as in
a statement

starts with Konnten
Sie ... or Konnen Sie

Steigt Dein Drachen
sehr hoch?

Muf$ der Zucker nicht
dort driben stehen?
Wiinschen Sie
Raucher oder Nich-
traucher?

Und  spater  fdhrt

keiner mehr?
Konnten Sie mar bitte
Ziige von Regensburg
nach Frankfurt heute
abend sagen?

Table 2.4.: Question types in the textual material of the KCoRS.

As can be seen in Figure 2.6, the most frequent sentence type in the
KCoRS is the statement (78.7%). 104 sentences (16.7%) were classified as

questions?, and only 29 (4.6%) as exclamations.

9Two sentences ending with a full stop were classified as polite requests, thus falling into

the category “question”.



2.3. Added Features and Changes 49

600 -
9 491
=
=
= 400
(o]
&
g
= 200 1
Q
) 49
R o B w5 2 512
= = : . . : : =
= 5 = ) o -3 o z
[<b) o c o [<b) 5]
= = = = =z = =
s = & *h = = o
< < j<b) <5} = &~
< = - - £ < =
5 e = g 2
g = 3 =

sentence type

Figure 2.6.: Histogram of sentence types in the textual material of the KCoRS
(q. — question, neg. —negative).

Part-of-Speech Tags

The original annotation of the KCoRS distinguishes between function and
content words, reflecting the assumption that function words are usually
unaccented. A more refined part-of-speech classification could be helpful for
the prediction of accentuation. For example, separated verbal particles and
attributive indefinite pronouns (keine, beide) are often accented, even though
they are usually classified as function words.

Part-of-speech tagging was carried out in two steps. First, the statistical
tagger TnT (Brants, 2000) was applied to the textual data. The German
language model of TnT had been trained on the annotated NEGRA corpus
(Brants et al., 1999) using the Stuttgart-Tiibingen tag set (STTS). Second,
the tags were manually corrected following the guidelines for STTS (Schiller
et al., 1995).

A comparison between the statistically tagged data and the manually
corrected version revealed that only 3.4% of the tags had to be corrected.
Table 2.5 shows that TnT performs significantly better on known tokens
(i.e. tokens that are part of the lexicon generated from the NEGRA corpus)
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than on unknown tokens. Even though the KCoRS textual data is rather
unlike the NEGRA corpus (which is a collection of newspaper texts), the

accuracy figures are very similar.

percentage tagging accuracy
unknown tokens | known tokens unknown tokens overall
KCoRS 10.9% 97.8% 86.9% 96.6%
NEGRA 11.9% 97.7% 89.0% 96.7%

Table 2.5.: TnT’s part-of-speech tagging accuracy for the KCoRS textual
data and the NEGRA corpus (figures for NEGRA from Brants,
2000). Unknown tokens are tokens that are not in the lexicon
generated from the NEGRA training corpus.

Out of 54 possible STTS tags, 47 are present in the KCoRS (see Ap-
pendix B.1 for a complete list of STTS tags with examples and information

about their absolute frequency in the KCoRS). Only the following seven tags
are missing: APPO, FM, PPOSS, PRELAT, TRUNC, VMPP, and XY.
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Figure 2.7.: Histogram of simplified part-of-speech categories in the textual
material of the KCoRS.
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Syntactic Chunks

Words that belong to the same syntactic phrase are usually not separated
by a prosodic phrase break, at least in read speech. MARY uses the chunk
tagger (Skut & Brants, 1998) to recognise syntactic structures of limited
depth. The chunk tagger was applied to the textual material of the KCoRS,
and the output was corrected manually.

The chunk tagger assigns the phrasal categories used in the NEGRA
corpus (Brants et al., 1999), but only multi-word phrases receive such a
phrasal chunk tag (44.5% of all word tokens in the KCoRS are not part of
a multi-word phrase). For example, if a noun phrase consist only of one
pronoun, it keeps the POS tag assigned by TnT.

Out of 20 possible phrasal chunk tags, 14 are present in the KCoRS (see
Table B.3 in Appendix B.2 for a detailed list). By far the most frequent
phrasal chunk tags are NP (noun phrase) and PP (adpositional phrase) —
together with their respective coordinated variants (CNP and CPP) they
make up 92% of the labelled multi-word phrases (see Figure 2.8). Top-level
chunk phrases, i.e. chunk phrases that are not embedded in any other phrase,

make up 81.9% of all multi-word phrases.

600

D

o

)
1

569

400 1

200 1

absolute frequency

(C)NP_ (C)PP_ (C)AP (C)AVP  rest

phrasal chunk tag

Figure 2.8.: Histogram of multi-word phrasal chunk tags in the textual ma-
terial of the KCoRS. Figures for NP, PP, AP and AVP are given
together with their respective coordinated variants. All other
chunk tags are collapsed into the category “rest”.
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A comparison of the automatically derived top-level categories with the
manual corrections revealed a word-level accuracy of 85.1% (i.e. the top-
level phrasal category or POS of 85.1% of all word tokens was not changed
manually). Regarding the absolute position of each word within the top-level
chunks (i.e. whether it is the first, second, third etc. word within the chunk),
the chunk tagger reached an accuracy of 87.4%.

Grammatical Functions

Wolters & Mixdorff (2000) reported that the grammatical function of a phrase
has an influence on the accentability of the words it contains, e.g. nouns in
genitive adjuncts are less likely to be accented than nouns in subjects. This
could be explained by the fact that genitive adjuncts are frequently used to

link new discourse entities to discourse-old entities or world knowledge.

MARY contains no grammatical function tagger yet, but the SCHUG
parser developed at the DFKI (Declerck, 2002) is readily available for this
purpose. Therefore, SCHUG was used to assign phrasal categories and gram-
matical functions to the textual material of the KCoRS. The SCHUG parser
is a rule-based system using morphological and part-of-speech information.
In contrast to the chunk tagger, it assigns phrasal categories also to phrases
consisting of only one word. Table 2.6 lists all SCHUG categories and their

possible grammatical functions.

SCHUG was applied to the complete textual material of the KCoRS,
and its output was corrected manually. As shown in Figure 2.9, the most fre-
quent SCHUG categories in the KCoRS are NP, VG and PP. If the grammat-
ical function of a noun phrase is ambiguous (according to SCHUG’s rules),
SCHUG assigns a set of all grammatical functions that are deemed possible
for that phrase. Since this is the case for 49.7% of the automatically de-
rived noun phrases (even for some pronouns with overt case marking), some

improvement is necessary here. Another field for future improvements of

SCHUG is the recognition of embedded phrases. An inspection of the man-
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category description possible grammatical functions

AP adjective phrase PREDICATIVE AP

AdvP adverbial phrase PREDICATIVE ADVP

NP noun phrase SUBJ, SUBJ/DEEP _OBJ,
AKK OBJ, DAT OBJ, GEN OBJ,
NP ADJUNCT GEN,
PREDICATIVE NP

PP prepositional phrase PP _ADJUNCT, PP_OBJ

SUBORD  subordinated clause XADJUNCT, XCOMP

CLAUSE
VG verb group -
W word (conjunctions) —

Table 2.6.: SCHUG categories and possible grammatical functions.

ually corrected SCHUG phrases showed that 16.0% of all SCHUG phrases
in the KCoRS are embedded phrases (see Table B.2 in Appendix B.2). Cur-
rently, SCHUG is only capable of recognising top-level phrases.
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Figure 2.9.: Histogram of SCHUG categories in the textual material of the
KCoRS (SUB — SUBORD _CLAUSE).

A comparison of the automatically derived top-level categories with the

manual corrections revealed a word-level accuracy of 76.3% (i.e. the top-level

SCHUG category of 76.3% of all word tokens was not changed manually),

whereas the grammatical functions were correct only for 51.0% of all words.

Regarding the absolute position of each word within the respective top-level
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phrase (i.e. whether it is the first, second, third etc. word within the phrase),
the SCHUG parser reached an accuracy of 78.3%. At first glance these
accuracy figures seem to suggest that the SCHUG parser performs worse
than the chunk tagger. However, almost half of the words do not receive a
phrasal chunk tag from the chunk tagger, instead they keep their original
part-of-speech tag. So the accuracy of the chunk tagger benefits very much
from the reliability of TnT. Nonetheless, both the SCHUG parser and the

chunk tagger need further improvement.

Word Frequencies

Fidelholtz (1975) showed that the frequency of a word has a significant ef-
fect on the reduction of its vowels (the higher the word frequency, the more
probable a vowel reduction). Word frequency also correlates with the con-
tent /function word distinction: Function words usually have a higher fre-
quency than content words. Thus, the accentability of a word might be
rather a consequence of its frequency than of its part-of-speech.

Even if homographic wordforms are distinguished regarding their part-
of-speech, the textual material of the KCoRS contains only 1733 different
wordforms. Since a T'TS system has to rely on a much bigger lexicon, the
frequency information that was added for each wordform was not computed
directly from the KCoRS. Instead, it was taken from the lexical database
CELEX (Baayen et al., 1995). The frequency information in CELEX is
based on the “Mannheim” corpus (1984 version) of the “Institut fiir Deutsche
Sprache”, which contains about 6.0 million words from mostly written and
some spoken sources.

CELEX offers a variety of frequency figures, both for lemmas and for
wordforms. I chose MannMin, i.e. the wordform frequency scaled down to
a range of 1 to 1.0 million (instead of the original 1 to 6.0 million). The
minimal value of MannMin in CELEX is 0, the maximum is 25287 (for the
word und). Those 227 wordforms of the KCoRS that are not present in
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CELEX (mostly nouns), also received the frequency value 0 (totalling in 352
zero-frequency wordform types).

Of course there are wordforms that are very frequent in the KCoRS, but
not that frequent in the Mannheim corpus. For example, the most frequent
wordform in the KCoRS is nach (142 tokens), which is due to the large num-
ber of train timetable queries (such as s008: Ich mdchte morgen abend nach
Kiln fahren). In the Mannheim corpus, nach receives the frequency figure
of 1738 (when scaled down to the size of the KCoRS, this is the equivalent
of 9 tokens). Nevertheless, both the frequency figures based on the KCoRS
itself as well as the ones from CELEX behave very similarly when it comes to
their distribution within the KCoRS. As can be seen in Figure 2.10, there are
many wordforms in the KCoRS with a low frequency figure (e.g. 1 or —only
in the case of CELEX frequency figures— 0), some with a medium frequency

figure, and only very few wordforms with a high frequency figure.

2.3.2. Speech Data
Phonemes

In the original annotation, all plosive releases are labelled with -h, suggesting
that the release phase is not canonic, but rather an insertion. Since release
phases of fortis plosives are generally longer than lenis releases, their labels
were changed, marking them separately with the additional symbols p_h,
t_h, k_h, b_h, d_h, g_h. Furthermore, the plosive releases were regarded as

canonic.

Lexical Stress

Lexical stress information was added for all function words, so that all words
received one primary stress location.
In the original annotation of the KCoRS, two words carry two primary

stress locations: B’aden-B’aden and sp’dt’ abends. After listening to the
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Figure 2.10.: Frequency of CELEX and KCoRS frequency figures of word-
form types in the KCoRS textual material. X-axis: The fre-
quency figure for each wordform is either computed directly
from the KCoRS (KCoRS frequency figures) or taken from the
MannMin figure of CELEX and scaled down to the size of the
KCoRS (CELEX frequency figures). Y-axis: The frequency of
frequency of wordform types is based on the KCoRS textual
material. Note that only the CELEX frequency figure can have
a value of 0.

realisations of the speakers, one primary stress location was changed to a

secondary stress: B'"aden-B’aden and sp" dat’ abends.

Syllable Boundaries

Automatic syllabification was carried out with a simple algorithm which de-
fined every vowel as syllable nucleus and every sonorant /m,n,N,1/ that is
preceded by a consonant as potential syllable nucleus. The syllabification of
the segments between the established nuclei was based on the following rules

and standard phonological principles:

e Every word boundary and every labelled morpheme boundary is a syl-

lable boundary.
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e A glottal stop /Q/ is always the onset of a syllable.

e Plosive closure and following plosive release or fricative (in case of

affricates) are not separated by a syllable boundary.

e Ambisyllabicity: a consonant following a lax vowel in a VCV pattern

is marked as ambisyllabic.

e Obligatory Coda: a syllable must be closed (or followed by an ambi-

syllabic consonant) after a short, lax vowel (except /@, 6/).

e Maximal Onset Principle: make the syllable onset as long as it legiti-

mately can be according to the phonotactic restrictions of German.

Two types of syllable boundaries were distinguished: “_” marks a sylla-
ble boundary which is followed by an ambisyllabic consonant, while normal
syllable boundaries are marked with “-".

The syllabification algorithm was applied to two datasets: The first one
(the ‘lexicon’) contained all wordforms of the KCoRS with their respective
canonic phoneme sequence, the second one (‘connected speech’), consisted of
all realised phone sequences of the two speakers kko/k61 and rtd/k62. Both
syllabified datasets were corrected manually, the second one by listening to
all utterances of the two speakers. Compared to the manual corrections,
for the ‘lexicon’ 99.1% of the automatically derived syllable boundaries are

correct, while for ‘connected speech’ the accuracy dropped to 97.2%. This is

mainly due to the following phenomena:

e Postlexical resyllabification across word boundaries, e.g. in k61be031:

gibt es realised as /g g h I p - t t_h E s/.

e Glottal stop /Q/ is possible at the end of a syllable when it replaces a
plosive, e.g. in k61mr069: Zentner realised as /t s En Q - n 6/.

e Potentially syllabic sonorants following a vowel or /1/ are problematic,

e.g. einen (realised as monosyllabic /Q aI n/ or disyllabic /Q al -
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n/ ?7) and rollen (monosyllabic /r 0 1 n/ or disyllabic /r 0 _ 1 n/
7). Each decision was based on my auditory impression, e.g. monosyl-
labic /r 0 1 n/in k62be087 and disyllabic /r 0 _ 1 n/in k61be087
(the disyllabic impression seems to be due to the slower speech rate of

speaker k61).

FO Values

The acoustic parameters to predict are duration and FO. The duration of
each phoneme can be computed using the labelled phoneme boundaries. F0
values were estimated with ESPS’s get_£0 algorithm (Talkin, 1995), which
uses the normalised cross correlation function and dynamic programming. As
frame step, the default of 10ms was chosen; for the female speaker rtd/k62
the minimum FO0 value was set to 120Hz, the maximum to 400Hz, whereas
for the male speaker kko/k61 the minimum and maximum were set to 50Hz

and 250Hz respectively!?.

Median FO For every vowel and sonorant (m, n, N, 1), the median of these
raw F0O values was calculated. The median was chosen instead of the mean,
because it is more robust to outliers. Nevertheless, there were still some
erroneous median F0 values, especially within portions spoken with a creaky

voice, because of doubling or halving errors.

Last FO Thus, we have one F0 value for every vowel and sonorant. If there
is a pitch accent on the last syllable of a prosodic phrase, and this syllable
only contains one vowel or sonorant, one F0 value is not sufficient to capture
a valley accent followed by a rising intonation contour. Therefore, for every
prosodic phrase a final FO value was stored by computing the median of the
last three FO values of the last vowel or sonorant of that prosodic phrase. If

get_f0 cannot estimate any FO value, median and last FO are set to 0.

"%Informal inspection revealed that these values were adequate for those two voices.
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2.3.3. Further Possibilities and Limitations

Other features that could be added to an annotated speech corpus include
word predictability, discourse features, GToBI labels, intensity and spectral
tilt.

Pan & Hirschberg (2000) showed that word predictability, measured in
terms of bigram word predictability log(Prob(w;|w; — 1)), is a useful predic-
tor of pitch accent placement for nouns. In order to compute this measure
we need a suitable textual corpus. Aiming for a rather neutral prosody of
sentences that can occur in any context, we would have to use a very big
textual corpus — otherwise the measures would be very domain-specific. This
is in line with using the frequency numbers from CELEX, which were calcu-
lated from the 6 mio. token Mannheim Corpus rather than directly from the
KCoRS. Since bigram word predictability can be helpful mostly for limited
domain synthesis, I decided not to add this feature to the KCoRS.

Discourse features like the givenness of a referring expression have an
influence on the pitch accent and phrasing (cf. Wolters & Mixdorff, 2000),
but since the KCoRS consists mostly of isolated sentences and not of com-
plete texts (except for the two short stories), this kind of information cannot
be added. For information structural features, a corpus of read newspaper
texts such as the one built in the MULI project (Baumann et al., 2004) and
the “IMS German Radio News Corpus” (Rapp, 1998) should be investigated
instead.

MARY uses GToBI labels for the symbolic prosody prediction. GToBI
labelling was not carried out for the two selected speakers of the KCoRS

mainly because of two reasons:

1. Even though Braunschweiler (2003) described an approach to predict
GToBI labels automatically from the F0O curve and intensity measures,
these automatically predicted labels still have to be corrected manually,

which is very time-consuming.

2. The prosody prediction described in Chapter 3 consists of symbolic
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prosody prediction and prediction of acoustic parameters. Since the
only module of MARY needed for this approach is the MBROLA syn-
thesis, GToBI labels are not necessary as intermediate symbolic repre-

sentation. The PROLAB labels can be used instead.

Intensity and spectral tilt of realised phonemes influence the perception
of rhythm, but since they cannot be modelled by MBROLA, those measure-

ments were not included as features to predict.
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3. Prosody Prediction with CART

As described in Section 1.3, in this thesis prosody prediction is defined as
containing all prediction tasks that contribute to the prediction of the realised
phoneme, its duration, and its FO values. The following separate prediction

tasks are described in the subsequent sections:

e pause prediction

e symbolic prosody prediction:
* prosodic boundaries
* accentuation level
* accents: location and type

* phrase-final intonation contours

e prediction of postlexical phonological processes:
* type of change: none, deletion, replacement

* in case of replacement: replacement rule

e prediction of acoustic parameters:
* duration
* median F0

* last FO.

One major goal of this thesis is to show that the output of a text-
to-speech system can be significantly improved by training all models that
contribute to prosody prediction on the same database. As described in
Section 1.3, many different machine learning algorithms have been applied

for the different prediction tasks. It was not my aim to find the best feature
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set, the best algorithm, and the best model for each prediction task. Instead
[ applied the same machine learning algorithm (CART; Breiman et al., 1984)
to train classification and regression trees for all prediction tasks.

Because of reasons related to the implementation of the machine learning
software tools (see Section 1.2.2), all classification trees were trained with
Weka (version 3.4.2; Witten & Frank, 2000), whereas all regression trees
were trained with wagon (version 1.2.3, King et al., 2003). All classification
trees were evaluated with stratified 10-fold cross-validation. Since wagon
does not offer stratified cross-validation, the performance of the regression
trees was estimated on a randomly selected separate test set.

Automatic feature selection (greedy forward selection wrapper) was only
performed for word-level and syllable-level prediction tasks (i.e. symbolic
prosody prediction). The phonemic datasets were too large to make auto-

matic feature selection computationally feasible in a reasonable amount of

time (see Section 1.2.3).

Datasets 20 sentences from the KCoRS were randomly selected for the
perceptual evaluation (see Table 4.1 in Section 4.1.2). These 20 sentences
were not included for training, validation and corpus-based testing of the
classification and regression trees. Apart from these 20 sentences, the com-
plete KCoRS and all added features (as described in Section 2.3) are used as

database to produce the input datasets for Weka and wagon.

3.1. Pause Prediction

As mentioned in Section 2.2.4, only very few pauses occur within a sentence
(or rather: between two words), so that information about their duration
is available only for 62 and 52 pauses respectively for kko/k61 and rtd/k62
in the training data. Because of the extreme data sparsity, it is impossible
to model pause duration with a regression tree. Therefore, two very simple

rules based on a trial-and-error procedure with MARY were applied instead:
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1. Pause location: A word is followed by a pause, only if it is followed by

a punctuation mark.

2. Pause duration: If the word is followed by a comma or a dash, the
pause duration is 100ms, if it is followed by another punctuation mark,

the pause duration is 300ms.

Of course, this is not a very satisfying solution, but for a successful training

we would need a database that consists of complete texts.

3.2. Symbolic Prosody Prediction

3.2.1. Prosodic Boundary Prediction

The classification task for prosodic boundary prediction is to predict for each
word whether it is followed by a prosodic boundary or not. Originally, it was
planned to predict also the type of the boundary (reset vs. no reset), but since
the “no reset” boundaries make up only 6% of all boundaries in the KCoRS,
they proved to be impossible to predict with reasonable precision and recall.

So I decided to predict only the classes “boundary” and “no boundary”.

Features

For each word the following features were extracted from the database:
e word level features, for a window of 5 words (the respective word
and 2 neighbouring words to the left and to the right):

x part-of-speech: STTS and simplified (simplifications as in Figure
2.7)

* word frequency (CELEX)

e punctuation features:

* preceding punctuation
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* following punctuation: original and simplified (none, comma,
other)

% absolute and relative position': distance to preceding and follow-
ing punctuation (in words), and relative position between punc-

tuation marks

e sentence features:

* sentence length (in words)
* sentence type (as defined in Section 2.3.1)

* absolute and relative position of the word in sentence

¢ SCHUG features:

x for a window of 3 SCHUG phrases (the respective phrase and
1 neighbouring phrase to the left and to the right): category,
grammatical function (as in Table 2.6), and length (in words) of

topmost encompassing SCHUG phrase (depth—0)

* absolute and relative position of the word within the topmost
SCHUG phrase

e chunk phrase features:

* for a window of 3 chunk phrases (the respective phrase and 1
neighbouring phrase to the left and to the right): category and
length (in words) of

o topmost phrase (depth—0)
o second-level phrase (depth—1)

* absolute and relative position of the word within the topmost and

second-level chunk phrase.

!Calculation of all relative position features:
relative position = 100 x absolute position / (length of the stretch —1), so that the
first and the last segment of a stretch receive relative position values of 0% and 100%
respectively.
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All features relating to part-of-speech, SCHUG and chunk phrases were au-
tomatically predicted (cf. discussion in Section 3.2.2). Whenever a feature
was missing (e.g. because the first word of a sentence does not have a left
neighbour), it received the value —100, which never occurred as regular value
of any feature. Thus, it was not missing for CART, but contained usable in-

formation (e.g. about the position of a word).

Feature Selection and Classification Trees

For speaker kko/k61, the automatic feature selection resulted in a feature set
consisting of only two features: relative position between punctuation marks
and word frequency. For speaker rtd/k62, the selected feature set was even
more reduced and consisted only of the feature distance to the following
punctuation in words. This illustrates that prosodic phrasing in read speech
depends mostly on punctuation.

The two trained classification trees are very simple (see Weka output in
Figure 3.1 and 3.2), e.g. for speaker rtd/k62: Only if the word is followed
by a punctuation mark is it followed by a boundary. The numbers given in
parentheses after each leaf of the classification tree (first /second) indicate the
total number of instances from the training set at the respective leaf (first)

and the number of incorrectly classified instances at that leaf (second).

betweenpunctposition_rel <= 94: none (3967.0/174.0)
betweenpunctposition_rel > 94

|  CELEXfreq <= 1940: boundary (743.0/14.0)

|  CELEXfreq > 1940

| | CELEXfreq <= 2423: none (10.0/2.0)

| | CELEXfreq > 2423: boundary (30.0/2.0)

Figure 3.1.: Prosodic boundary classification tree for speaker kko/k61.

distancefollowingpunct <= 0: boundary (782.0/22.0)
distancefollowingpunct > O: none (3968.0/235.0)

Figure 3.2.: Prosodic boundary classification tree for speaker rtd/k62.
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Evaluation

Even though the trees are so simple, they have a fairly high accuracy of
95.96% (kko/k61) and 94.74% (rtd/k62), illustrating that prosodic phrase

J

boundaries can be predicted fairly easily for read speech.

F-measure accuracy
boundary no boundary
kko/k61 0.887 0.975 95.96%
rtd /k62 0.866 0.967 94.74%

Table 3.1.: 10-fold cross-validated performance measures for the prosodic
boundary classification trees.

3.2.2. Accent and Intonation Contour Prediction

In the KCoRS, for each word its accentuation level is annotated, ranging
from 0 to 3. If the word carries two accents, the accentuation level is specified
separately for each accent, assuming that the accentuation level spreads to all
following syllables in that word. Each accent is labelled in terms of location,
type, alignment and upstep (see Section 2.2.4).

Only 5.2% of kko/k61’s accents and 5.8% of rtd/k62’s accents are up-
stepped. Preliminary tests showed that upstep could not be predicted from
the available features (the trained classification trees were merely decision
stumps that predicted “no upstep”).

Accent type and alignment were treated as one by combining them to
the following six complex accent types: flat, early peak, mid peak, late peak,
early valley, and non-early valley.

In the KCoRS, three types of intonation contours are labelled: phrase-
initial contours, concatenation contours, and phrase-final contours (see Sec-
tion 2.2.4). Preliminary tests showed that phrase-initial contours depend
very much on the type of accent they precede and the length of the pre-head,

whereas concatenation contours depend on the types of the accents they con-
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catenate. In order not to introduce too many extra errors in the symbolic
prosody prediction, I decided not to train any models for phrase-initial and
concatenation contours. In contrast, the last intonation contour of a prosodic
phrase can be modelled without knowing the type of its preceding accent.
Therefore, accent and intonation contour prediction consists of four sep-

arate tasks:

e for each syllable: prediction of the accentuation level

e for each syllable: prediction whether it carries an accent or not (i.e. ac-

cent location)
e for each syllable carrying an accent: complex accent type

e for each syllable carrying the last accent of the prosodic phrase: phrase-

final intonation contour.

All trained classification trees are far too big to be presented on paper
(e.g. the classification tree for the accentuation level prediction of rtd/k62

has 1025 leaves), but they can be downloaded from my thesis web page?.

Features

For each canonic syllable, the same features as for prosodic boundary predic-
tion were used (see Section 3.2.1). In addition, the following features were
extracted from the database:
e syllable level features:
* lexical stress

* syllable length (in canonic phonemes)

e positional features:
* absolute and relative position of the syllable in the word

* absolute and relative position of the syllable in the sentence

http://www.brinckmann.de/KaRS/
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* distance preceding and following prosodic boundary (in words and

syllables)
* distance preceding and following pause (in words and syllables)
* relative position in prosodic phrase (in words and syllables)

x relative position in inter-pause stretch (in words and syllables)
e sentence feature: sentence length (in syllables).

All features relating to pauses and prosodic phrase boundaries are predicted

by the respective pause and prosodic boundary models.

Feature Selection

Greedy forward feature selection was carried out for all four prediction tasks,
separately for each speaker. Table 3.2 shows which features were selected
automatically for the respective prediction task using only automatically
predicted features (=) vs. using manually corrected features (/) (cf. Sec-
tion 1.4 for a general discussion about the use of automatically predicted
vs. manually corrected features). As a general tendency concerning the use
of syntactic phrase features, the prediction tasks with manually corrected
features used a greater number of SCHUG features, whereas the prediction
tasks with automatically predicted features used more chunk phrase features.
For example, for the prediction of accentuation level, the grammatical func-
tion of a phrase was used only if it was manually corrected. This seems to
support the statement in Section 2.3.1, namely that SCHUG needs further
improvement before it can be successfully integrated into MARY.

In order to determine whether it is important to use features that are as
correct as possible, the accuracy values of trained classification trees using
only automatically predicted features vs. using manually corrected features
were compared in a preliminary experiment. As shown in Table 3.3, in nearly
all cases the classification trees trained with manually corrected features have
a higher accuracy (determined by 10-fold cross-validation). For the predic-

tion of accentuation level and accent location the differences in accuracy are
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feature type
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prediction task

accentuation
level

accent,
location
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word frequency
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I
AR R

Q<< 2

<

Q
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chunk phrase cat.

neighbour chunk phrase cat.
chunk phrase length
neighbour chunk phrase length
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position between punctuation
position in inter-pause stretch
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position in word
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NER

LSy,
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Q
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Table 3.2.: Automatically selected feature types for the prediction of accen-
tuation level, accent location, accent type, and phrase-final in-
tonation contour. The features marked with / are used for the
prediction with manually corrected features. The features marked
with = are used for the prediction with automatically predicted

features.

only minor. However, it could be argued that an improvement of the pre-

existing tools (TnT, SCHUG, and chunk tagger) and an improvement in the
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prediction of pauses and prosodic boundaries would have a positive effect on
the accuracy of the prediction of accent types and phrase-final intonation
contours. Nonetheless, for the training of the classification trees described in

the following sections only automatically predicted features were used.

prediction task
accentuation level accent location accent type final contour
kko/k61 —0.2 0.2 1.4 0.7
rtd /k62 0.4 0.3 1.6 1.5

Table 3.3.: Differences in accuracy (in percentage points) between prediction
tasks using manually corrected features vs. only automatically
predicted features. A negative value means that the accuracy is
higher if automatically predicted features are used.

Accentuation Level

Classification Trees The root node of both classification trees predicting
accentuation level partitions the data according to word frequency (< 549
vs. > 549), followed by nodes concerning part of speech. This illustrates
the fact that accentuation level is mainly determined by frequency factors:
The more frequent a word, the lower its probability of containing accented
syllables. The classification tree for kko/k61 ends with a leaf that assigns
accentuation level 0 (unaccented) to all syllables in words with a frequency
higher than 1253.

Evaluation 10-fold cross-validation led to accuracy values of 90.3%
(kko/k61) and 86.6% (rtd/k62). Detailed confusion matrices are shown in
Table 3.4. We can assign a cost matrix, so that the cost of a classification
error is computed by the distance between the actual accentuation level and
the predicted one. This reflects the amount of damage done by a wrong
classification. For example, if the actual accentuation level is 1 (partially

accented), but the model predicts 3, the cost is 2. The average cost is 0.142
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for kko/k61 and 0.187 for rtd/k62. We can conclude that accentuation is
easier to model for kko/k61 than for rtd/k62.

kko /k61 rtd /k62
actual classified as
accentuation | 0 1 2 3 0 1 2 3
0 2718 70 168 32690 87 183 7
1 122 248 129 2| 118 368 171 3
2 158 55 4071 6| 182 107 3598 50
3 8 1 37 34 13 6 121 129

Table 3.4.: Confusion matrices for accentuation level prediction.

Accent Location

Classification Trees The root node in both classification trees for accent
location prediction partitions the data according to lexical stress, so that
only syllables with primary stress receive an accent. Closely following nodes
concern part-of-speech, word frequency (only kko/k61), and relative position
of the syllable within the word. For example, in rtd/k62’s classification tree,
most syllables with a relative position smaller than 80% within the word
carry an accent, the others do not. This captures the fact that most function
words are monosyllabic, the only syllable receiving a position of 100%. Finer

distinctions are made by part-of-speech nodes further down the tree.

Evaluation Again, the classification tree for kko/k61 (accuracy 93.6%) per-
forms slightly better than the tree for rtd/k62 (accuracy 92.1%, see Table
3.5).

Accent Type

Classification Trees The higher nodes in both classification trees predict-
ing accent type partition the data according to following punctuation and
distance to the following pause. This illustrates that accent type depends

largely on positional features. Further down the tree, rtd /k62 relies mostly
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F-measure accuracy

accent no accent
kko/k61 0.893 0.954 93.6%
rtd/k62 0.873 0.943 92.1%

Table 3.5.: 10-fold cross-validated performance measures for the accent loca-
tion classification trees.

on the feature “word frequency of the left neighbour”, whereas kko/k61’s tree

uses the feature “part-of-speech of the right neighbour”.

Evaluation Accuracy figures for the classification trees predicting accent
type are rather low (kko/k61: 54.3%, rtd/k62: 58.1%), reflecting the diffi-
culty of the task: six different accent types are to be predicted. However, for
this prediction task the classification tree for rtd/k62 performs better than
the tree for kko/k61.

F-measures are extremely low for “flat” (< 0.06), “early valley” (< 0.1),
and (only for kko/k61) “non-early valley” (0.09). As shown in Table 3.6, the
most common misclassification for flat accents and valleys are mid peaks and
late peaks. If an early valley is misclassified as late peak, this error could
be regarded as not so severe, e.g. an inexperienced human labeller could also

make this mistake. Peaks are mostly misclassified as other peaks.

kko/k61 rtd /k62
actual classified as

accent type lep mp lp ev nev|fl ep mp Ip ev nev
flat 2 5 52 28 0 03 7T 32 47 1 2
early peak 1 276 8 11 2 112 301 30 44 1 1
mid peak 4 122 488 250 10 714 75 345 343 T 18
late peak 5 6 241 506 10 816 1 165 687 4 2
early valley 0 2 62 58 8 13|22 1 46 80 8 9
non-early valley | 1 2 44 39 13 6|2 2 26 37 3 44

Table 3.6.: Confusion matrices for the prediction of accent types (fl — flat, ep
— early peak, mp — mid peak, Ip — late peak, ev — early valley,
nev — non-early valley).
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Phrase-Final Intonation Contour

After manual inspection of the data, the phrase-final intonation contour

classes were simplified by forming the following groups:

e lowrise: low rise, level-low rise, mid fall-low rise, and terminal fall-low

rise

e highrise: high rise, level-high rise, mid fall-high rise, and terminal fall-
high rise

e level: level and level-minimal rise
e midfall: mid fall and mid fall-minimal rise

o termfall: terminal fall and terminal fall-minimal rise.

Classification Trees The main features used in the classification tree for
speaker kko/k61 are distance to the following prosodic boundary and sim-
plified part-of-speech of the second right neighbour. This suggests that for
speaker kko/k61 the position of the last accented syllable in the prosodic
phrase is the most important factor to determine the phrase-final intonation
contour.

For speaker rtd/k62 the main features are distance to the following
pause, sentence type, and simplified following punctuation. The beginning of
the classification tree shown in Figure 3.3 reveals that speaker rtd/k62 uses
mostly terminal falls in statements, exclamations, and alternative questions,
low rises in wh-questions and polite questions, and high rises in yes-no ques-
tions, declarative questions and negative questions. Therefore, it is worth-
while to distinguish between different question types, which is in line with

the findings reported by Brinckmann & Benzmiiller (1999).

Evaluation Overall accuracy of both trees is 81.5% (kko/k61) and 74.1%
(rtd/k62). However, the F-measures for rtd/k62 are all above 0.5, except for
mid fall, whereas for kko/k61 the F-measures of high rise, level, and mid fall
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distancefollowingpause_words_auto <= 1

|  sentencetype = st: termfall (471.0/6.0)
|  sentencetype = ex: termfall (24.0/1.0)

|  sentencetype = wh: lowrise (46.0/22.0)

|  sentencetype = yn: highrise (30.0/10.0)
|  sentencetype = dq: highrise (4.0)

|  sentencetype = neg: highrise (5.0/1.0)

|  sentencetype = alt: termfall (2.0)

| sentencetype = pol: lowrise (12.0/6.0)

distancefollowingpause_words_auto > 1

| followingpunct_simple_word = comma

[...]

Figure 3.3.: Beginning of rtd/k62’s classification tree for predicting phrase-
final intonation contour classes.

are all below 0.2. As can be seen in the confusion matrix for speaker kko/k61

in Table 3.7, the recall of highrise is 0 (i.e the classification tree never predicts

a high rise) most high rises are even misclassified as terminal falls.
kko/k61 rtd /k62

actual classified as
accentuation | Ir  hr lev mf tf Ir hr lev mf ¢tf

lowrise 175 0 8 4 14|104 13 41 7 19
highrise 4 0 0 0 28 18 27 1 0 2

level 52 0 6 0 5149 0 75 5 10
midfall 2 0 1 3 1121 0 15 8 7
termfall 33 0 1 0 576] 32 1 15 2 525

Table 3.7.: Confusion matrices for the prediction of phrase-final intonation
contours.

3.3. Segmental Predictions

On the segmental (phonemic) level, we predict the features that are needed

to generate input for MBROLA, namely

e realised phoneme (i.e prediction of postlexical phonological processes)
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e duration
e median FO

e last FO.

3.3.1. Features

For the prediction of the segmental features, two different feature sets are
used. The first one, called Symbolic, contains features relating to prosodic
boundaries, accents, and phrase-final intonation contours. The second one,
called Direct, does not contain any of those symbolic prosody features. As
shown in Figure 4.1 (Section 4.1.2), the Direct prediction method leaves
out the symbolic prosody prediction completely. This way, it loses some
information, but it also reduces error accumulation. The two feature sets
for Symbolic and Direct prediction are described in the following sections.
No automatic feature selection was performed, because the datasets were too
large, making automatic feature selection unfeasible in a reasonable amount

of time.

Symbolic Feature Set

For each phoneme, the same features as for syllable-level symbolic prosody
prediction (see Section 3.2.2) are used, except for SCHUG and chunk
phrase features. In addition, the following features were extracted from the

database:
e phoneme level features, for a window of 5 phonemes (the respective
phoneme and 2 neighbouring phonemes to the left and to the right):
* phoneme identity
* phoneme type (vowel, consonant)
* consonant fortis/lenis (undefined, fortis, lenis)

* structural position in syllable (onset, nucleus, coda, ambisyllabic)
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* number of phonemes in the same syllable structure position (not

for neighbouring phonemes)

e syllable level features:
* accentuation level
* accent location (none, accent)

* distance to preceding and following accented syllable

e accent group level features:
* accent type
* accent type of following accent group

* phrase-final intonation contour (“none” for non-phrase-final accent

groups).

An accent group was defined as a group of syllables consisting of one
accented syllable and all following syllables up to, but not including, the
next accented syllable. Syllables in pre-heads were defined as belonging to
the following accent group.

The Symbolic feature set exists in two variants: The first one is used
for the prediction of postlexical phonological processes and uses features of
canonic phonemes and syllables. The second one is used for the prediction
of duration, median F0, and last F0, and uses features of realised phonemes

and syllables.

Direct Feature Set

For each phoneme, the same features as for syllable-level symbolic prosody
prediction (see Section 3.2.2) are used, except for those features relating to
prosodic boundaries. In addition, the following features were extracted from

the database:

canonic phoneme level features, for a window of 5 canonic

phonemes (the respective phoneme and 2 neighbouring phonemes to
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the left and to the right):
* phoneme identity
* phoneme type (vowel, consonant)
* consonant fortis/lenis (undefined, fortis, lenis)
* structural position in syllable (onset, nucleus, coda, ambisyllabic)

* number of canonic phonemes in the same syllable structure posi-

tion (not for neighbouring phonemes).

3.3.2. Prediction of Postlexical Phonological

Processes

Glottalisation cannot be synthesised by the MBROLA synthesiser. There-
fore, whenever a glottal stop was deleted, but left glottalisation behind, this
deletion counted as replacement (marked with the glottalisation symbol /q/).
This way it was possible to insert a glottal stop of 10ms during synthesis to
mimic glottalisation (cf. Section 4.1.2).

The prediction of postlexical phonological processes (i.e. prediction of

the realised phoneme) was carried out in two steps.

1. Change: In the first step, it was predicted whether the canonic

phoneme was deleted, replaced, or left unchanged.

2. Replacement: In the second step, for all replaced phonemes a replace-

ment rule was predicted.

Only certain “replacement rules” are possible, a canonic phoneme cannot be
replaced by any other phoneme. All [canonic — realised| pairs that occur
in the KCoRS were allowed as replacement rules, e.g. the replacement of
/E:/ with /e:/ was accepted as replacement rule |[E: — e:|. By predicting
these rules instead of the realised phonemes, the prediction of impossible
replacements because of data sparsity was prevented. For example, speaker
kko/k61 always leaves a canonic /Y/ unchanged. Therefore, CART had no
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information regarding replacements rules for /Y/ (data sparsity). As a result,
the trained classification tree assigned the replacement rule [Q — q], which is
the most frequent replacement rule. Whenever necessary. these “impossible”
replacements were ignored during prediction.

The prevalent features used in the trees predicting change and replace-
ment are phoneme identity, features of phoneme neighbours, syllable length,
structural position in the syllable, lexical stress, and accentuation level (for
the Symbolic method only). The accuracy figures that are listed in Table
3.8 show that the Symbolic prediction is not always better than the Direct

prediction.

change replacement
Symbolic Direct Symbolic Direct
kko/k61  94.6%  93.2%  92.3%  92.0%
rtd/k62  92.8%  92.9%  94.0%  94.8%

Table 3.8.: Accuracy of the two tasks for the prediction of postlexical phono-
logical changes.

3.3.3. Prediction of Acoustic Parameters

Wagon was used to train the regression trees for the prediction of the acoustic
parameters duration, median F0, and last FO. Stop values and the size of
the held-out validation set were determined in a trial-and-error procedure by
comparing the evaluation measures RMSE and correlation coefficient (cc) on
a separate test set. When the best settings had been determined, the whole

dataset was used for the training of the final regression trees.

Duration Prediction

z-scores The only feature from the feature set that was not used for du-
ration prediction is phoneme identity. The reason behind this is that every

phoneme has a certain intrinsic duration which has a strong influence on the
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duration of the phoneme, e.g. tense vowels are longer than lax vowels, and
fortis plosives are longer than lenis plosives. In order to factor out the influ-
ence of intrinsic duration, the absolute duration values were converted into
z-scores, and the mean duration and standard deviation of each phoneme
were stored in a separate file. The z-scores that are predicted by the regres-
sion trees can be converted back into absolute duration values by applying
the following formula:
absolute duration = (z-score x stddev) + mean duration

For the Symbolic prediction, the z-scores were computed on the realised
phonemes, for the Direct prediction they were computed on the canonic

phonemes.

Regression trees The Symbolic regression trees for duration prediction
use the following features near the roots of the trees: positional features
(position in prosodic phrase, neighbouring phonemes), accent location and
type, lexical stress, syllable structure, and phoneme type. The Direct regres-
sion trees also rely heavily on positional features (neighbouring phonemes,
following punctuation); in addition they use part-of-speech, word frequency,

syllable length and structure, as well as lexical stress and phoneme type.

FO Prediction

z-scores The raw F0 values were also transformed into z-scores, but not by
using separate mean and stddev values for each phoneme. Instead, for each
speaker the mean and stddev of the median F( values was calculated. By
predicting FO values in terms of z-scores it is possible to use one regression
tree for several voices. For Symbolic prediction, last FO is the last FO before
a prosodic boundary. Since the Direct prediction uses no features about

prosodic boundaries, in this case last F0 is the last FO before a pause.

Regression trees The Symbolic regression trees for the prediction of me-

dian F( use phrase-final intonation contour, positional features, accent type
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and location, lexical stress, and syllable structure as topmost features. The
Direct regression trees for median FO prediction rely heavily on positional
features; in addition they use lexical stress, part-of-speech, and word fre-
quency.

The regression trees for the prediction of last FO are compact enough,
so that one of them is shown in Figure 3.4. It can be read as follows: The
root node asks whether the word is followed by a question mark. If yes,
the next question is about the distance of the preceding pause in words. If
this distance is smaller than 8, the predicted z-score is 0.456 (the first value
given at each leaf denotes the stddev of all instances of the training set at
that leaf). If the distance is at least 8, then the next question is whether
the sentence type is a wh-question. If yes, the predicted z-score is 0.495;
all other questions have a last FO z-score of 1.578 (i.e they end with a high
intonation). Words that are not followed by a question mark follow the other
branch of the root node. All predicted z-scores in this branch are negative,

thus predicting a low F0 value.

Evaluation

Since wagon does not offer stratified cross-validation, the evaluation was car-
ried out by dividing the dataset into a training set (90%) and a test set
(10%). The evaluation measures listed in Table 3.9 show the performance
of the regression trees on the test set. In terms of RMSE and cc, the Sym-
bolic prediction is always better than its respective Direct counterpart. In
the case of the Symbolic prediction, the evaluation on the test set uses the
correct symbolic prosody features from the database (prosodic boundaries,
accents, phrase-final intonation contours). Therefore, it is quite possible
that the Symbolic prediction performs worse as soon as it is implemented in
a TTS system, where it is faced with incorrectly predicted symbolic prosody
features. Since the Direct method does not rely on any correct symbolic

prosody features (it uses only automatically predicted features), the evalua-
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((followingpunct_word is quest)
((distanceprecedingpause_words_auto < 8)
((1.8746 0.456342))
((sentencetype is wh)
((1.4928 0.495193))
((1.42952 1.57833))))
((rightneighbour1_POS_auto is -100)
((lexicalstress is none)
((leftneighbourl POS_auto is NN)
((syllpositioninword_abs < 2.3)
((0.207099 -1.83956))
((0.19063 -1.94317)))
((leftneighbourl_simplePOS_auto is pronoun)
((0.178767 -1.88098))
((toplevelSCHUGchunkcategory_auto is PP)
((0.160586 -2.01656))
((leftneighbour2_simpleP0S_auto is verb)
((0.166037 -2.00491))
((simpleP0S_auto is verb)
((0.217362 -1.91042))
((distanceprecedingpunct_inwords < 5.2)
((0.191442 -1.98462))
((0.177953 -1.93929))))))))
((distanceprecedingpause_words_auto < 4)
((0.216729 -1.96712))
((syllablelengthinphonemes < 5.6)
((leftneighbourl_simpleP0S_auto is adj)
((0.171697 -1.92763))
((leftneighbourl CELEXfreq < 2528.7)
((syllablelengthinphonemes < 3.2)
((0.641384 -1.75926))
((0.39531 -1.69561)))
((0.190776 -1.90698))))
((0.934826 -1.61646)))))
((0.576984 -1.48369))))

Figure 3.4.: Regression tree (wagon output format) predicting last FO z-score
for speaker rtd /k62. At branching nodes the “yes”-branch is given
first, followed by the “no”-branch. The first value at a leaf denotes
the standard deviation, the second value is the mean (i.e. the pre-
dicted last FO z-score). Negative z-scores denote FO values below
the speaker’s mean, positive z-scores imply a high F0 value.

tion measures can be seen as fairly accurate predictors of its performance in

a complete TTS system.
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There is also an interesting difference between the two speakers: Du-
ration prediction is better for kko/k61, whereas FO prediction is better for
speaker rtd/k62.

prediction  evaluation kko/k61 rtd/k62
task measure | Symbolic Direct | Symbolic Direct
duration RMSE 0.773 0.791 | 0.8441  0.882
cc 0.612 0.594 0.572 0.528
median FO RMSE 0.708 0.783 0.653 0.744
cc 0.698 0.609 0.762 0.677
last O RMSE 1.307 1.487 0.666 1.010
ce 0.543 0.350 0.895 0.712

Table 3.9.: Evaluation of the prediction of duration and F0 z-scores with
regression trees trained on the Symbolic and the Direct datasets.
The evaluation measures are root mean squared error (RMSE)
and correlation coefficient (cc).
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4. Perceptual Evaluation

In Chapter 3, the trained classification and regression trees were evaluated by
comparing their predictions with the actual realisations in the KCoRS. The
corpus-based evaluation measures RMSE and correlation coefficient allow us
to compare different machine learning schemes or different datasets. For
example, the FO values of the female speaker rtd/k62 seem to be easier to
predict than the FO values of the male speaker kko/k61 (see Section 3.3.3).
On the other hand, kko/k61’s models for duration prediction are better than
the ones for rtd/k62.

Especially for speech synthesis it is advisable to test the predictions of
a model not only by comparing it to the realisations in a corpus, but also
by measuring subjective listener preferences with perception experiments, for

the following reasons:

1. It is unknown which of the following three is more/most important: a
good F0 prediction, a good duration prediction, or a good prediction of
postlexical phonological processes? And even if one synthesis system
is superior to another one in all three respects, it is still possible that

this difference cannot be perceived by listeners.

2. The corpus-based evaluation measures implicitly assume the realisa-
tions of one particular speaker as gold standard. However, usually
there are several acceptable ways to produce an utterance. If the model
commits an error in the prediction compared to the corpus, this “error”

might be just as acceptable as the corpus realisation.

3. Listeners may have differing idiosyncratic preferences. For example,
Portele (1997) and Brinckmann & Trouvain (2003) showed that one
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group of listeners prefers the text-to-speech system to speak as “cor-
rectly” as possible, with no deviations from the canonic pronunciation,
while the other group prefers the inclusion of some common segmental

postlexical processes, such as schwa-deletion and assimilation of nasals.

4. Some listeners might even prefer a machine to sound unnatural, because
they feel uncomfortable if they cannot tell whether they are communi-

cating with a machine or with a human being.

In order to avoid implementing “improvements” to the T'TS system that are
not accepted by the listeners, one should therefore conduct a perception
experiment.

The first perceptual evaluations of speech synthesis systems were intel-
ligibility tests, e.g. by using semantically unpredictable sentences (SUS test;
Benoit et al., 1996). This was worthwhile for the TTS systems at that time,
because some were barely intelligible. Nowadays nearly all systems are clearly
intelligible, so most perception experiments focus on naturalness, acceptance,
or preference by asking the subjects to rate the synthesised stimuli on some
scale or to compare two (or more) stimuli with each other.

Some experiments try to compare the systems more indirectly by giving
the subjects a task (e.g. to follow the instructions produced by a TTS system)
and measuring their reaction time or recording their gaze with an eye-tracker
(Swift et al., 2002). If the subjects generally react faster when listening to
the stimuli generated by one system, it is argued that this system is better
than the others, which is certainly true for the respective task.

In my perception experiment, I followed the recommendations P.85 and
P.800 by ITU-T! (International Telecommunication Union — Telecommuni-
cation Standardization Sector; ITU-T, 1994, 1996). These recommendations
describe procedures for the perceptual evaluation of speech signals that have
been agreed upon by the members of ITU-T (currently 359 institutions world-

wide). They have been tested thoroughly and can be can be viewed as a

"http://www.itu.int/ITU-T/
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standard, even though they are not used very often in the speech synthesis

community.

4.1. Materials and Methods

4.1.1. General Procedure

Two of the methods described by the ITU-T recommendation P.800 (ITU-
T, 1996) are Absolute Category Rating (ACR) and Comparison Category
Rating (CCR). In the ACR procedure, the subjects are asked to judge the
quality of each synthesised stimulus they hear using the following five-point

scale:

5 excellent
good
fair
poor

bad

=N W

The mean of all scores (MOS = mean opinion score) is then calculated for
each stimulus type.

According to ITU-T (1996), the ACR method tends to lead to low sensi-
tivity in distinguishing among good quality T'TS systems. A modified version
of the ACR procedure, the CCR procedure, affords higher sensitivity. In the
CCR procedure, the stimuli are presented to listeners by pairs (A-B) where
A is a copy-synthesised original and B is synthesised by the systems to be
compared. Some “null pairs” (A-A) are included to check the quality of an-
choring. According to recommendation P.800, samples A and B should be
separated by a pause of 500 to 1000ms duration. Since we cannot assume
that A is always more acceptable than B, the order of the samples is chosen
at random for each trial. On half of the trials, A is followed by B. On the re-
maining trials, the order is reversed. This way, it is also possible to examine

the ratings of each subject for consistency. The subjects use the following
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scale to judge the quality of the second sample relative to the quality of the

first sample:

3 much better

2 better

1 slightly better

0 about the same
—1 slightly worse
—2 worse

—3 much worse

In effect, the subjects provide two judgements with one response: “Which
sample has better quality?” and “By how much?”. Simple averaging of the
numerical scores should yield a mean score of approximately 0 for all condi-
tions. It is necessary to recode the raw data: In those cases where the order
of presentation is B-A, the sign of the numerical score must be reversed
(i.e. =1 — 1, 1 — —1). These recoded scores are used to compute CMOS
(comparison mean opinion score). Thus, the results are presented in terms of
the A-B order. Appropriate analyses of variance (ANOVA) and a posteriori
Tukey HSD (Honestly Significant Difference) multiple comparison tests can
be performed on the recoded scores. Because of the higher sensitivity, I chose
the CCR method for my perception experiment. The specific set-up of the
experiment (generation and presentation of stimuli, rating procedure, and

group of subjects) is described in the following sections.

4.1.2. Stimuli

The 20 sentences listed in Table 4.1 were randomly selected from the KCoRS
as synthesis sentences for the perception experiment. They had not been
used as training, validation or test items for the classification and regression
trees described in Chapter 3. The mean sentence length (in canonic syllables)
is 14.5 (minimum: 5, maximum: 34).

All 20 test sentences were processed by MARY with no manual mod-
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be006
be038
be074
cn015

e026

e040

e042

ko029
ko039
ko049

mr007
mr016
mr018
mr040
mr088
s041

s072

s1017

51040
tk010

Montag war es uns zu regnerisch.

Die Arzte sind damit gar nicht einverstanden.

Vater mischt gleich die Karten.

Der gesuchte Weg erscheint auf dem Stadtplan in roten
Leuchtpunkten, indem Sie auf die Taste mit dem entsprechenden
Namen driicken.

Gibt es eine Zugverbindung heute abend nach Frankfurt, und
wenn ja, auf welchem Gleis fahrt der Zug ab?

Ich m6chte am dreiundzwanzigsten zwolften nach Oldenburg
fahren, und zwar md&chte ich in Oldenburg friih sein, wenn moglich
vor neun Uhr

Ja das ist zu friih.

Sie dost miide vor sich hin.

Das Kamel hat zwei Hocker.

Die Bejahung dieser Frage ist meine Bedingung fiir einen
Neuanfang.

Wer weils dort genau Bescheid?

Iss dein Essen nie hastig!

Bist Du sehr kalt geworden?

Sechs Méadchen wollen Schwester werden.

Einige Busse fahren heute spéter.

Ich mochte in vierzehn Tagen von Miinchen iiber Hannover
nach Hamburg fahren.

Welchen Zug muf ich nehmen, um gegen zehn Uhr in Wiirzburg
7u sein?

Achtlos wirft der Knirps Matsch durchs Eckfenster.

Nicht alle Menschen verkraften den Linksverkehr sofort

Bei dieser Sachlage miissen wir die Hirschjagd aufschieben und
uns kurz nach neun Uhr zuriickmelden.

Table 4.1.: List of the 20 test sentences (with their respective ID in the

KCoRS) for the perception experiment.

ifications (the phonemic pronunciation was examined for errors, but none
were detected). MARY offers three female and four male MBROLA voices.
For the perception experiment, I chose the two voices that were recorded for
MARY’s emotional synthesis (Schréder, 2004), named de6 (male voice) and

de7 (female voice). In addition to those versions produced by the original
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MARY system, three other generation methods were applied to each sentence
for each voice: Copy-synthesised Originals, Direct Prediction, and Symbolic
Prediction, which are all described in the following sections.? All stimuli were
stored as 16-bit, 22050 Hz wav files.

Copy-synthesised Originals

In order to produce the copy-synthesised originals, the following features were
extracted from the KCoRS and printed in the MBROLA format (cf. Section
1.1.3):

realised phoneme

for each realised phoneme: duration in ms

for each realised sonorant and vowel: median FO in Hz, placed at du-

ration 50% in the phoneme

for each last realised phoneme before a pause: last FO in Hz.

Because of some MARY/MBROLA characteristics, the extracted features

had to be changed in the following cases:

e MBROLA cannot synthesise glottalisation. So, whenever a glottal stop
had been deleted in the original realisation and the following realised
phoneme was glottalised, a glottal stop of 10ms was inserted in order to
mimic glottalisation (or at least to make sure that some sort of juncture

was audible).

e Neither of the chosen MBROLA voices distinguishes between plosive
closure and release (there is only one symbol for each plosive). There-
fore, all neighbouring plosive closures and releases were combined into
one phoneme. Also, if the plosive closure had been deleted, but the
release was still present, the symbol was changed into the MBROLA

plosive symbol.

2All stimuli are available as sound files from http://www.brinckmann.de/KaRS/.
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e In the KCoRS there are no phonemic labels for affricates; closure and
release are labelled separately. After listening to some trial stimuli, I

decided to combine all neighbouring /t/ and /s/ to the affricate /ts/.

e Since MBROLA voices do not offer /6/-diphthongs, these were divided
up into the vowel (receiving 2/3 of the diphthong’s duration, and plac-
ing the median F0 value at 75% of the vowel’s duration) and /6/.

Based on the assumption that we are aiming for natural-sounding speech
synthesis, these copy-synthesised originals constitute the upper limit of M-
BROLA, i.e. one cannot get any closer to natural read speech with the
MBROLA diphone synthesis method. Phonetic vowel reductions and nasal-
isation cannot be captured at all, and glottalisation can only be mimicked
very crudely. The plosive release cannot be modelled separately from the
plosive closure, even though the plosive releases are deleted much more often
than the closures (cf. Section 3.3.2), especially in consonant clusters. As in-
formal inspection revealed, plosive release deletion is sometimes successfully
captured by the respective diphone (especially by the diphones of the female

voice de7).

Symbolic and Direct Prediction

Both Symbolic and Direct prediction are methods that use the classification
and regression trees that were trained on the KCoRS database (as described
in Chapter 3). Both methods use only automatically derived features as in-
put. As shown in Figure 4.1, the Symbolic method predicts symbolic prosody
features (prosodic boundaries, accentuation level, accents, and intonation
contours) before predicting the MBROLA input features realised phoneme
string, duration, F(O median, and last F(O. The Direct method uses predicted
pauses as the only additional feature for the prediction of the MBROLA
features. In order to generate proper MBROLA input, the predicted fea-
tures had to be changed in the same way as the ones of the copy-synthesised

originals.
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automatically derived

feature set
v l v
word level word level
prediction of prediction of
prosodic boundaries pauses (location and duration)
pauses (location and duration)

b

canonic syllable level

prediction of
accentuation level
accent (location and type)
last intonation contour (only if
followed by a boundary)

4 4

canonic phoneme level canonic phoneme level

prediction of prediction of

realised phoneme(including realised phoneme(no syllabic sonorants)
syllabic sonorants) duration
¢ median FO (only for vowels/sonorants)
last FO (only if followed by a pause)

realised phoneme level

prediction of

duration

median FO (only for sonorants/vowels)
last FO (only if followed by a boundary)

- -
MBROLA input MBROLA input
"Symbolic¢ "Direct"

Figure 4.1.: Generation of MBROLA input for “Symbolic” and “Direct” stim-
uli.
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Stimulus Pairs

For every sentence, the copy-synthesised sample (A) was paired with each of
the automatically predicted samples (B), namely MARY, Direct, and Sym-
bolic. A and B were separated by a pause of 800ms. In order to be able
to examine the consistency of the subjects’ ratings, both orders (A-B) and
(B-A) were included in the experiment, resulting to a total of 120 (20 x 3 x 2)
stimulus pairs.

In addition to these stimulus pairs, the sentence Heute ist schones Friih-
lingswetter. was used to generate four pairs for the training section at the
beginning of the experiment.

Four identical (A-A) and (B-B) pairs, where both samples were ezactly
the same, were also included. These identical pairs were used to examine
whether the subjects were listening carefully.

All stimulus pairs were generated with the male voice de6 and with
the female voice de7. Since each stimulus pair had a mean duration of
7s, the experiment would have been longer than 30 minutes if each subject
had to rate both voices. I regard 30 minutes as the maximum length for a
perception experiment where the subjects have to listen carefully and remain
very focussed on the task. Therefore, two separate experiments were set up:

one with the female voice and one with the male voice.

4.1.3. Presentation

Before starting the perception experiment, the subjects were asked to fill in
a questionnaire which asked for information regarding their age, sex, and
the region of Germany they grew up in (dialectal background), as well as
professional background and prior experience with speech synthesis (choosing
“none”, “little”, “regular user”, or “expert”). After the experiment, the subjects
were asked for any comments.

The perception experiment itself was conducted with SCAPE (System
for Computer-Aided Perception Experiments; Grabowski & Bauer, 2004),
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a small, flexible program written in Java. The instructions for the subjects
(see Table C.1 in Appendix C) were presented on screen, and the stimuli were
presented via headphones. The subjects were instructed to listen carefully to
both samples of each pair and to rate the overall quality of the second sample
compared to the first one using the seven-point CCR scale by clicking on the
respective radio button (see Figure 4.2). The subjects could listen to each
stimulus pair only once, and as soon as the radio button was clicked, the
next stimulus pair was presented. After rating the four training pairs, the
subjects were prompted to ask any questions regarding the procedure of the
experiment. After the training pairs and the prompt, all stimuli (including
the identical pairs) were presented in a randomised order (with a different

order for every subject).

_iix

Die zweite Variante ist, werglichien mit der ersten Variante,

: " viel beszer

| " besser
(™ etwas besser
" ungeféhr aleich
" etwas schlechter
~ schiechter

7 viel schischter
|

abbrechen |

Figure 4.2.: Screenshot of perception experiment with SCAPE.

SCAPE stores the following information for each presented stimulus
pair:
e subject ID
e presentation number of the stimulus pair

e filename of the stimulus pair
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e duration of the stimulus pair
e reaction time, measured from the beginning of the stimulus pair

e rating.

4.1.4. Subjects

32 subjects took part in the perception experiment. All are native German
speakers, 26 of them being students or staff members of the Department of
General Linguistics. Both synthesis voices were rated by an equal number of
female and male listeners.

The ratings of each subject were screened for reaction time and consis-
tency. A reaction time that is smaller than the duration of the stimulus pair
means that the subject gave his or her rating before hearing the complete
stimulus pair. Since every stimulus pair was presented twice in the experi-
ment (A-B vs. B-A), the percentage of stimuli pairs that were rated similarly
(both negative, both positive, or both 0) was taken as consistency measure.

Two subjects (neither had any prior experience with speech synthesis)
had given more than 10 of their ratings before completely hearing the stimulus
pair. Their consistency scores were also rather low (33.3% and 40%). I
concluded that those two subjects had been unable to cope with the task
and excluded their ratings from further analysis. Since these consistency
analyses were conducted directly after each subject had completed the task,
we were able to reassign the following subjects to new groups, ensuring that
both synthesis voices were rated by an equal number of female and male
listeners. The remaining 30 subjects were aged between 20 and 40 years
(mean: 28 years).

The dialectal background of the subjects might have an influence on
their preference of certain intonational patterns and segmental postlexical
processes (e.g. concerning the replacement of /E:/ by /e:/). Since the statis-
tical models were trained on two speakers from Schleswig Holstein (Northern

Germany), the subjects were grouped into “northern” (grown up in Schleswig-
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Holstein, Hamburg, or Lower Saxony) and “other” (grown up in any other

federal state).

Each subject is characterised by the following four features (number of

subjects with that feature in parentheses):

e sex: male (14) vs. female (16)

e prior experience with speech synthesis: none or little experience (16)

vs. regular user or expert (14)
e dialectal background: northern (8) vs. other (22)

e synthesis voice the subject had to rate: male (15) vs. female (15).

The distribution of all pairwise feature combinations among the subjects
is listed in Table 4.2. A chi-square test revealed that unfortunately the
features dialectal background and prior experience are not independently
distributed among the subjects (x? = 4.045, p < 0.05). Only one of the
subjects who grew up in Northern Germany is a regular user or expert, the
other 7 have no or little experience with speech synthesis. In contrast, 59%

of the subjects who grew up in another part of Germany are regular users or

experts.
sex experience synthesis voice
male female | none/little reg/exp | male female
backar. northern 3 5 7 1 4 4
other 11 11 9 13 11 11
cox male 6 8 7 7
‘ female 10 6 8 8
exper.ce none/little 9 7
reg/exp 6 8

Table 4.2.: Absolute frequencies of pairwise feature combinations among the
subjects of the perception experiment (reg/exp — regular user or
expert of speech synthesis).
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4.2. Results and Discussion

The significant differences and interactions described in the following sections
were found by performing univariate analyses of variance (ANOVA) and post-
hoc Tukey-HSD multiple comparisons with the statistical software SPSS 10.

Correlations and their significance were analysed using Pearson correlation.

4.2.1. Subjects’ Comments

The comments of the subjects are not only helpful for improving the proce-
dure of the experiment, they also shed light on the reasons behind some of

the ratings:

Scale One subject (with little experience) commented that the seven-point
scale was too fine-grained for him, he would have preferred a three-
point scale (better vs. equal vs. worse). On the other hand, another
subject (expert) commented that she was very happy with the seven-

point scale, which allowed her to make fine distinctions.

Pauses Some subjects found the pause between the two samples too short.
One of these subjects found it rather stressful that the next stimu-
lus was played automatically after he had placed his rating. Another
subject found it hard to stay concentrated throughout the whole ex-
periment and would have preferred an explicit pause after a block of 60
stimuli. Especially for naive subjects one should consider introducing

longer pauses or allowing repeated playback.

Randomisation One subject complained that despite randomisation, some-
times the same sentence was repeated several times. Another subject
even suspected that the order of stimuli depended on his ratings. If
possible, the “randomisation” should be controlled, so that two neigh-

bouring stimuli pairs always consist of different sentences.
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Sentence length One subject (with little experience) commented that it
was much easier for him to make a decision if the sentences were longer.
This is in line with the generally lower scores for longer sentences (see
Section 4.2.3) and the correlation between absolute scores and consis-
tency (see Section 4.2.2): If a subject is unsure about his rating, he

tends to give a rating that is close to 0.

Reaction time Two subjects confessed that they had placed their rating
before listening to the end of the second sample whenever the samples

differed so greatly that they had a very strong preference.

Sentence choice One subject complained that sentence mr018 (Bist Du
sehr kalt geworden?) was ungrammatical for her (she would have pre-

ferred Ist Dir sehr kalt geworden?).

MBROLA One female subject complained that the fundamental frequency
of the male voice was sometimes too high, whereas one male subject
found the low FO of the female voice too low. This illustrates the

limitations of MBROLA (and idiosyncratic preferences).

Dialectal preferences Several subjects with a Southern German dialectal
background (raised in Saarland, Hessen, or Baden-Wiirttemberg) com-
plained that the female copy-synthesised sample of sentence €042 (.Ja
das ist zu frih.) sounded perfectly natural, but very arrogant. Most of
them said they had voted for the less natural sample, which sounded
more friendly to them. In fact, as can be seen in Figure 4.9, the Direct
and Symbolic samples of €042 received even a positive CMOS (i.e. bet-
ter than the copy-synthesised original). This illustrates the fact that a

natural-sounding synthesis is not always the most accepted one.
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4.2.2. Consistency

The mean percentage of similar ratings across all subjects is 61.1%, showing
the difficulty of the task. One subject achieved only 31.7% similar ratings,
whereas the most “consistent” subject had 85.0% similar ratings. 79.2% of all
identical pairs were recognised (i.e. they were rated with 0), but only 46.7%
of the subjects recognised all four identical pairs. The percentage of similar
ratings of a subject and his or her recognition rate of identical pairs do not
correlate significantly (correlation coefficient: 0.233).

Consistency (1-—similar rating, 0—different rating) and absolute COS
have a significant correlation coefficient of 0.335 [p < 0.01| over all stim-
uli, i.e. the more extreme the rating, the more consistent (see Figure 4.3).
For example, if an item is rated with —3, it is very likely that the second

presentation of the item is rated with a negative score as well.

0.9 4
0.8 1
1y
a 0.7 1
)
27
= 0.6 1
g
© 0.5 1
g
o 0.4 1
g
0.3 1
0.2

0 1 2 3
absolute COS

Figure 4.3.: Correlation between absolute COS and consistency of ratings.

An ANOVA revealed that the mean consistency (proportion of similar
ratings across all (A-B)/(B-A) pairs) is significantly higher for MARY (0.75)
than for Direct (0.54) and Symbolic (0.55) [p < 0.005]. This illustrates
that MARY receives more extreme ratings and also suggest that subjects are

rather unsure about their ratings of Direct and Symbolic.
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4.2.3. CMOS

Main Effects and Interactions

The mean overall CMOS (over both voices and all three synthesis methods) is
—1.04. The following significant CMOS differences were found (by ANOVA
and Tukey HSD):

e synthesis method: Symbolic (—0.76) =~ Direct (—0.80) > MARY
(—1.55) [p < 0.001]

e synthesis voice: female voice (—0.93) > male voice (—1.15) [p <
0.001]

e prior experience with speech synthesis:
none/little (—0.98) > regular/expert (—1.11) [p < 0.01]

e sex of listener: male listener (—0.96) > female listener (—1.11) [p <
0.001]

e dialectal background: northern (—0.85) > other (—1.11) [p <
0.001]

Regarding CMOS, significant interactions were found for:
e synthesis voice and method [p < 0.001]

e synthesis voice, experience, and sex of listener (three-way interaction)
[p < 0.001].

All main effects and interactions are described in detail in the following sec-

tions.

Synthesis Method Over all subjects and both synthesis voices, MARY
receives significantly lower ratings than both Symbolic and Direct (which do
not differ significantly). As shown in Figure 4.4, 24.6% of all MARY stimuli
receive a COS (comparison opinion score) of —3, in contrast to only 9.3%
Direct and 8.1% Symbolic stimuli. 15.4% of all MARY stimuli have a COS
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of 0 or better, whereas 38.9% Direct and 39.4% Symbolic stimuli are rated

having a similar or better quality than the copy-synthesised original.

100 4
90 |
80 1
70 1
60 1
20 1
40 4
30 1
20 1

10 T
-3 -2 -1 0 1 2 3
COS

cumulated %

& —— MARY
- Direct
O SymbOIiC

Figure 4.4.: COS cumulative distributions over both synthesis voices for the
three synthesis methods MARY, Direct, and Symbolic. COS = 0
means that the stimulus was rated having the same overall qual-
ity as the copy-synthesised original, stimuli with a positive COS
were rated having a better quality than the copy-synthesised
original.

Synthesis Voice If the two synthesis voices are analysed separately, the
same significant difference is observed for each voice: MARY receives sig-
nificantly lower ratings than both Symbolic and Direct (which do not differ
significantly). In addition, there is an interesting interaction between synthe-
sis voice and method. As shown in Figure 4.5, both synthesis voices receive
the same low CMOS for MARY (—1.55). For the Direct synthesis method,
the male voice gets a lower CMOS (—0.88) than the female voice (—0.72),
but this difference is not significant. For the Symbolic method, the CMOS
of the male voice is significantly lower (—1.00) than the CMOS of the female
voice (0.53) [p < 0.005]. The additional layer of symbolic prosody prediction

seems to be slightly helpful only for the female voice.
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Figure 4.5.: Interaction between synthesis method and synthesis voice.

Prior experience with speech synthesis Subjects with regular/expert
experience generally give lower ratings than subjects with no or little prior
experience. This can be explained by the fact that through their prior expe-
rience with speech synthesis, regular /experts have a clear preference of what
a TTS system should sound like, and they are able to hear finer differences.
There is also an interesting interaction between synthesis method and prior
experience [p < 0.05]: As shown in Figure 4.6, the CMOS of regular users
and experts is especially low for MARY (—1.71) — more experienced TTS

users expect the synthesis to sound more natural.

Sex of listener Looking at the CMOS of male and female listeners, we
find that male listeners give significantly higher ratings (—0.96) than female
listeners (—1.11) (this is true for all synthesis methods). However, there is a
significant interaction between synthesis voice, experience, and sex of listener.
As can be seen in Figure 4.7, the lowest ratings are given by “naive” female
listeners (with no or little experience with speech synthesis) listening to the
male voice. Naive female listeners and all male listeners prefer the female
voice, whereas expert female listeners prefer the male voice. But since there

are only two expert female listeners who listened to the male voice, these
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Figure 4.6.: Interaction between experience of the listener and synthesis
method.

group results have to be treated with caution. In order to decide whether
these interactions really reflect differences between groups, or whether they
simply show idiosyncrasies of the subjects who just happen to belong to those

groups, we need more subjects per group.

Dialectal background Subjects with a Northern German background give
significantly higher ratings than subjects with a non-northern background.
As mentioned in Section 4.1.4, the features dialectal background and prior
experience are not independently distributed among the subjects. Therefore,
we need further analyses to determine the cause of the higher CMOS of the
Northern German subjects: Is it higher because they prefer the characteris-
tics of their home dialect in a synthetic voice, or is it higher because they
are more “naive” subjects, who generally give higher ratings? If the dialectal
background of a subject has an influence on the ratings, this effect should
only occur for those stimuli that were not generated with original MARY,
because MARY was not trained on any corpus and produces Standard Ger-
man output without any reductions. Figure 4.8 shows that this is not the

case: the subjects with a Northern German background generally give more
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Figure 4.7.: Interactions between synthesis voice, experience, and sex of lis-
tener. “Naive” listeners are those with no or little experience with
speech synthesis. “Expert” listeners are regular users or experts
of speech synthesis.

positive ratings, no matter which synthesis method they are listening to.
Therefore, the cause of the higher CMOS must be their inexperience with

speech synthesis.

Single Sentences

A possible argument against using machine learning (ML) methods for
prosody prediction is that even though the overall quality of ML-based syn-
thesis systems is better than the quality of rule-based systems, ML-based
systems show a greater variance, i.e. some sentences of ML-based systems
sound excellent, whereas others sound very bad. It could be argued that
rule-based systems might sound worse, but because they do so consistently,
the user is not surprised by any sudden quality changes, leading to a higher

acceptance.
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Figure 4.8.: Influence of the subjects’ dialectal background on CMOS.

Sentence Length Across all stimuli, COS correlates negatively with sen-
tence length, i.e. the longer the sentence, the lower the rating (correlation
coefficient —0.149, p < 0.01), suggesting that listeners need longer sentences
to make consistent decisions (cf. Section 4.2.1). The absolute value of the
correlation coefficient is significantly lower for MARY (—0.098) than for Di-
rect (—0.174) and Symbolic (—0.191). This could be explained by the fact
that the KCoRS consists mostly of short sentences, so that both ML-based
methods perform worse for longer sentences than for shorter ones, whereas

MARY uses the same set of rules for every sentence.

Variance Figures 4.9 and 4.10 show the CMOS of each sentence separately
for the female and the male voice. For the female voice, the variance of CMOS
is lowest for MARY (MARY: 1.48, Direct: 1.81, Symbolic: 1.60). Nonethe-
less, the Symbolic method always receives higher ratings than MARY, sug-
gesting that the Symbolic method should be the chosen for the female voice.

For the male voice, the ratings of MARY even have the highest variance
of all three methods (MARY: 1.81, Direct: 1.74, Symbolic: 1.68). Compared
to the Direct synthesis method, MARY is only better for sentence cn015, so

that I would recommend using the Direct method for the male voice.
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4.3. Conclusions

The perceptual evaluation showed that all three synthesis methods mostly
receive negative scores. Even though there are some exceptions, one can
generally assume the copy-synthesised originals as gold standard. It also
showed that both ML-based methods (Symbolic and Direct) are superior to
the original rule-based MARY method.

Comparing the two ML-based methods, I conclude that the symbolic
level of prosody prediction can be safely skipped without obtaining a signif-
icantly lower CMOS. On the other hand, the inclusion of symbolic prosody
prediction is not detrimental either. Therefore, the decision whether or not
to include the symbolic level can be based entirely on the purpose of the
synthesis system. If it is an instructional or research tool (such as MARY),
one should include the symbolic prediction level, if it is just a “black box”
for the user, one can use the Direct prediction method. If only one of the
voices used in the present study was to be chosen, it should be the female

voice de7, which generally received higher ratings.

As a general rule, the more experienced a TTS user, the higher his
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Figure 4.10.: CMOS for each sentence (male voice).

expectations regarding naturalness. If we aim for a wider usage of speech
synthesis, it is necessary to improve it.

Finally, for a small follow-up study, the following procedure could be car-
ried out to find out whether corpus-based and perceptual evaluation measures
correlate: By comparing the synthesised stimuli with the original realisations,

for each stimulus we could measure
e RMSE and correlation coefficient of duration values
e RMSE and correlation coefficient of median FO values
e accuracy of predicted segmental changes.

These corpus-based evaluation measures could then be directly compared
with the perceptual ratings. The results might also shed light on the question
which of the three parameters — duration, F0, or postlexical phonological

processes — is most important.
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Conclusion and Outlook

The perceptual evaluation shows that the output of a text-to-speech sys-
tem can be significantly improved by training all models that contribute to
prosody prediction on the same database, namely the ‘Kiel Corpus of Read
Speech’, which was enriched with additional features. More importantly, it
shows that the error introduced by symbolic prosody prediction perceptually
equals the amount of error produced by the direct method that does not
exploit any symbolic prosody features.

More time and effort could be spent introducing other features and try-
ing out different machine learning and feature selection methods. However,
I doubt whether the resulting models would lead to a perceptually improved
output. I think that the limitations of the KCoRS and MBROLA have been
reached with the presented approach.

One major drawback of the KCoRS is its textual material consisting
almost entirely of isolated sentences. In order to model prosodic properties
of longer texts, we need a corpus of read newspaper texts or radio news. The
available speech corpora in that domain (IMS German Radio News Corpus,
S1000P, MULI, cf. Section 2.3.3) are not completely labelled with segmental
and prosodic information. Therefore, a possible approach would be to extend
the annotations of these corpora.

Instead of using the MBROLA diphone synthesiser, an even more
promising approach is to try a different synthesis method, namely non-
uniform unit selection, which generally produces more natural sounding out-
put. The speech material in the KCoRS, which is not more than half an
hour of speech per speaker, is not sufficient for a reliable non-uniform unit

selection speech synthesiser (cf. Brinckmann, 1997). To my knowledge, there
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exists no publicly available German database with two or more hours of
labelled speech per speaker so far. Therefore, it would be worthwhile pro-
ducing such a large labelled speech corpus. With this corpus of read speech,
one could also include breathing pauses occurring in read speech, making the
generated output sound more natural.

Breathing is not the only “noise” in natural speech. Campbell (2004)
reported that in a large database of daily conversational speech (the ‘Ex-
pressive Speech Processing’ corpus) grunts and other noises are remarkably
frequent. Instead of clear emotional states (such as happiness, sadness, anger,
and fear), a great variety of different speaking styles is present, which express
attitudes and interpersonal relationships.

[ think that the challenge for the next years is to move onward from
“reading machines” to truly conversational speech synthesis, which could be
used in a dialogue system or as an aid for vocally disabled persons. As
Campbell (2004) argues very convincingly, in order to achieve this long-term
goal, we will have to move away from text-based synthesis by using a large
database of naturally occurring conversational speech, which remains to be

built for German.
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A. PROLAB

In Table A.1, Table A.2, and Table A.3 all PROLAB labels used in the
KCoRS are listed and described. Additionally, the absolute frequency of

each label is given for the complete KCoRS, speaker kko/k61, and speaker
rtd/k62.

A.1. Accent and alignment labels

absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62

accentuation level: unaccented

#&0 unaccented 15775 2484 2455

H#&%0 uncertain  accentuation 106 4 7
level

accentuation level: partially accented

#H&1- flat 390 ol 65
$&1- flat within a word 2 0 0
&N 1- flat, uncertain accentua- 6 0 2
tion level
H&1" mid peak 780 164 180
$&1° mid peak within a word 6 2 0
#&|1" mid peak with upstep 6 1 0
H&%1” mid peak, uncertain ac- 8 0 2

centuation level

continued on next page
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absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62

H#H&1"% mid peak, uncertain align- 5 0 0
ment

#&1) early peak 167 23 15

$&1) early peak within a word 3 0 1

#&%1) early peak, uncertain ac- 6 0 0
centuation level

#&1)% early peak, uncertain 1 0 0
alignment

#&1( late peak 411 36 73

$&1( late peak within a word 7 1 1

H#&|1( late peak with upstep 4 0 2

#&%1( late peak, uncertain ac- 7 2 0
centuation level

H&1(% late peak, uncertain align- 8 0 0
ment

H&1]| early valley 78 11 7

$&1] early valley within a word 1 0 0

H& 1] early valley, uncertain ac- 1 0 0
centuation level

H&1|% early valley, uncertain 1 0 0
alignment

H&1| non-early valley 129 5 36

$&1| non-early valley within a 2 0 0
word

H#&1% non-early valley, uncertain 4 1 1
alignment,

$&1[% non-early valley within a 1 0 0

word, uncertain alignment

accentuation level: accented

#&2- flat 253 37 26

#&|2- flat with upstep 3 0 0

H&%2- flat, uncertain accentua- 4 1 0
tion level

#8&2-% uncertain flat 1 0 0

continued on next page
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absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62

&2 mid peak 3539 623 453

$&2° mid peak within a word 6 0 0

#&|2" mid peak with upstep 373 75 67

H&%2" mid peak, uncertain ac- 18 1 3
centuation level

H&%|2" mid peak with uncertain 1 0 1
upstep

H#&|%2” mid peak with upstep, un- 1 0 0
certain accentuation level

#8&2°% mid peak, uncertain align- 65 11 8
ment

#£&12"% mid peak with upstep, un- 2 1 0
certain alignment

#&2) early peak 2503 357 357

$&2) early peak within a word 2 1 1

#&|2) early peak with upstep 25 1 7

#&%2) early peak, uncertain ac- 1 0 0
centuation level

H&2)% carly peak, uncertain 44 6 9
alignment

H#&2( late peak 4294 709 724

$&2( late peak within a word 9 3 2

#&|2( late peak with upstep 302 45 63

H&%2( late peak, uncertain ac- 10 1 2
centuation level

#&2(% late peak, uncertain align- 30 3 7
ment

H#&|2(% late peak with upstep, un- 2 1 0
certain alignment

#&2] early valley 857 133 141

$&2] early valley within a word 4 1 1

#&|2] early valley with upstep 9 1 0

#&%2| early valley, uncertain ac- 3 0 2
centuation level

#8&2|% early valley, uncertain 16 2 2

alignment

continued on next page
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absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62

#£&12|% early valley with upstep, 1 0 0
uncertain alignment

H#&2| non-early valley 606 98 79

$&2| non-early valley within a 4 2 1
word

H&|2] non-early valley with up- 12 2 1
step

H#&%2| non-early valley, uncertain 3 2 0
accentuation level

H&2|% non-early valley, uncertain 8 1 0
alignment

accentuation level: reinforced

#&3" mid peak 369 32 105
$&3° mid peak within a word 1 0 1
#&|3” mid peak with upstep 5 1 2
#&3"% mid peak, uncertain align- 2 0 0
ment
#&3) early peak 11 0 4
#&3( late peak 107 6 20
#&|3( late peak with upstep 1 0 0
#&3(% late peak, uncertain align- 3 0 2
ment
#&3] early valley 3 0 1
H&3| non-early valley 3 0 1

Table A.1.: PROLAB pitch accent and alignment labels used in the KCoRS
with the absolute frequency of occurrence for the complete
KCoRS, and the speakers kko/k61 and rtd/k62.
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A.2. Intonation contour labels

absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62
concatenation and phrase-final contours

#&, low rise 1428 217 222
$&, low rise within a word 1 1 0
#H&? high rise 257 34 42
#&0. level 3810 567 678
$&0. level within a word 7 1 2
#&%0. uncertain level 5 0 1
#&0; level - minimal rise 1 0 0
#+&0., level - low rise 1 0 1
#&0.7 level - high rise 2 0 2
&l mid fall 5218 874 824
$&1. mid fall within a word 30 5 5
H#H&%1. uncertain mid fall 8 0 0
#&1; mid fall - minimal rise 20 0 4
H&1., mid fall - low rise 54 8 5
H&1.7 mid fall - high rise 1 0 0
#&2. terminal fall 4335 748 654
$&2. terminal fall within a word 8 3 1
H&%2. uncertain terminal fall 13 0 0
H&2: terminal fall - minimal rise 284 0 20
#&2., terminal fall - low rise 50 4 22
#&2.7 terminal fall - high rise 6 0 6
phrase-initial contours

#&HP2 high-falling pre-head 26 3 1
#&HP1 high-level pre-head 466 36 49
H#&HP2%  uncertain high-falling pre- 2 1 0

head
#&HP1%  uncertain high-level pre- 1 0 0
head

continued on next page
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absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62
#&HP1"  upstepped high-level pre- 1 1 0
head

Table A.2.: PROLAB intonation contour labels used in the KCoRS with the
absolute frequency of occurrence for the complete KCoRS, and
the speakers kko/k61 and rtd/k62.

A.3. Prosodic phrase boundaries, register,
and speech rate labels

absolute frequencies

PROLAB description KCoRS kko/k61 rtd/k62

prosodic phrase boundaries

#&PGn with reset 6038 908 954

#&=PGn  without reset 423 56 62

#&%PGn  uncertain boundary with 20 1 7
reset

#&%=PGn uncertain boundary with- 5 0 0
out reset

register

#&HR high register 28 2 0

#&LR low register 21 2 0

speech rate

H&RP increased speech rate 1 0 0

#&RM decreased speech rate 1 0 0

Table A.3.: PROLAB prosodic phrase boundary, register and speech rate la-
bels used in the KCoRS with the absolute frequency of occurrence
for the complete KCoRS, and the speakers kko /k61 and rtd /k62.
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B.1. STTS part-of-speech tagset

In Table B.1 all part-of-speech tags of the Stuttgart-Tiibingen Tag Set
(STTS) are described. Additionally, the absolute frequency of each tag (i.e.

number of words with that tag) in the KCoRS is given.

POS freq description example
ADJA 176 attributive adjective schones  [Frithlingswet-
ter], |den| elften
|[Dezember|
ADJD 144 predicative or adverbial |es war| regnerisch,
adjective langer [schlafen]
ADV 409 adverb gestern, jetzt
APPR 490 preposition or left part in, durch, auf
of circumposition
APPRART 75 preposition with article im, am, zum
APPO 0 postposition [thm] zufolge
APZR 5 right part of circumpo- [von dort| aus
sition
ART 451 article den, einen
CARD 97 cardinal number zehn, siebzehn
FM 0 material of a foreign a big fish
language
I'TJ 5 interjection naja, na
KOKOM 5 comparative conjunc- wie, als
tion

continued on next page
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continued from previous page

B. Syntactic Features

POS freq description example

KON 108 coordinating conjunc- und, oder, aber
tion

KOUI 4 subordinating conjunc- ohne [sich zu schimen],
tion with zu and infini- um |noch etwas zu er-
tive halten]

KOUS 36 subordinating conjunc-
tion with a sentence

NE 288 proper noun Berlin, Erna

NN 1019 common noun Kuchen, Hunger, Vater

PDAT 28 attributive demonstra- diese [Drangelei]
tive pronoun

PDS 15 substituting demonstra- das [paft|
tive pronoun

PIAT 16 attributive  indefinite keine [Scheu|, mehrere
pronoun that cannnot [Tage]
be preceded by a
determiner

PIDAT 32 attributive  indefinite [von| beiden |Ziigen|
pronoun that can be
preceded or followed by
a determiner

PIS 29 substituting indefinite man, keiner
pronoun

PPER 322 irreflexive personal pro- ich, es, ihr
noun

PPOSAT 47 attributive possessive seine [zweite Chinareise]
pronoun

PPOSS 0 substituting possessive meins, deiner
pronoun

PRELAT 0 attributive relative pro- [der Mann,]  dessen
noun |[Hund]

PRELS 16 substituting  relative |ein Wanderer,| der |in
pronoun einen warmen Mantel

gehtillt war|

continued on next page
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POS freq description example
PRF 25 reflexive personal pro- [Du bewirbst| dich
noun
PROAV 10 pronominal adverb danach, trotzdem, de-
shalb, demgemaf
PTKA 11 particle with adjective am [schnellsten|, zu
or adverb [regnerisch|
PTKANT 19 answer particle ja, nein, danke
PTKNEG 33 negation particle nicht
PTKVZ 50 separated verbal parti- [auf welchem  Gleis
cle fahren die Ziige| ab
PTKZU 5 zu before an infinitive  [ohne sich| zu [schédmen|
PWAT 18 attributive interroga- welche [Ziige|
tive pronoun
PWAV 47 adverbial interrogative wann, wie, wo, wobei
or relative pronoun
PWS 11 substituting interroga- wer, was
tive pronoun
TRUNC 0 first (separated) part of An- [und Abreise]
composition
VAFIN 130 finite auxiliary ist, habe, hitte
VMFIN 152 finite modal |[dann| kann [ich], [wir]
wollen
VVFIN 380 finite content verb lalle| eilen, [Zug] endet
[hier]
VAIMP 1 auxiliary imperative sei [gewarnt|
VVIMP 24 content verb imperative achte [auf die Autos]
VAINF 18 auxiliary infinitive sein, haben, werden
VMINF 1 modal infinitive [man hatte lesen| kon-
nen
VVINF 146 content verb infinitive ~ [Mutter konnte lénger]
schlafen
VAPP 4 auxiliary past participle geworden
VMPP 0 modal past participle ler hat es| gekonnt
VVPP 27 content verb past par- [wurde| erdffnet, |[hat|

ticiple

angetreten

continued on next page
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continued from previous page

POS freq description example

VVIZU 3 content verb infinitive anzustellen,
with incorporated zu abzunehmen

XY 0 non-word, containing D2XW3
special characters

$, 174 comma ,

$ 633 sentence final punctua- . 7 ! :
tion mark

$( 8 other punctuation mark -*“

Table B.1.: STTS part-of-speech tagset with the absolute frequency (i.e.
number of tokens) of each part-of-speech tag in the KCoRS

B.2. Syntactic Chunk Phrases

absolute frequency

category d=0 d=1 d=2 d=3 d=4 X
AP 127 9 4 - - 140
AdvP 308 36 10 - - 354
NP 992 109 26 2 1 1130
PP 374 139 39 2 3 557
SUBORD CLAUSE 49 18 2 1 70
VG 809 51 19 2 1 882
W 135 48 8 — - 191
) 2794 410 98 7 5 3324

Table B.2.: Frequency of SCHUG categories in the textual material of the
KCoRS. d gives the level of embedding, i.e. a syntactic phrase
(or word) with d—0 is a top-level phrase, which is not embedded
in any other phrase.
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absolute frequency
category description d=0 d=1 d=2 d=3 b
AA superlative phrase with am 3 - = = 3
AP adjective phrase 27 12 1 2 42
AVP adverbial phrase 23 3 — 31
CAC coordinated adpositions — — — — -
CAP coordinated adjective phrase 2 6 1 1 10
CAVP  coordinated adverbial phrase 2 2 — — 4
CCP coordinated complementiser
CNP coordinated noun phrase 14 15 2 1 32
CO coordinated different categories 2 2
CPP coordinated adpositional phrase 1 - - - 1
CVP coordinated verb phrase 1 - - - 1
CVZ coordinated zu-infinitive - - - - -
ISU idiosyncratic unit — — — — -
MPN multi-word proper noun 3 3
MTA multi-token adjective = - - - -
NM multi-token number 1 1 2
NP noun phrase b17 41 10 — D68
PP adpositional phrase 441 105 20 2 568
QL quasi-language - - - - -
V7Z zu-marked infinitive 5 — — — 5
> 1041 186 37 7 1271
Table B.3.: Frequency of phrasal chunk tags assigned with the chunk tagger

to the textual material of the KCoRS. d gives the level of em-
bedding, i.e. a phrase with d—0 is a top-level phrase, which is
not embedded in any other phrase.
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C. Perception Experiment

The instructions for the subjects of the perception experiment were presented
on screen and read as follows:

Du nimmst an einem Experiment zur subjektiven Bewertung von
Sprachsynthesemethoden teil.

In diesem Experiment wirst Du paarweise Varianten von
Aufierungen horen, die mit verschiedenen Sprachsynthesemethoden
erzeugt wurden.

Du horst jeweils eine Variante, gefolgt von einer kurzen Pause und einer
zweiten Variante. Bitte hore Dir beide Varianten sorgfiltig an und
beurteile die zweite Variante im Vergleich zur ersten Variante

mit Hilfe der folgenden Skala:

Die zweite Variante ist, verglichen mit der ersten Variante,
viel besser

besser

etwas besser

ungefihr gleich

etwas schlechter

schlechter

viel schlechter.

Bei der Bewertung geht es um Deinen personlichen Gesamteindruck.

Wir werden mit 4 Ubungsbeispielen beginnen, damit Du Dich an die
Testprozedur gewohnen und die Lautstirke so einstellen kannst, wie sie
Dir angenehm ist. Nach den Ubungsbeispielen kannst Du eine Pause
einlegen, um Fragen zum Ablauf des Experiments zu stellen, falls Du
irgendwelche Probleme hast.

Das Experiment dauert ungetdhr 30 Minuten.

Vielen Dank fiir Deine Teilnahme! :—)

Table C.1.: Instructions for the subjects of the perception experiment.
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