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iiiForewordThe tenth volume of PHONUS presents a ombined Phonetis and Com-putational Linguistis thesis whih was aepted by the PhilosophialFaulties of the Universität des Saarlandes in 2005. It demonstrates howspeeh-tehnology methods and linguisti-phoneti knowledge an be fruit-fully ombined in order both to inrease our understanding of the prosodistruturing of speeh and to improve the performane of speeh-tehnologyappliations. The author applies mahine-learning proedures to the pros-odially labelled data of the `Kiel Corpus of Read Speeh' in order to preditthe prosodi properties of German read texts. Two di�erent preditionproedures are developed and evaluated in a systemati omparison withthe orpus data. In a seond evaluation step, 20 sentenes are synthesizedusing both proedures and, together with a third version synthesized usinga standard synthesis system, are measured in terms of their aeptabilityagainst a opy-synthesis version.William Barry & Jürgen Trouvain, Saarbrüken, February 2006VorwortDer zehnte Band in der Reihe PHONUS präsentiert eine kombinierte pho-netishe und omputerlinguistishe Arbeit, die im Jahre 2005 von den Phi-losophishen Fakultäten der Universität des Saarlandes angenommen wur-de. Die Arbeit zeigt, wie sprahtehnologishe Verfahren und linguistish-phonetishe Kenntnisse fruhtbar zusammenwirken können, um sowohl un-ser Verständnis der prosodishen Strukturierung von gesprohener Sprahevoranzubringen als auh die Qualität sprahtehnologisher Anwendungen zuverbessern. Die Verfasserin setzt eine Reihe von mashinellen Lernverfahrenein, um aus den etikettierten Daten des `Kiel Corpus of Read Speeh' pros-odishe Eigenshaften für gelesene deutshe Texte in zwei untershiedlihenVerfahren vorherzusagen. Die Vorhersagen werden in einem systematishenVergleih mit den Korpusdaten getestet. In einem zweiten Shritt werden 20Sätze gemäÿ der beiden Verfahren synthetisiert und in einem Perzeptions-test zusammen mit der Ausgabe eines Standardsynthesesystems gegen eineCopy-Synthese-Version gemessen. Die Perzeptionsergebnisse bestätigen diegröÿerere Akzeptabilität der von der Kandidatin erarbeiteten Verfahren.William Barry & Jürgen Trouvain, Saarbrüken, Februar 2006



iv



Improving Prosody Preditionfor Speeh SynthesisWith and Without Symboli Prosody Features
Caren Brinkmann

vorgelegt alsMagisterarbeit im Fah Phonetik und PhonologieDiplomarbeit im Fah Computerlinguistikzum Thema�The `Kiel Corpus of Read Speeh' as a Resoure for Speeh Synthesis�Dezember 2004

Fahrihtung 4.7 Allgemeine LinguistikUniversität des Saarlandes



vi

Verfasserin: Caren BrinkmannFörsterstr. 5066111 Saarbrükenaren�brinkmann.deBetreuer: Prof. Dr. William J. BarryZweitgutahter Magisterarbeit: PD Dr. Henning ReetzZweitgutahterin Diplomarbeit: Dr. Sabine Shulte im WaldeErstellungszeitraum: 23. März � 23. Dezember 2004Webseite: http://www.brinkmann.de/KaRS/



vii
Abstrat
The naturalness of syntheti speeh produed by a text-to-speeh (TTS)system depends strongly on the predition of appropriate prosody, i.e. speehrhythm and melody. In many TTS systems the following predition tasksontribute to the prosodi struture of the generated output: predition ofsymboli prosody features (suh as aents and prosodi phrase boundaries),postlexial phonologial proesses, and aousti parameters (duration andfundamental frequeny F0). This thesis shows how to improve the prosodypredition of the German TTS system MARY, using the German speehdatabase �Kiel Corpus of Read Speeh� (KCoRS) omprehensively for allprosody predition tasks.The KCoRS omprises over four hours of labelled read speeh. The ori-ginal annotation inludes sentene and word boundaries, realised and under-lying (lexial) phonemes, orthography, and puntuation marks. The prosodiannotation inorporates the following domains: lexial stress, aent, intona-tion ontour, prosodi phrase boundaries, and pauses.The original annotation of the KCoRS was extended automatially withthe following additional features: sentene type, syntati phrases, gramma-tial funtions, part-of-speeh, word frequeny, and syllable boundaries. Onthis extended database, a set of lassi�ation and regression trees (CART)were trained for all prosody predition tasks.For the pereptual evaluation of the predition models, 20 German ut-teranes were eah synthesised with MARY using four di�erent prosody pre-dition methods:

• opy synthesis: phoneme, duration and F0 values were extrated from



viii the KCoRS and opy-synthesised with MARY
• MARY: existing MARY system without any modi�ation
• symboli: all trained prosody preditions models were used, inludingpredition of symboli prosody features (aents, prosodi phrase boun-daries, and phrase-�nal intonation ontours)
• diret: diret predition of postlexial proesses, duration, and F0 va-lues without using symboli prosody features.The pereptual evaluation showed that the overall pereptual quality ofMARY an be signi�antly improved by training all models that ontributeto prosody predition on the same database. More importantly, it showedthat the error introdued by symboli prosody predition pereptually equalsthe error produed by the diret method that does not exploit any symboliprosody features. Thus, it an be onluded that the symboli level of prosodypredition an be safely skipped, and the deision whether or not to inludethe symboli predition an be based entirely on the purpose of the TTSsystem.



ix
ZusammenfassungDie Prosodiemodellierung, d.h. die Vorhersage von Sprehrhythmus und -melodie, ist ein entsheidender Ein�ussfaktor für die Natürlihkeit synthe-tisher Sprahe. Die vorliegende Arbeit untersuht die Einsatzmöglihkeitendes `Kiel Corpus of Read Speeh' (KCoRS) für die Prosodiemodellierungin der Sprahsynthese und zeigt, wie die Prosodievorhersage des deutshenSprahsynthesesystems MARY verbessert werden kann. Dabei wird der Be-gri� der Prosodiemodellierung weit gefasst und beinhaltet sowohl die Vor-hersage symbolisher Prosodiekategorien (Akzente und prosodishe Phrasen-grenzen), als auh die Modellierung postlexikalisher phonologisher Prozesseund die Vorhersage der akustishen Parameter Lautdauer und Grundfrequenz(F0).Das KCoRS besteht aus mehr als vier Stunden Lesesprahe. Es ist anno-tiert mit Laut-, Wort- und Satzgrenzen, zugrundeliegenden und tatsählihrealisierten Lauten, Orthographie und Interpunktion. Die prosodishe Anno-tation umfasst lexikalishen Wortakzent, Satzakzent, Intonationskonturen,prosodishe Phrasengrenzen und Pausen.Die bestehende Annotation des KCoRS wurde automatish mit folgen-den Informationen ergänzt: Satztyp, syntaktishe Phrasen und grammati-she Funktionen, Wortart, Worthäu�gkeit und Silbengrenzen. Auf dieser er-weiterten Datenbasis wurden mit dem mashinellen Lernalgorithmus CARTKlassi�kations- und Regressionsbäume für alle Teilaufgaben der Prosodiemo-dellierung trainiert.Für die perzeptuelle Evaluation der Prosodievorhersagemodelle wurdenmit Hilfe des deutshen Sprahsynthesesystems MARY und den trainiertenKlassi�kations- und Regressionsbäumen 20 Äuÿerungen synthetisiert. Jede



xÄuÿerung wurde mit vier vershiedenen Methoden erzeugt, wobei jeweils die-selben diphonbasierte MBROLA-Stimmen verwendet wurden:
• Copy-Synthese: Phonemsymbol, Dauer und F0-Werte wurden aus demKCoRS extrahiert und mit MBROLA in MARY synthetisiert.
• MARY: Verwendung des bestehenden MARY Systems ohne Modi�ka-tion.
• Symbolish: Verwendung aller trainierten Modelle, inklusive der sym-bolishen Prosodievorhersage von Akzenten, prosodishen Phrasen-grenzen und phrasen�nalen Intonationskonturen.
• Direkt: Direkte Modellierung der postlexikalishen Prozesse, Lautdau-ern und F0-Werte ohne Verwendung symbolisher Prosodievorhersage-modelle.Die perzeptuelle Evaluation ergab, dass die Sprahausgabe von MARYdurh den Einsatz der automatish trainierten Modelle signi�kant verbessertwerden kann. Auÿerdem wurde gezeigt, dass sih die Methoden Symbolishund Direkt perzeptuell niht untersheiden. Je nah Anwendungszwek desSynthesesystems kann also auf die symbolishe Prosodievorhersage verzihtetwerden.
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1
IntrodutionThe �rst text-to-speeh (TTS) systems relied mostly on rules that were hand-rafted by human experts. The onstrution of these rules was based on in-trospetion, arefully ontrolled prodution experiments, and manual inspe-tion of speeh orpora. The parameters of these rules were often adjustedthrough a trial-and-error proedure by listening to synthesised utteranes.Some of the �rst TTS systems were barely intelligible, but even if they gen-erated learly understandable utteranes, they sounded quite monotonousompared to human speeh.For more than a deade, these hand-rafted rules have been suessivelyreplaed by models that are automatially trained on annotated orpora withmahine learning (ML) methods. For example, a speeh orpus that is anno-tated with information about aent plaement an be used to train a modelthat predits whih words in an utterane arry an aent. These models areusually more omplex than the hand-rafted rules, resulting in the output ofmore varied speeh.The reation of suitable databases has beome very important. Thesedatabases an be exploited for training models that solve spei� preditiontasks. Large annotated speeh databases an also be used for non-uniformunit seletion synthesis, in whih speeh segments of di�erent sizes are on-atenated to generate natural sounding speeh.The German speeh database �Kiel Corpus of Read Speeh� (heneforthKCoRS) was hosen for the present study. With only half an hour of speehper speaker, the KCoRS is too small to serve as a reliable speeh database forunit-seletion synthesis (f. Brinkmann, 1997). Nevertheless, it an be usedfor the training of the following TTS modules ontributing to prosody predi-



2 Introdutiontion: symboli predition of aents and prosodi boundaries, predition ofpostlexial phonologial proesses (i.e. pronuniation modelling), and predi-tion of aousti parameters (duration and F0 values). For the present study,two diphone-based voies of the German TTS system MARY (Shröder &Trouvain, 2003) were used to generate syntheti speeh with the values pre-dited by the trained models.An impressively large number of previous studies foussed on the im-provement of models for one partiular predition task, e.g. symboli prosodypredition, duration predition, or predition of F0 values. Pronuniationmodelling has been almost entirely negleted for speeh synthesis applia-tions. Only very few studies use one database omprehensively for all prosodypredition tasks. The evaluation of the automatially trained models wasmostly orpus-based, i.e. the preditions of the respetive model were om-pared with the atual realisations in a database. However, formal pereptualevaluation is needed to determine whether the orpus-based improvementsare pereptually relevant in a omplete TTS system. For example, Brink-mann & Trouvain (2003) showed that the orpus-based di�erenes of twoduration predition models ould not be diserned by listeners as soon as thesymboli input to the duration models was not �awless, beause it had beengenerated by a TTS system. Sine the ultimate goal in TTS is to improvethe overall quality, �TTS quality is still assessed best by human listeners�(Strom, 2002).GoalsThe major goals of this thesis are to show the following:
• The KCoRS an be used for mahine learning-based training of prosodypredition models by expanding its original annotation with featuresthat an be derived with pre-existing tools in a reasonable amount oftime.
• The overall pereptual quality of the German TTS system MARY



3an be signi�antly improved by training all models that ontributeto prosody predition on the same database, namely the KCoRS.
• The error introdued by symboli prosody predition pereptuallyequals the amount of error produed by a diret method whih doesnot exploit any symboli prosody features.OutlineIn Chapter 1, this thesis starts with a brief introdution to the general arhi-teture of a TTS system, foussing on the German TTS system MARY. Thenext setion desribes the ore onepts and methods in mahine learning,explaining a partiular mahine learning algorithm, CART, whih was usedto train lassi�ation and regression trees for prosody predition. The sele-tive summary of previous studies illustrates the diversity of mahine learningmethods that have been applied to prosody predition tasks. Finally, the�rst hapter onludes with remarks on error aumulation within a TTSsystem and outlines two approahes to redue it.Chapter 2 motivates the hoie of the KCoRS as a database for prosodypredition. It gives a detailed desription of the original annotation in theKCoRS and explains the features that were added semi-automatially withpre-existing tools and tailored Perl programs. It onludes with some remarkson the limitations of the KCoRS and further possibilities.Chapter 3 desribes the methods that were applied to train lassi�ationand regression trees for the following prosody predition tasks: predition ofprosodi boundaries, aent loation and type, phrase-�nal intonation on-tours, postlexial phonologial proesses, duration, and F0 values. Two typesof predition models were trained: The �rst one, alled Symboli, uses sym-boli prosody features for the predition of segmental features (i.e. realisedphoneme, duration, and F0). The seond one, alled Diret, is a methodwhih predits the segmental features diretly without using any symboliprosody features. The preditions of all models were evaluated by omparing



4 Introdutionthem to the atual realisations in the KCoRS.Chapter 4 explains the pereption experiment that was arried out toevaluate the preditions of the automatially trained models pereptually.The results of the pereptual evaluation show that the output of the GermanTTS system MARY an be signi�antly improved by training all modelsthat ontribute to prosody predition on the KCoRS. More importantly, theyshow that the error introdued by the level of symboli prosody preditionpereptually equals the amount of error produed by the diret method thatdoes not exploit any symboli prosody features.This thesis onludes with an outlook on future diretions in speehsynthesis.



5
1. Fundamentals
1.1. Text-to-Speeh SynthesisSpeeh synthesis an be de�ned as the automati transformation of a sym-boli representation into an aousti signal that sounds similar to humanspeeh (Zboril, 1997). Two onepts have to be distinguished:1. A speeh synthesis system produes speeh from written text (text-to-speeh: TTS) or a oneptual representation (onept-to-speeh:CTS).2. A speeh synthesiser produes speeh from a representation of on-trol parameters. The speeh synthesiser is usually the last module of aspeeh synthesis system.MARY (Shröder & Trouvain, 2003), the TTS system utilised for this study,uses the speeh synthesiser MBROLA (Dutoit et al., 1996). The arhitetureof the German MARY system, whih is shown in Figure 1.1, an be regardedas a typial TTS arhiteture (f. Dutoit, 1997). MARY aepts plain textas input and is also able to parse speeh synthesis markup suh as SABLE(Sproat et al., 1998) and SSML1.Due to the modular arhiteture, single modules an be replaed easily.An interfae2 allows the user to ontrol eah proessing step and to hangethe input to eah module manually. All MARY modules are desribed in thefollowing setions (see Shröder, 2004, for further details). Exept for the1http://www.w3.org/TR/speeh-synthesis/2http://mary.dfki.de



6 1. Fundamentalspart-of-speeh tagger and the hunk tagger, all modules within MARY arerealised with hand-rafted rules.
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Figure 1.1.: Arhiteture of the MARY TTS system (from Shröder, 2004).



1.1. Text-to-Speeh Synthesis 71.1.1. PreproessingTokeniser As a �rst step, the text is ut into separate tokens, namelywords, numbers, speial haraters, and puntuation marks. MARY uses aset of hand-rafted rules to disambiguate periods into sentene-�nal periods,deimal number delimiters, and parts of ordinal numbers or abbreviations.Text normalisation The text normalisation module (termed �Preproess-ing� in Figure 1.1) onverts numbers and abbreviations into pronouneableforms.1.1.2. Natural Language ProessingPart-of-Speeh TaggingPart-of-speeh (POS) tagging is arried out with the statistial tagger TnT(Brants, 2000). The German language model of TnT was trained on the an-notated NEGRA orpus (Brants et al., 1999) using the Stuttgart-Tübingentag set (STTS, see Appendix B.1; Shiller et al., 1995). TnT uses seond or-der Markov models, where the states represent tags and the outputs representwords. Smoothing is arried out with ontext-independent linear interpola-tion of unigrams, bigrams, and trigrams. Unknown words are handled bysu�x analysis, where tag probabilities are set aording to the word's �nalsequene of haraters, with di�erent estimates for upperase and lowerasewords.Chunk TaggingThe hunk tagger desribed by Skut & Brants (1998) is used to reognisesyntati strutures of limited depth (�hunk phrases�), namely the phrasalategories used in the NEGRA orpus. The hunk tagger uses a generalisedMarkov Model-based tagging method based on the part-of-speeh informa-tion provided by TnT and simple morphologial information.



8 1. FundamentalsGrapheme-to-Phoneme ConversionMARY uses the phoneti alphabet SAMPA3 for German (Wells, 2004) forthe phonemi transription, adding also lexial stress and syllable bound-aries. First, in�etion endings are added to ordinals and abbreviations by auni�ation-based module. Seond, the word is looked up in a lexion derivedfrom CELEX (Baayen et al., 1995). If needed, a simple ompound treat-ment is performed. Unknown words, whih annot be phonemised by lexi-al lookup or ompound treatment, are analysed by grapheme-to-phonemerules, using a statistial morphologial parser, syllabi�ation rules, and lexi-al stress assignment rules. The resulting transription represents the anonipronuniation, i.e. it does not ontain any segmental redutions.Symboli Prosody PreditionThe �Prosody� module assigns symboli GToBI labels (Grie et al., 2005).GToBI4 is an adaptation of ToBI (Tones and Break Indies; Silverman et al.,1992) for German, whih desribes the pereived intonation ontour in termsof high and low tonal targets. Break indies are used to mark prosodiboundaries of intermediate phrases (break index 3) and intonation phrases(break index 4). All tonal targets must be related to either an aentedsyllable (aents) or the edge of a prosodi phrase (edge or boundary tones).GToBI aents are either simple tonal targets (H* and L*) or omplex aents(L+H*, L*+H, H+L*, and H+!H*; H and L relate to high and low targets, and* is used to mark the tone of the aented syllable). GToBI boundary tonesalso inlude omplex tones.MARY's hand-rafted prosody rules were derived through manual or-pus analysis and are mostly based on part-of-speeh and puntuation infor-mation. Intermediate and intonation phrase breaks are inserted at puntu-3Throughout this text, all transriptions are given in SAMPA notation. For ease of read-ing all pronuniations are given between slashes (e.g. /a:/), irrespetive of phonemior phoneti status.4http://www.oli.uni-sb.de/phonetik/projets/Tobi/gtobi.php3



1.1. Text-to-Speeh Synthesis 9ation marks and at ertain hunk phrase boundaries. Some parts-of-speeh(e.g. nouns and adjetives) always reeive an aent, others are only aentedif the respetive intermediate phrase ontains no noun or adjetive. The a-tual GToBI aents and boundary tones are assigned aording to sentenetype (statement, wh-question, yes/no-question, and exlamation) and posi-tion of the aent within the prosodi phrase.Postlexial Phonologial ProessesOne the prosodi boundaries, aents, and boundary tones are determined,the anoni pronuniation an be hanged by postlexial phonologial pro-esses (f. Kohler, 1990). These proesses restruture the utterane on thesegmental level as well as on the prosodi level. Examples of postlexialproesses inlude
• segmental deletions and replaements, e.g. haben is pronouned as/ha:b=m/
• vowel redutions, e.g. der is pronouned as /d�/
• reduing the number of aents and phrase boundaries for fast speeh.Currently, MARY applies no postlexial rules. The models trained for thepredition of postlexial proesses (see Setion 3.3.2) deal with segmentalhanges only.1.1.3. Calulation of Aousti ParametersMARY uses the MBROLA diphone synthesiser for synthesising the utter-anes. MBROLA proesses a list ontaining the following information:
• phoneme in SAMPA
• duration in ms
• fundamental frequeny (F0) targets in Hz.



10 1. FundamentalsAn example of the MBROLA input format within MARY is given in Figure1.2. After eah phoneme, its duration is listed. The F0 values are given aspairs (relative time in %, F0 in Hz ). For example, the �rst phoneme /h/in Figure 1.2, has a duration of 72 ms, and an F0 target value of 189 Hzat the very beginning of the phoneme. Phoneme /E/ in the example evenarries two F0 target values: The �rst one (204 Hz) is reahed in the middleof the phoneme (50%), the seond one (150 Hz) is reahed at its end (100%).Intensity and spetral quality of the phonemes annot be ontrolled withMBROLA. h 72 (0,189)a 72 (87,167)l 63o: 121 (50,205)v 67E 162 (50,204) (100,150)l 55t 66_ 410#Figure 1.2.: Example of the MBROLA input format.Duration and F0 values are predited by the module �Aousti Param-eters� from the symboli output of the preeding modules.Duration PreditionThe duration of a sound segment depends on a variety of linguisti, pragmatiand phoneti fators (f. Kohler, 1992b), e.g.:
• global speeh tempo
• semantially important parts of an utterane are produed more slowly
• stress and aentuation: stressed syllables are longer than unstressedones
• �nal lengthening at the end of a prosodi phrase



1.1. Text-to-Speeh Synthesis 11
• a stressed syllable is shorter if it is followed by one or more unstressedsyllables within the same word
• phonologial quantity: phonologially long segments (tense) are longerthan phonologially short segments (lax)
• phoneti ontext, e.g. segmental duration before fortis/lenis
• intrinsi segmental duration: high vs. low vowels, plosives vs. friatives,fortis vs. lenis obstruents.The duration rules urrently implemented in MARY are a version of the Klattrules (Klatt, 1979) adapted to German (Brinkmann & Trouvain, 2003).Klatt rules predit the segmental duration by multiplying the intrinsi dura-tion of a given phoneme with a ontext-dependent fator. The result is thenadded to a phoneme-spei� minimal duration, whih an also be multipliedby a ontext-dependent fator. The adaptation of the ontext-dependentfator values to German was ahieved by a manual trial-and-error proedure.F0 PreditionRules to transform abstrat ToBI labels into fundamental frequeny (F0)values were desribed by Anderson et al. (1984) for English. For eah prosodiphrase an F0 topline and an F0 baseline are assumed, both desending overthe ourse of the utterane. H targets lie on the topline, whereas L targets arepositioned on the baseline. Topline and baseline an be varied, e.g. aordingto the sex of the speaker or the sentene type (f. Brinkmann & Benzmüller,1999). Beause of the delination of both lines, the F0 value of a phoneme inan aented syllable depends on the position of the syllable in the prosodiphrase.1.1.4. SynthesisMBROLA (Dutoit et al., 1996) is a speeh synthesiser based on the on-atenation of diphones. It takes a list of phonemes as input, together with



12 1. Fundamentalsprosodi information (duration of phonemes and F0 values), and produesspeeh samples at the sampling frequeny of the diphone database used.The original F0 values of the diphones in the database are transformed by atime-domain algorithm with diphone smoothing apabilities. In this study,MARY's MBROLA diphone databases de6 (male) and de7 (female) are usedfor synthesis (see Setion 4.1.2).1.2. Mahine LearningMahine learning (ML) is an area of arti�ial intelligene onerned withthe development of tehniques whih allow omputers to �learn� throughexperiene by �nding and desribing strutural patterns in data. Mahinelearning methods take training data and form hypotheses or models that anbe used to make preditions about novel data.A training dataset onsists of several instanes, i.e. representations ofobjets. Instanes are desribed by feature vetors. Features an be ategor-ial (having a �nite number of disrete values) or ontinuous (numeri).Mahine learning methods an be applied to the following tasks:
• lassi�ation: learn to put instanes into pre-de�ned lasses
• numeri predition: learn to predit a numeri quantity instead of alass
• assoiation: learn relationships between features
• lustering: disover lasses of instanes that belong together.The TTS modules desribed in Setion 1.1 solve lassi�ation tasks (part-of-speeh tagging, hunking, symboli prosody predition, postlexial phonolog-ial proesses) and numeri predition tasks (alulation of aousti parame-ters). The mahine learning algorithm CART (Classi�ation and RegressionTrees; Breiman et al., 1984) an be applied to lassi�ation tasks (trainingof lassi�ation trees) as well as numeri predition (training of regression



1.2. Mahine Learning 13trees). CART was used for all tasks relating to prosody predition desribedin Chapter 3.Mahine learning algorithms an be divided into supervised and unsu-pervised methods. Supervised methods are used to learn the relationshipbetween independent features and a designated dependent feature. Classi�-ation and numeri predition algorithms are supervised methods. Unsuper-vised learning tehniques group the instanes of the training data without apre-spei�ed dependent feature. Clustering algorithms are usually unsuper-vised. Nevertheless, even for unsupervised methods human intuition annotbe entirely eliminated, beause the designer of the task must speify how thedata are to be represented and what mehanisms will be used to searh fora haraterization of the data.1.2.1. EvaluationWhen evaluating mahine learning models there are some basi proeduresto follow.1. The dataset is divided into a (bigger) training set and a (smaller) testset. The training set is used to train the model, whereas the test set isused for evaluation only.2. If the ML algorithm needs an additional dataset for a proedure againstover�tting (e.g. pruning in CART, see Setion 1.2.2), a three-fold di-vision into training set, validation set, and test set is needed. Thevalidation set is used (for pruning) during the training proess.3. Sine annotated databases are very time-onsuming to produe, onedoes not want to �waste� preious data for testing. The solution to thisdilemma is k-fold ross-validation: The orpus is divided into k mu-tually exlusive subsets (the �folds�) of approximately equal size. Themodel is trained and tested k times. Eah time it is trained on thedataset minus a fold and tested on that fold. The auray estimate



14 1. Fundamentalsis the average auray for the k folds. Strati�ed ross-validation en-sures that eah lass is properly represented in the respetive trainingand test sets. After evaluation, the �nal model for implementation istrained on the omplete dataset.Di�erent performane metris that an be used for evaluation are desribedin the following setion.Performane MetrisClassi�ation and numeri predition are evaluated with di�erent perfor-mane metris. Confusion matrix, auray, reall, preision, and F-measureare used for the evaluation of lassi�ation models. Root mean squared er-ror (RMSE) and orrelation oe�ient () are used for evaluating numeripredition models.Confusion matrix A onfusion matrix is a matrix showing the preditedand atual lassi�ations. A onfusion matrix is of size L × L, where L isthe number of di�erent lass values. The onfusion matrix in Table 1.1 is for
L = 2. preditedatual positive negativepositive a bnegative c dTable 1.1.: Two-by-two onfusion matrix for a lass with 2 di�erent values(positive and negative).
Auray Auray is de�ned as the rate of orret preditions made bythe model on a test set (usually given in %). Using the variable names fromTable 1.1, the formula for auray is: (a + d)/(a + b + c + d).



1.2. Mahine Learning 15Preision and reall If the values of the predited lass are not evenlydistributed, preision and reall of eah lass value are more informative thanoverall auray:
• preision of lass value �positive� = a/(a + c)

• reall of lass value �positive�= a/(a + b)

• preision of lass value �negative� = d/(b + d)

• reall of lass value �negative�= d/(c + d)If just one preision value is reported, it is usually the preision of the �posi-tive� value (e.g. �boundary� in ase of prosodi boundary predition).F-measure Preision and reall are ombined in the F-measure:F-measure = (2 × recall × precision)/(recall + precision).RMSE The root mean squared error is used for the evaluation of numeripreditions: RMSE =

√

∑

(predicted−actual)2

nRMSE is similar to the mean absolute error, but tends to exaggerate thee�et of outliers.Correlation oe�ient Correlation determines the extent to whih theatual and the predited values are linearly related to eah other. The valueof orrelation, the orrelation oe�ient, does not depend on the spei� mea-surement units used. For example, if the predited values are all multipliedwith 100, the orrelation with the atual values remains the same. Therefore,RMSE is usually reported in addition to the orrelation oe�ient.1.2.2. CARTCART (Breiman et al., 1984) is a mahine learning algorithm for automati-ally building lassi�ation and regression trees. Classi�ation trees predit



16 1. Fundamentalsategorial features, while regression trees are used to predit numeri fea-tures.Classi�ation and regression trees ontain a question about some featureat eah node in the tree. The leaves of the tree ontain the best preditionbased on the training data, usually a single member of the predited ategor-ial feature (lassi�ation) or a predited mean value (numeri predition).

Figure 1.3.: Classi�ation tree example (simpli�ed from Figure 3.1). Nodesare marked with ellipses, leafs are presented in retangles.For example, the lassi�ation tree in Figure 1.3 an be used for the pre-dition of prosodi boundaries, i.e. it predits whether a word is followed by aprosodi boundary or not. The root node (the topmost node) partitions thedata aording to the feature �relative position between puntuation marks�.If an instane has a value ≤ 94% for that feature, i.e. if it is not diretlyfollowed by a puntuation mark (that would result in a value of 100%), a leafis reahed, and the lassi�ation tree predits that the respetive word is notfollowed by a prosodi boundary. If the relative position between puntuationmarks is > 94%, the next node further down the tree onerns the feature�word frequeny�. If the word frequeny of an instane is ≤ 1940 (the wordfrequeny feature is explained in Setion 2.3.1), another leaf is reahed, and



1.2. Mahine Learning 17the tree predits that the respetive word is followed by a prosodi boundary.If the word frequeny is > 1940, another question onerning word frequenyhas to be answered. The next node partitions the data into instanes witha word frequeny value ≤ 2423 and those with a value > 2423. The formerinstanes are predited to be followed by no prosodi boundary, whereas thelatter ones reeive the predited value �boundary�.CART is a powerful mahine learning algorithm beause it
• permits both ategorial and ontinuous features (as input features andpredited features)
• automatially selets the most signi�ant features (but see Setion1.2.3)
• allows human interpretation of the result (up to a ertain extent).The basi CART building algorithm starts with the omplete trainingset and determines the feature that splits the data minimising the mean�impurity� of the partitions. This splitting proedure is applied reursivelyon eah partition of the data until some stop riterion is reahed (e.g. aminimal number of instanes in the partition). Sine it hooses the loallybest disriminatory feature at eah stage in the proess, CART is a greedyalgorithm. This is suboptimal but a full searh for a fully optimised set ofquestions would result in a very high omputational ost. Beause of thestepwise partitioning of the data, the size of the dataset that is onsideredat eah node beomes smaller and smaller down the tree. Therefore, datasparsity an be a serious problem for CART, if the gaps in the training dataare aidental rather than systemati.Standard impurity measures are
• for ategorial features: entropy × number of instanes
• for ontinuous features: variance × number of instanes.5A very basi form of the tree building algorithm would lead to a fully5Entropy or variane alone would favour overly small partitions.



18 1. Fundamentalsexhaustive lassi�ation of all instanes in the training set, and the resultingtree would over�t the data. A method to build trees that are more suitableto make the right preditions for new, unseen data is alled pruning. Thismethod holds out a portion of the training data (the validation set). Thetrained tree is pruned bak until evaluation on the validation set does notimprove any further.
ToolsThe following software tools were used for the training of lassi�ation andregression trees for prosody predition (as desribed in Chapter 3):

• Weka (Witten & Frank, 2000), version 3.4.2 with Java SDK 1.5.0.Weka is a olletion of mahine learning algorithms and ontains toolsfor data pre-proessing, lassi�ation, regression, lustering, assoia-tion rules, and visualisation. Weka is open soure software implementedin Java.
• wagon (King et al., 2003), version 1.2.3. wagon is an exeutableC/C++ program, part of the Edinburgh Speeh Tools Library.The CART algorithm implemented in Weka allows multiply branhingnodes, whereas wagon trains only binary branhing trees. Weka has beendeveloped as an instrutional tool for mahine learning algorithms. There-fore, and beause of the implementation in Java, the CART algorithm inWeka is omparatively slow and very memory-intensive. For the prosodypredition models desribed in Chapter 3, Weka was used for the training oflassi�ation trees, whereas regression trees were trained with wagon.The tailored program that was used to extrat the information fromthe database in the neessary format was written in Perl (Wall et al., 2000).Perl was also used to implement a prototype that inorporates the trainedlassi�ation and regression trees for prosody predition.



1.2. Mahine Learning 191.2.3. Feature SeletionIn theory, most mahine learning algorithms learn automatially whih arethe most appropriate features to make their preditions. For example, CARTshould never selet irrelevant features, so that adding more features shouldonly lead to better lassi�ation performane, never to worse results. How-ever, John (1997) reported that lassi�ation auray of the CART algo-rithm deteriorates (typially by 5% to 10%) when a random binary feature isadded to standard datasets. Even more surprisingly, sometimes the inlusionof highly relevant features an also diminish the lassi�ation auray (by1% to 5% in the situations tested). Naive Bayes, another lassi�ation algo-rithm, assumes that all features are independent of eah other. Therefore itrobustly ignores irrelevant features, but its lassi�ation auray is damagedheavily when redundant features are added.Sine most mahine learning algorithms are negatively a�eted by irrele-vant or redundant features, it is important to preede training with a featureseletion stage that selets only the most relevant features for the preditiontask. �The best way to selet relevant attributes is manually, based on adeep understanding of the learning problem and what the attributes atuallymean. However, automati methods an also be useful.� (Witten & Frank,2000).Filters and Wrappers Automati feature seletion methods an be di-vided into �lter methods and wrapper methods. Filter methods selet thebest features aording to a reasonable riterion that is independent of thetask. For example, a �lter an selet those features that are most linearlyorrelated to the target lass. Wrapper methods apply a hosen mahinelearning algorithm (e.g. CART) to every subset of features. The best subsetis the one with the best evaluation measures.Greedy Searh Sine the number of possible feature subsets inreases ex-ponentially with the number of features, exhaustive searh is impratial in



20 1. Fundamentalsmost ases. Therefore the feature spae is searhed greedily, either startingwith an empty feature set and adding one feature at a time (forward sele-tion), or starting with the omplete feature set and deleting features one at atime (bakward elimination). The greedy searh stops if the performane ofthe trained model does not inrease anymore (or some other stopping rite-rion is reahed). Forward seletion usually results in smaller feature subsetsthan bakward elimination.Complexity The CART algorithms implemented in Weka and wagon bothallow using a feature seletion wrapper. Wrappers are potentially very timeonsuming, beause the mahine learning algorithm is arried out numeroustimes. The number of lassi�ation or regression trees that are trained duringfeature seletion depends on the number of features in the original feature set(m) and the number of seleted features (k). The forward seletion wrapperstarts out with testing eah feature, thus building m trees. The featurethat was used for building the best tree is retained, so that in the next step
m − 1 trees are built, and so on until the feature seletion stops, beausethe performane of the trees does not inrease anymore. At that point,
(2m − k)(k + 1)/2 trees have been built. In the worst ase (k = m), thenumber of trees to be built during feature seletion is quadrati to the sizeof the original feature set (O(m2)).The time needed to build a single tree depends on the number of in-stanes in the dataset (n) and the size of the feature set (m). The om-putational ost of the CART tree indution algorithm (inluding pruning)is O(mn log n) + O(n (log n)2) (Witten & Frank, 2000). The smallestdataset used for the training of prosody predition models (see Setion 3.2.1)onsisted of 4750 instanes with 52 features (word-level prosodi boundarypredition), whereas the largest dataset onsisted of 22094 instanes with83 features (phoneme-level duration predition). Thus, wrapper-based auto-mati feature seletion was only feasible in a reasonable amount of time forpredition tasks on word or syllable level (i.e. symboli prosody predition).



1.3. Prosody Predition with Mahine Learning Methods 21The phoneme-level lassi�ation and regression trees were trained withoutprior automati feature seletion.1.3. Prosody Predition with MahineLearning MethodsIn this thesis, the term �prosody predition� is de�ned rather broadly as thegroup of all predition models that ontribute to the rhythm and the melodyof a synthesised utterane. More preisely, it inludes all predition modelsfrom symboli prosody predition, over the predition of postlexial phono-logial proesses to the predition of aousti parameters. The predition ofaousti parameters is limited to the predition of duration and F0 values,beause these are the only two parameters that an be ontrolled for eahphoneme using the MBROLA synthesiser. Other aousti parameters thatontribute to the pereption of rhythm are intensity and spetral harater-istis (e.g. steeper spetral tilt for redued vowels).Various mahine learning algorithms have been applied to di�erentprosody predition tasks. Unless two algorithms are applied to the samedataset, the reported results are hard to ompare beause of the idiosyn-rasies of the di�erent datasets used for training. Nevertheless, the reportedevaluation measures illustrate the di�ulty of the respetive task.Predition of Prosodi BoundariesFordye & Ostendorf (1998) used transformation-based learning (TBL) andlassi�ation trees (CART) for the predition of prosodi boundary loations.TBL is a supervised mahine learning formalism introdued by Brill (1995)for part-of-speeh tagging. It �nds an ordered sequene of rules whih sues-sively hange an initial lassi�ation of the data. These rules are hosen bya greedy searh over the entire orpus to minimise the overall lassi�ationerror. Both TBL and CART were trained on the Boston University Radio



22 1. FundamentalsNews Corpus (Ostendorf et al., 1995). In terms of auray, the lassi�ationtree slightly outperformed TBL (84.1% vs. 82.6%).Atterer & Shulte im Walde (2004) developed a relatively simple prob-abilisti ontext-free grammar (PCFG, f. Manning & Shütze, 2001, h. 11)for assigning intonation phrase boundaries to German text using STTS part-of-speeh tags. To determine the probabilities of the grammar rules, thePCFG was trained in four iterations on 6,000 words (380 sentenes) of theIMS Radio News Corpus (Rapp, 1998). The PCFG was ompared with an ap-proah based on Hidden Markov Models (HMMs; similar to Taylor & Blak,1998) using a window of POS-bigrams and a ontext length of 6. Evalua-tion showed that the PCFG was inferior to the HMMs (F-measure: 0.741vs. 0.843).Fakrell et al. (1999, 2001) used lassi�ation trees (CART) and two-layer neural networks (NN) to predit prosodi phrase boundary strength be-tween words, values ranging from 0 to 3. Both were trained on databases ofsix di�erent languages (Duth, English, Frenh, German, Italian, and Span-ish). The evaluation measures over all languages showed that both methodsperformed equally well. The auray rates for the German database were74.8% (NN) and 72.7% (CART).Zervas et al. (2003) used CART, Naive Bayes and a Bayesian Network topredit prosodi boundary loations in a orpus of Modern Greek. CART (F-measure 0.608) and Naive Bayes (0.629) were outperformed by the BayesianNetwork (0.704).Aent PreditionFordye & Ostendorf (1998) also used transformation-based learning (TBL)and lassi�ation trees (CART) for the predition of pith aent loationsin the Boston University Radio News Corpus. For aent predition, TBLoutperformed CART (auray: 86.8% vs. 85.6%).Fakrell et al. (1999, 2001) used regression trees (CART) and two-layer



1.3. Prosody Predition with Mahine Learning Methods 23neural networks (NN) to predit word prominene, values ranging from 0 to9. Evaluation on databases of six di�erent languages showed that CARTperforms slightly better than NN. The auray rates (exat lassi�ation+/-1) for German are 74.5% (NN) and 74.8% (CART).Hirshberg & Rambow (2001) used a propositional rule learner, RIPPER(Cohen, 1995) to predit pith aent loations (i.e. whether a word arriedan aent or not). The model is expressed as an ordered set of if-then-rules(i.e. eah rule only applies if the preeding ones do not) whih ontain eaha onjuntion of onditions and a onsequent lassi�ation. RIPPER wastrained on a orpus of read Wall Street Journal texts, whih were transribedand annotated with ToBI labels. The best feature set used for training ledto an F-measure of 0.903.Postlexial Phonologial ProessesMost studies dealing with pronuniation variation are onerned with auto-mati speeh reognition (ASR). Some synthesis-related studies used pronun-iation modelling for improved labelling of large databases for unit-seletionspeeh synthesis (Bennett & Blak, 2003; Jilka & Syrdal, 2002; Breuer,2000). Whenever possible, these databases are labelled automatially, sothat an aurate pronuniation predition is important. Otherwise the re-alised phonemes are always labelled with their anoni ounterparts, nottaking into aount any redutions.Hoste et al. (2000) used TBL and CART to extrat phonemi knowl-edge and rules from pairs of pronuniation lexions for Northern Duth andFlemish. The motivation was to adapt speeh synthesis systems to regionalvariants. The overall auray in prediting the pronuniation of a Flemishword pronuniation from the Duth pronuniation was 89% for TBL and 92%for CART.Miller (1998) inferred individual postlexial phonologies from labelledorpora of read Amerian English using a reurrent neural network. The



24 1. Fundamentalsmain postlexial phonologial proesses to be modelled were glottalisation,vowel redutions and the redued realisation of /t/ (e.g. as �ap). The highestauray reahed was 89.6%.Duration PreditionOne of the �rst mahine learning tehniques that was applied to duration pre-dition is CART (Riley, 1992). The regression trees trained by Brinkmann& Trouvain (2003) reahed an RMSE of 22.46 ms (male voie) and 21.40 ms(female voie), performing signi�antly better than the tested Klatt rules.Nonetheless, this di�erene was not pereptible one the duration preditionmodels were implemented in MARY.Sine data sparsity an pose a problem for CART, other mahine learn-ing tehniques have been suggested for duration predition. Möbius & vanSanten (1996) applied a sums-of-produts model (a supervised, data-drivenapproah) to the Kiel Corpus of Read Speeh. The overall orrelation be-tween observed and predited durations is 0.896. Riedi (1997) used Multi-variate Adaptive Regression Splines (MARS) to predit segmental durationsfrom a orpus of German read speeh. The resulting model has a orrelationoe�ient of 0.90.Goubanova & Taylor (2000) ompared a Bayesian Network (BN) toCART and to a sums-of-produts model. All three models were trainedon a database of Amerian English read speeh. BN ahieved a RMSE of 5ms, outperforming both CART (20 ms) and the sums-of-produts model (9ms).F0 PreditionBlak & Hunt (1996) predited three F0 values for every syllable with linearregression models, using features representing ToBI labels, lexial stress andsyllable position. The linear regression models were trained on the BostonUniversity Radio News Corpus (Ostendorf et al., 1995). The F0 ontours



1.4. Error Aumulation 25generated by this method have a orrelation oe�ient of 0.62 and 34.8 HzRMSE when ompared with the original realisations, whereas a previous rule-driven method (Anderson et al., 1984) resulted in a orrelation oe�ient of0.40 and 44.7 Hz RMSE.The F0 predition desribed by Dusterho� & Blak (1997) used CART topredit parameterised desriptions of the F0 ontour using the Tilt intonationmodel (Taylor & Blak, 1994). Evaluation on the Boston University RadioNews Corpus resulted in a orrelation oe�ient of 0.60 and 32.5 Hz RMSE.Syrdal et al. (1998) ompared three di�erent F0 predition methods,namely one primarily rule-based approah and two data-driven approahes,on a orpus of read prompts and Wall Street Journal texts. The rule-basedapproah was based on manually orreted ToBI labels, the two data-drivenapproahes used parameterised desriptions of the F0 ontour with Tilt orPaIntE parameters (Parametri Intonation Events; Möhler & Conkie, 1998).All methods were ompared in a formal listening test. PaIntE reeived thehighest mean opinion sores (on a 5-point sale), followed by the rule-basedapproah and the Tilt method, whih reeived the lowest sores.1.4. Error AumulationAs an be seen in Figure 1.1, a TTS system onsists of several modules. Allthose modules make preditions that are not 100% perfet. Whenever onemodule makes an error, the modules that follow further down the proess-ing hain �inherit� this error. If their preditions depend on a feature thatwas predited inorretly, they are likely to produe a follow-up error. Forexample, if the part-of-speeh tagger predits that a word is a ontent wordrather than a funtion word, the symboli prosody predition will probablyput an aent on that word, even though it should not be aented.Automati training of statistial models is usually arried out on orporathat have been labelled semi-automatially, i.e. where the annotations wereheked manually. Thus, the annotations are near-perfet. Therefore, the



26 1. Fundamentalsstatistial models that were trained on perfet data make their preditionsbased on the assumption that their input is perfet. When these models arethen implemented into a TTS system, they will most ertainly get input thatontains some errors. Some of these errors will have no further e�et, somewill lead to follow-up errors. Two methods aiming at reduing error au-mulation in a TTS system are explained in the following setions: The �rstone uses only automatially predited features during training, the seondone predits the aousti parameters diretly without using any intermediatesymboli prosody features.1.4.1. Training on Automatially Predited FeaturesThe �rst method uses the same tools and models that are implemented inthe respetive TTS system to label the training data. For example, for thetraining of the symboli prosody predition model, the automati preditionsof the POS tagger and the hunk tagger are used without any manual orre-tions. In addition, the newly-trained prosodi boundary predition model isused to relabel the training data, i.e. whenever the model predits a prosodiboundary, this is annotated in the database. The aent predition model isthen trained on this partly erroneously labelled database. The preditionsof the aent model are in turn used to re-label the database with aentinformation for the training of duration and F0 predition models.Training the models on automatially predited features has the follow-ing advantage: Sine the models are trained on erroneous data, they an�learn� to make right preditions from erroneous input (as long as the errorsare not random). When implemented in a omplete TTS system, the predi-tions for duration and F0 might be better than those from models that weretrained on perfet data.Fordye & Ostendorf (1998) ompared two models for aent predition:The �rst model was trained on a database ontaining manually orretedprosodi boundaries, the seond model was trained on automatially pre-



1.4. Error Aumulation 27dited boundaries. The auray of the �rst model deteriorated from 86.8%to 86.3% when it reeived automatially predited features as input, whereasthe seond model reahed an auray of 86.7% on automatially preditedfeatures. They onluded that most of the loss in auray an be regained byretraining the aent predition model on automatially predited features.In a fored-preferene omparison listening test, Fakrell et al. (1999)ompared the following two methods for the predition of duration and F0:The �rst method (alled MAN) used models that were trained on a manuallyorreted database, whereas the seond method (alled AUT) used only au-tomatially labelled training data. Both methods were ompared with eahother, as well as to opy-synthesised utteranes (i.e. duration and F0 valueswere opied from a reording) and a pre-existing TTS system. Fakrell et al.(1999) found that the di�erene between MAN and AUT is not signi�ant,and that the opy-synthesised originals are signi�antly better than MANand the pre-existing TTS system.Both studies suggest that predition models an be trained on auto-matially predited features without resulting in a deteriorated performane.However, there are two potential problems to be addressed:1. The models are trained on data ontaining very system-spei� er-rors. Whenever a model further up the proessing hain is hanged, allmodels that depend on its output have to be retrained. In ontrast, amodel that is trained on manually orreted data an be applied moregenerally.2. If the TTS system is not used as a �blak box�, but rather as an instru-tional or researh tool (suh as MARY), the user is able to manuallyhange intermediate representations. This an lead to rather strangebehaviour of models that have been trained on automatially prediteddata. Consider the following example: For some reason the symboliaent predition always wrongly predits a peak (high) aent insteadof a valley (low) aent under ertain onditions. Imagine that the F0



28 1. Fundamentalspredition has learned to orret this error by assigning a low F0 valueunder these onditions, even though the symboli aent preditionpredits a peak aent. If a user now expliitly assigns a peak aent,it might happen that the produed output will have a low F0 value forthe phonemes in the a�eted syllables.As desribed in Setion 3.2.2, the importane of using manually or-reted features was tested in a preliminary experiment. As shown in Table3.3, the di�erenes in auray between predition tasks using only automat-ially predited features vs. using manually orreted features were rathersmall.Therefore, and as a solution to the problems desribed above, the �nalsymboli predition models desribed in Setion 3.2 were trained on auto-matially predited features, whereas the so-alled Symboli duration andF0 predition models desribed in Setion 3.3 were trained on orret sym-boli prosody features.1.4.2. Diret PreditionThe seond method aims at reduing error aumulation simply by preditingduration and F0 values diretly without intermediate symboli prosody pre-dition. So-alled Diret predition models, whih do not use any symboliprosody features, are desribed in Setion 3.3. Both the Symboli and theDiret models are inluded in the pereptual evaluation (Chapter 4), showingthat they do not di�er signi�antly.Nevertheless, the Diret predition method is not a viable solution forTTS systems that are to be used as instrutional or researh tools, beauseit does not o�er an intermediate symboli prosody representation that ouldbe manipulated by the user.



29
2. DatabaseAs illustrated in Setion 1.3, di�erent mahine learning algorithms often leadto similar results as long as the hosen database (orpus) ontains the infor-mation needed for training. The hoie of a suitable orpus and the repre-sentation of the data is of utmost importane. In order to train models forprosody predition we need a speeh orpus that is annotated with informa-tion about:

• word boundaries
• syllable boundaries
• phonemi (even better: phoneti) segmental labels
• pauses
• prosodi phrase boundaries
• aents (loation and type)
• boundary tones or phrase-�nal intonation ontours
• lexial stress.Unfortunately, orpora of read speeh with these levels of annotationdo not abound for German. Apart from the �Kiel Corpus of Read Speeh�1,whih is desribed in detail in the following setions, I know of only two otherGerman annotated speeh orpora: the �IMS German Radio News Corpus�(Rapp, 1998) and the �Siemens Synthesis Corpus (SI1000P)�2. Both ontainread speeh of professional broadasting announers. The former onsists of1http://www.ipds.uni-kiel.de/publikationen/krsp.en.html2http://www.phonetik.uni-muenhen.de/Bas/BasSI1000Peng.html



30 2. Databaseradio news items and is available upon personal request. The latter ontains1000 newspaper sentenes, and the liense is rather expensive. Both orporaare only partly annotated with the required information, and the automatisegmental annotations were not manually veri�ed for the whole material.The KCoRS has several advantages: It is publily available at a lowprie, it is almost ompletely annotated with the information needed forprosody predition, and the annotations are manually veri�ed. Nevertheless,it has one drawbak: It onsists mostly of isolated sentenes (there are justtwo omplete texts). Prosodi phenomena that depend on paragraph orinformation struture annot be modelled with the KCoRS. Pause modellingis also pratially impossible (f. Setion 3.1). However, those shortomingsare outweighed by the very omprehensive and onsistent annotation.Another question that arises when hoosing a suitable orpus is whetherone should base the prosodi models on read or rather on spontaneous speeh.The Institute of Phonetis and Digital Speeh Proessing (IPDS) at the Uni-versity of Kiel also o�ers the �Kiel Corpus of Spontaneous Speeh� (KCoSS),whih is annotated in the same way as the KCoRS. So, why not use theKCoSS, sine its ontents are muh loser to speeh ourring in real lifethan the ones of the KCoRS? One of my goals was to improve MARY, aGerman text -to-speeh system, whih is a reading mahine, rather than aommuniation mahine. Of ourse, MARY ould be used as the output de-vie of a dialogue system. However, an important prerequisite would be thatthe generated utteranes are also �spontaneous�. To my knowledge, breath-ing, bak-hannel utteranes, grunts, hesitations and similar harateristisof onversational speeh are not implemented in urrent dialogue systems.So, for the time being, it makes more sense to train the statistial models onread speeh rather than on spontaneous speeh.It is very important to get to know the details of a database beforestarting to train any models. For example, the �rst German synthesiser thatwas built for the unit-seletion synthesis system CHATR (Blak & Taylor,1994) was very unsatisfatory (sometimes even unintelligible) mainly for two



2.1. The Kiel Corpus of Read Speeh 31reasons (Brinkmann, 1997):1. We had not realised that the two speakers who had read the ompletetextual material of the KCoRS were eah named with two di�erentIDs in di�erent parts of the orpus (kko and k61 for the male speaker,and rtd and k62 for the female speaker). Thus, less than half of theavailable speeh material was used at �rst.2. We did not know that the segmental labelling in the KCoRS is mostlyphonemi (with only a few phoneti additions). For example, we be-lieved that a segment labelled with /i:/ is always a tense long vowel,when in fat it is often realised as a short shwa-like vowel in funtionwords. So, when suh a redued variant was used by CHATR within anaented, unredued syllable, the resulting synthesised speeh beamealmost unintelligible.In Setion 2.1 and 2.2 the material and the original annotation of theKCoRS are desribed in detail. These two setions are mainly written forthose who would like to use the KCoRS themselves but are daunted by thelabelling format, whih an be rather onfusing for �rst-time users. In Setion2.3, I desribe the features that I added to the KCoRS and the tools I usedfor these additions. Finally, I onlude with some remarks on the limitationsof the KCoRS, and why some features were not added.2.1. The Kiel Corpus of Read SpeehThe KCoRS is a orpus of read German, whih was olleted and annotatedat the IPDS. It omprises over four hours of labelled read speeh and isavailable on CD-ROM (IPDS, 1994).The KCoRS originates from the PHONDAT projet, preparatory worksstarting in 1989. The aim of the projet was to build a phoneti database ofspoken German as a resoure for automati speeh reognition and general



32 2. Databaselinguisti, phonologial and phoneti questions (Kohler, 1992d). Within thePHONDAT projet, the same textual material (desribed in Setion 2.1.1)was used for reordings at four di�erent universities in Germany � Bohum,Bonn, Kiel and Münhen. Only the speeh material reorded at the Univer-sity of Kiel onstitutes the KCoRS.2.1.1. Textual MaterialThe textual material3 onsists mostly of isolated sentenes taken from a va-riety of ontexts.
• Phonetially balaned material (398 sentenes4): The startingpoint for the ompilation of phonetially balaned material were the`Berlin and Marburg sentenes' (Sotshek, 1984). These are shortsentenes with high-frequeny voabulary, whih ontain all Germanphonemes and many of the phoneme pairs that are allowed aordingto the phonotati restritions of German (Kohler, 1992). The othersentenes of the phonetially balaned material were hosen so that allpossible German phoneme pairs are overed.
• Two short stories (22 sentenes): �Die Buttergeshihte� and �Nord-wind und Sonne� (German version of �The Northwind and the Sun�).
• Train timetable queries (204 sentenes):� �Siemens sentenes�: invented, grammatially orret sentenes,e.g. Ih brauhe für übernähsten Montag nahmittag eine Zug-verbindung von Baden-Baden nah Oldenburg.� �Erlangen sentenes�: seleted transliterations of reorded spon-taneous dialogues (not always grammatially orret), e.g. Grüÿ3The omplete textual material of the KCoRS is listed on the following web pages:http://www.phonetik.uni-muenhen.de/Bas/BasPD1Contentshttp://www.phonetik.uni-muenhen.de/Bas/BasPD2Contents4In the KCoRS, everything that ends either in a full stop, a question mark, or an exla-mation mark ounts as a sentene.



2.1. The Kiel Corpus of Read Speeh 33Gott, ih bräuhte eine Fahrkarte nah Hamburg und wollte fra-gen, also wann der Zug abgeht dann.In total, these are 624 sentenes, ontaining 4932 word tokens and 1673word types (i.e. orthographially di�erent words). The main textual har-ateristis are summarised in Table 2.1. With a mean value of 7.9 words,the sentenes are relatively short. The shortest sentenes onsist of only oneword, and all of them are �Erlangen sentenes� (e.g. nein or danke). Thisillustrates that one-word utteranes are quite possible in spontaneous speeh.The longest sentene ontains 29 words and is part of the short story �DieButtergeshihte�. omplete phonetially restmaterial balanedmean sentene length (in words) 7.9 6.2 11.0frequeny of sentenes 22.3% 10.1% 43.8%with at least one ommafrequeny of 16.3% 5.8% 35.0%interrogative sentenesfrequeny of exlamations 4.6% 6.5% 1.8%Table 2.1.: Charateristis of the KCoRS textual material. Figures are givenfor the omplete textual material and two subsets: the phoneti-ally balaned material and the rest of the orpus (i.e. short storiesand train timetable queries).The histogram of sentene lengths in Figure 2.1 shows that the singlemost frequent sentene length is 5 words (sentenes with a length of 5 wordsmake up more than a quarter of the whole orpus), but this peak is almostentirely aused by the phonetially balaned material. Within the rest ofthe textual material, the sentene lengths are muh more evenly distributed.Only 22.3% of the 624 sentenes ontain a omma, whih is mainly due tothe general shortness of the sentenes. The KCoRS inludes 102 interroga-tive sentenes (sentenes ending with a question mark) and 29 exlamations(sentenes ending with an exlamation mark).



34 2. Database
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Figure 2.1.: Histogram of sentene lengths (ounted in number of words) inthe textual material of the KCoRS. Notie the di�erene betweenthe phonetially balaned material (mostly short sentenes) andthe short stories and train timetable queries (longer sentenes,more evenly distributed sentene lengths).All of these textual harateristis have to be kept in mind as possiblein�uening fators for the performane of the statistial models that weretrained on the database.2.1.2. ReordingsThe PHONDAT projet was arried out in two phases. For PHONDAT1 thephonetially balaned material and the short stories were reorded. PHON-DAT2 overed the train timetable queries.At the IPDS, 53 speakers (26 female, 27 male, all older than 20 years)were reorded in a sound-treated room. One female and one male speakerread the whole textual material, eah of the remaining 51 speakers read asuborpus of the 624 di�erent sentenes. Every speaker was advised to readarefully but �uently. If an error ourred, the reording was interrupted bythe supervisor and the sentene was repeated.



2.2. Original Annotation 35The signals were digitized at 16kHz sampling frequeny with 16-bit res-olution. They were stored in separate �les for eah sentene and assoi-ated with exatly one label �le with the following �le naming onventions:xxxyyyyy.16 for the signal �les and xxxyyyyy.s1h for the label �les, wherexxx is the speaker ID and yyyyy the sentene ID5. For the PHONDAT1 ma-terial, the speaker ID follows the format k<number>, and information aboutthe speaker is oded as follows:
• even number → female speaker
• odd number → male speaker
• number <= 30 → speaker is not older than 30
• number > 60 → speaker is older than 30.This oding onvention was abandoned in PHONDAT2, so that the twospeakers who read the whole orpus eah have two di�erent speaker IDs,depending on the part of the orpus: the female speaker is named k62 andrtd, the male speaker has the speaker IDs k61 and kko. For the trainingof the prosody models (f. Chapter 3), only the data of those two speak-ers is used. The omplete speeh material of kko/k61 is 43.5 minutes long,rtd/k62's material amounts to 41 minutes. Deduting all pauses (most ofthem are at the beginning and at the end of a �le), this leads to 29 minutes(kko/k61) and 26 minutes (rtd/k62) of `pauseless' speeh material.2.2. Original AnnotationThe harater set used in the label �les is 7-bit ASCII, where German umlautsare represented with speial haraters (e.g. �}� for �ü�). As an be seen inthe example in Figure 2.2, the label �les have the following syntax:<name of label �le><orthography>oend5For the PHONDAT2 material, the sentene ID onsists only of four digits (yyyy).



36 2. Database<anonial transription>kend<realised form>hend<start sample> <label> <start time><start sample> <label> <start time>. . .The anonial transription was derived semi-automatially from theorthography by manually orreting the output of the grapheme-to-phonemeonversion module of the German text-to-speeh synthesis system RULSYS(Kohler, 1992a).The �eld <realised form> ontains the sequene of all labels from the<label> setion without any position markers. Aiming for brevity, the la-bels are very ompat and rather hard to deipher for �rst-time users of theKCoRS. For example, #&1( labels an early peak aent with the aentua-tion level 1, whereas #&1. denotes the intonation ontour �mid fall�. In thefollowing setions, all annotation symbols for the �eld <label> are desribedin detail.2.2.1. OrthographyThe orthographial representation of the words is given at the very beginningof the label �le in the �eld <orthography>. Within the <label> setion, thefollowing symbols relating to the orthography are used:
• Word boundaries: The symbol of the �rst phoneme of a word is markedwith a pre�xed ##. All labels within a word are pre�xed with $, allothers start with #.
• Sentene boundaries are labelled with #: with the same sample num-ber as the �rst phoneme of the sentene.



2.2. Original Annotation 37
• Puntuation marks are always preeded by #. ! ? . , are anno-tated as they appear in the <orthography>, other puntuations marks(e.g. the olon) are labelled with , .

k61be022.s1hAhte auf die Autos!oendQ 'a x t � Q aU f+ d i:+ Q 'aU t o: s !kend: &2( Q- 'a x t -h � &0 Q- aU f+ &0 d -h i:+ &1. &2)Q- -q 'aU t -h o: s ! &2. &PGnhend 8455 #: 0.52837508455 #&2( 0.52837508455 ##Q- 0.52837508455 $'a 0.52837509853 $x 0.615750011308 $t 0.706687512181 $-h 0.761250012431 $� 0.776875013378 #&0 0.836062513378 ##Q- 0.836062513378 $aU 0.836062514881 $f+ 0.930000015839 #&0 0.989875015839 ##d 0.989875016445 $-h 1.027750016632 $i:+ 1.039437518001 #&1. 1.125000018001 #&2) 1.125000018001 ##Q- 1.125000018001 $-q 1.125000018001 $'aU 1.125000020987 $t 1.311625021886 $-h 1.367812522588 $o: 1.411687525240 $s 1.577437529161 #! 1.822500029161 #&2. 1.822500029161 #&PGn 1.8225000Figure 2.2.: KCoRS label �le k61be022.s1h



38 2. Database2.2.2. Morpheme Boundaries and Parts-of-SpeehOnly those morpheme boundaries that are onneted with partiular phonetiharateristis (e.g. lengthening or aspiration) are marked using $# before thephoneme symbol.Funtion words are marked by plaing the symbol + after the symbol ofthe last phoneme of the word (e.g. $i:+ at sample 16632 in Figure 2.2).2.2.3. PhonemesThe segmental labelling of the KCoRS is �broad phoneti� (Barry & Fourin,1992), i.e. the segmental label inventory is �essentially phonologial with asmall number of phoneti additions� (Kohler et al., 1995). It is based on theanonial transription, and the phonemes6 are transribed with a modi�edversion of SAMPA (Speeh Assessment Methods Phoneti Alphabet; Wells,2004):
• 21 vowels (7 short vowels, 8 long vowels, 3 diphthongs, 2 shwas, 1nasal vowel7): I, Y, E, 9, a, O, U, i:, y:, e:, 2:, E:, a:, o:, u:, aI, OY,aU, �, 6, a�
• 15 /6/-diphthongs (short or long vowels followed by the voalised r/6/,e.g. /i:6/ in Bier): I6, Y6, E6, 96, a6, O6, U6, i:6, y:6, e:6, 2:6,E:6, a:6, o:6, u:6
• 22 onsonants, inluding the glottal stop /Q/: p, b, t, d, k, g, Q, m, n,N, f, v, s, z, S, Z, C, x, r, h, j, l.Whenever the realised form deviates from the anoni transription, the fol-lowing symbols are added:6Sine the transription in the KCoRS is mostly phonemi, I refer to the labelled soundsas �phonemes� throughout this text and refrain from distinguishing between phonesand phonemes.7German SAMPA has symbols for four di�erent nasal vowels, but only one of themappears in the KCoRS.



2.2. Original Annotation 39
• Deletions are marked with a hyphen after the symbol of the deletedphoneme, e.g. Q-.
• Insertions are marked with a hyphen before the symbol of the insertedsegment, e.g. -t.
• Replaements are marked with a hyphen after the symbol of the anoniform, followed by the realised form, e.g. n-m (where n is realised as m).Only phonemi hanges (e.g. redution from a full vowel to shwa) arelabelled this way, phoneti variations in vowel quality or quantity arenot marked.Table 2.2 lists the perentage of deletions, replaements and insertions of allanoni phonemes. The most ommonly deleted anoni phonemes are /Q/(kko/k61: 64% vs. rtd/k62: 54%), /�/ (38% vs. 47%), and plosive releases(36% vs. 39%). deletions replaements insertionskko/k61 12.2% 2.0% 0.17%rtd/k62 13.7% 2.1% 0.05%Table 2.2.: Perentage of deletions, replaements and insertions of all anoniphonemes for speakers kko/k61 and rtd/k62.In addition to the anoni labels, the following labels are used to markphoneti aspets of the realised segments:
• Glottalisation / reaky voie is labelled with -q.
• Nasalisation is labelled with -�, only if a nasal has been deleted andthe neighbouring realised phonemes are nasalised.
• Hesitational lengthening: If a segment is hesitationally lengthened, thelabel z: is plaed at the sample number of the following phoneme(i.e. after the lengthened phoneme).



40 2. Database
• Plosive release: The losure and the release phase of a plosive are la-belled separately. The release is always transribed with -h, regardlessof the respetive plosive. If the plosive is followed by a friative, theplosive release phase is usually not labelled separately but assigned tothe duration of the friative.
• Unertainty: If the beginning of a phoneme annot be determined withertainty, the orresponding label is pre�xed with %.2.2.4. ProsodyThe KCoRS is annotated with the prosodi labelling system PROLAB (Koh-ler, 1995; Peters & Kohler, 2004), whih is based on the pith ontour-basedKiel Intonation Model (KIM; Kohler, 1997). It inorporates the followingdomains: lexial stress, aent, intonation ontour, prosodi boundaries, andpauses. Labels for aent, intonation ontour and prosodi boundaries alwaysontain & in order to separate them from the segmental labels.Lexial StressThere are no syllable boundaries marked in the KCoRS. Therefore, primaryand seondary lexial stress is indiated by pre�xing the symbol of the vowelof the stressed syllable with ' or " respetively (e.g. $'a at sample 8455 inFigure 2.2).Funtion words reeive no lexial stress marking, even though there areseveral multi-syllabi funtion words in German (e.g. warum, desto, wegen).If a funtion word arries a sentene aent (see below), the label $'' isinserted before the vowel of the stressed syllable.If the realised lexial stress position in a word deviates from the anonialtransription, this is marked the same way as phonemi hanges (see Setion2.2.3, e.g. a-'a:).



2.2. Original Annotation 41AentSentene aent is usually an attribute of the whole word. Therefore, theaent labels are plaed before the respetive word and pre�xed with #&. Ifa word arries more than one aent and one aent label must be plaedwithin a word, it is pre�xed with $&. Usually, the aent falls on the syllablewith primary stress. If a vowel is preeded by the label $'', the aentfalls on the syllable ontaining that vowel. If a word arries more than oneaent, a sentene aent marker is provided for eah aent, either before therespetive morpheme boundary (if present), or diretly before the aentedphoneme.Within one aent label, the following information is oded: aentua-tion level, aent type, alignment, and upstep. A omplete list of all PRO-LAB aent labels that our in the KCoRS is given in Appendix A.1.Aentuation level Four levels of aentuation are distinguished:0 unaented1 partially aented2 aented3 reinfored.As shown in Figure 2.3, the most frequent aentuation level is 0, loselyfollowed by 2. Speaker kko/k61 produed only 39 reinfored aents om-pared to 136 reinfored aents for speaker rtd/k62.Aent type and alignment Any syllable that is not unaented (i.e. islabelled with an aentuation > 0), arries one of three possible aent types:�at, peak, or valley. In addition, peak and valley labels arry informationabout their alignment, i.e. the position of the maximum or minimum in theF0 ontour with respet to the aented syllable.Flat aents show very little hange in F0 aross several phonemes orsyllables, even though an aent an be pereived. Kohler (2003) alls this
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Figure 2.3.: Absolute frequeny of aentuation levels for speaker kko/k61and rtd/k62.type of aent fore aent in order to distinguish it from pith aents, whihare always assoiated with an F0 movement. In PROLAB, �at aents arelabelled with -.Peak aents have a loal maximum in the F0 ontour in the neighbour-hood of the aented syllable. Three values for alignment are available forpeak aents: early, mid, and late, with the respetive F0 maximum before,within, and after the nuleus of the aented syllable. The PROLAB labelsare: ) (early peak), � (mid peak), and ( (late peak). Figure 2.4 shows thatpeak aents are the most frequent aent types for both speakers (kko/k61:85.8%, rtd/k62: 85.2%).Valley aents have a loal minimum in the F0 ontour in the neighbour-hood of the aented syllable. Only two types of alignment are distinguishedfor valley aents: ℄ (early valley: F0 minimum before the nuleus of theaented syllable) and [ (non-early valley: F0 minimum within or after thenuleus of the aented syllable).
Upstep As a default, the F0 minima and maxima of the aents are ex-peted to deline over the ourse of an utterane, so that the �rst peak aentin an utterane is higher than the seond one and so on (for a detailed disus-sion of delination f. Cohen et al., 1982). Therefore, this regular `downstep'
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Figure 2.4.: Absolute frequeny of aent types for speaker kko/k61 andrtd/k62 (n.e. valley = non-early valley).of aents is not labelled. However, when an aent's minimum or maximumis higher than, or as high as the preeding aent, it is labelled with upstep:|. All aents with an aentuation level greater than 0 an be upstepped.Only 5.2% of kko/k61's aents and 5.8% of rtd/k62's aents are upstepped.
Intonation ContoursConatenation and phrase-�nal ontours PROLAB labels for intona-tion ontours between aented words (so-alled �onatenation ontours�)and at the end of a prosodi phrase (phrase-�nal ontours) always end witha puntuation mark: ; is used to label a minimal rise (�pseudo-terminal on-tour�; Peters, 1999), , denotes a low rise, ? marks a high rise and . is usedfor several types of falls. The . is preeded by a digit to denote the strengthof the fall: 0 (level), 1 (mid fall), and 2 (terminal fall). All fall ategoriesan be ombined with all rise ategories resulting in 9 additional, omplexintonation ontours. All intonation ontour labels are listed in AppendixA.2. As shown in Figure 2.5, falls form the most frequent lass of intonationontours, whereas high rises are very infrequent.
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Figure 2.5.: Absolute frequeny of simpli�ed onatenation and phrase-�nalontours (simpli�ation as desribed in Setion 3.2.2).Phrase-initial ontours Most prosodi phrases begin with several una-ented syllables, the �pre-head�. As a default, the F0 ontour of this pre-headis lower than the F0 maximum of the �rst aented syllable. Two �high pre-head� ategories are labelled in PROLAB: HP1 marks a pre-head with a F0ontour that is as high as the following aent, whereas HP2 is used for apre-head starting with a high F0 ontour that falls steadily until the �rstaented syllable is reahed. If the �rst aent is a valley, it is not possible todistinguish between low and high pre-head. In these ases, the default (lowpre-head) is assumed.Prosodi boundaries, register, and speeh rateProsodi phrase boundaries are marked with PGn. They are phonetiallysignalled by phrase-�nal segmental lengthening and usually by F0 resettingafter them. They often oinide with pauses (see below). Phrase boundariesare not further divided into sublasses with di�ering boundary strengths (adivision into PG1 and PG2 was planned, but has not been arried out to date).Usually, the delination of the aents is reset at the beginning of aprosodi phrase and the downstep starts anew. If there is no reset after aprosodi phrase boundary, the boundary is labelled with =PGn.If a speaker deviates from his or her normal F0 range, this is labelled



2.2. Original Annotation 45with HR (high register) or LR (low register). Similarly, deviations from thenormal speaking rate of the speaker are marked with RP (rate plus) or RM (rateminus). Sine register and speeh rate labels are very rare in the KCoRS (theywere introdued to PROLAB mainly for spontaneous speeh), they were notused for statistial modelling.PausesThe following types of pauses are labelled in the KCoRS:
• silent pause (p:)
• pause �lled with� breathing (h:)� liking or lip-smaking (s:)� segmental material beause the speaker stumbled or misread aword (v:).The vast majority of the pauses produed by the seleted speakerskko/k61 and rtd/k62 are silent pauses (95% and 97% respetively), whihis not surprising given the fat that most sentenes are rather short andprodued in isolation. Speaker kko/k61 produes more pauses than speakerrtd/k62, whih is in line with his slower speeh rate.prosodi boundary typeno boundary reset no reset totalkko / rtd kko / rtd kko / rtd kko / rtdpause 0 / 1 673 / 653 2 / 4 675 / 658no pause 3967 / 3905 236 / 311 54 / 58 4257 / 4274total 3967 / 3906 909 / 964 56 / 62 4932Table 2.3.: Co-ourrenes of following prosodi boundaries and pauses perword for speaker kko/k61 and rtd/k62.Summarising the o-ourrenes of pauses and prosodi boundaries inTable 2.3, we an formulate the following sets of simple rules:



46 2. Database1. predition of pauses from boundaries (auray: 94.4%)
• no boundary ⇒ no pause
• �no reset� boundary ⇒ no pause
• reset boundary ⇒ pause2. predition of boundaries from pauses (auray: 93.2%)
• pause ⇒ reset boundary
• no pause ⇒ no boundarySine most pauses our at the beginning or at the end of the speeh�les, we have very little data about the duration of pauses. Therefore, theKCoRS is not a suitable training database for pause modelling (f. Setion3.1).2.3. Added Features and ChangesAlthough the KCoRS already ontains a lot of information and is annotatedvery onsistently, I added several features8 that are important for prosodypredition. Conerning the textual data these are: sentene type, part ofspeeh, syntati phrases, grammatial funtions, and word frequenies. Theannotation of the speeh signal was enrihed with information about syllableboundaries and F0 median values. In addition to some minor hanges to theorthography, I hanged the annotation of lexial stress and some phonemelabels. All these additions and hanges are desribed in detail in the followingsetions.Sine the models that are trained on these features shall eventually beimplemented in MARY as an alternative prosody predition, the tools I hosefor automatially adding features to the KCoRS had to satisfy one of thefollowing onditions: They had to be either:8All �les ontaining the added features are available fromhttp://www.brinkmann.de/KaRS/.
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• already implemented in MARY (part-of-speeh tagger, syntati hunktagger)
• easily implementable with a small algorithm (sentene type, syllableboundaries)
• publily available (word frequenies from CELEX)
• available within the DFKI (SCHUG parser for grammatial funtions).Some of the automatially added features were orreted manually (part-of-speeh, syntati phrases, grammatial funtions, syllable boundaries),others were not orreted, either beause this would have been too time-onsuming (F0 values) or beause it is unneessary (sentene type, word fre-quenies). Both automatially derived and manually orreted feature setswere tried out for symboli prosody predition (f. Setion 3.2) in order toestimate the amount of error introdued to the models by erroneous featurevalues.2.3.1. Textual DataOrthographyIn order to failitate textual proessing, the orthography was hanged in thefollowing ases:
• spelling mistakes were orreted, e.g. Jung's in sentene mr006 washanged to Jungs
• numbers were expanded, e.g. 11. in sentene n020 was onverted intoelften
• spellings of denominations for the time of day were harmonised follow-ing �55(6) of the new regulations of German orthography (IDS, 1996):denominations for the time of day are apitalised when they followheute, (vor)gestern or (über)morgen, e.g. heute Abend.



48 2. DatabaseSentene TypeBrinkmann & Benzmüller (1999) showed that in German sripted speeh thefour utterane types statement, wh-question, yes/no-question, and delara-tive question di�er signi�antly onerning �nal boundary tone, F0 range,and F0 slope. Therefore, every sentene in the textual material of the KCoRSwas automatially labelled with one of the following sentene types: state-ment (ends with a full stop), exlamation (ends with an exlamation mark),or question (ends with a question mark). The questions were further subdi-vided into the types listed in Table 2.4.type desription examplewh-question ontains an interrog-ative pro-form Wann geht dernähste Zug nahMannheim?yes-no question in�eted verb at thebeginning of the sen-tene Steigt Dein Drahensehr hoh?negative yes-no q. ontains niht or kein Muÿ der Zuker nihtdort drüben stehen?alternative question presents two possibleanswers onnetedwith oder Wünshen SieRauher oder Nih-trauher?delarative question same word order as ina statement Und später fährtkeiner mehr?polite request starts with KönntenSie ... or Können Sie... Könnten Sie mir bitteZüge von Regensburgnah Frankfurt heuteabend sagen?Table 2.4.: Question types in the textual material of the KCoRS.As an be seen in Figure 2.6, the most frequent sentene type in theKCoRS is the statement (78.7%). 104 sentenes (16.7%) were lassi�ed asquestions9, and only 29 (4.6%) as exlamations.9Two sentenes ending with a full stop were lassi�ed as polite requests, thus falling intothe ategory �question�.
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Figure 2.6.: Histogram of sentene types in the textual material of the KCoRS(q. = question, neg. =negative).Part-of-Speeh TagsThe original annotation of the KCoRS distinguishes between funtion andontent words, re�eting the assumption that funtion words are usuallyunaented. A more re�ned part-of-speeh lassi�ation ould be helpful forthe predition of aentuation. For example, separated verbal partiles andattributive inde�nite pronouns (keine, beide) are often aented, even thoughthey are usually lassi�ed as funtion words.Part-of-speeh tagging was arried out in two steps. First, the statistialtagger TnT (Brants, 2000) was applied to the textual data. The Germanlanguage model of TnT had been trained on the annotated NEGRA orpus(Brants et al., 1999) using the Stuttgart-Tübingen tag set (STTS). Seond,the tags were manually orreted following the guidelines for STTS (Shilleret al., 1995).A omparison between the statistially tagged data and the manuallyorreted version revealed that only 3.4% of the tags had to be orreted.Table 2.5 shows that TnT performs signi�antly better on known tokens(i.e. tokens that are part of the lexion generated from the NEGRA orpus)



50 2. Databasethan on unknown tokens. Even though the KCoRS textual data is ratherunlike the NEGRA orpus (whih is a olletion of newspaper texts), theauray �gures are very similar.perentage tagging aurayunknown tokens known tokens unknown tokens overallKCoRS 10.9% 97.8% 86.9% 96.6%NEGRA 11.9% 97.7% 89.0% 96.7%Table 2.5.: TnT's part-of-speeh tagging auray for the KCoRS textualdata and the NEGRA orpus (�gures for NEGRA from Brants,2000). Unknown tokens are tokens that are not in the lexiongenerated from the NEGRA training orpus.Out of 54 possible STTS tags, 47 are present in the KCoRS (see Ap-pendix B.1 for a omplete list of STTS tags with examples and informationabout their absolute frequeny in the KCoRS). Only the following seven tagsare missing: APPO, FM, PPOSS, PRELAT, TRUNC, VMPP, and XY.
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Figure 2.7.: Histogram of simpli�ed part-of-speeh ategories in the textualmaterial of the KCoRS.



2.3. Added Features and Changes 51Syntati ChunksWords that belong to the same syntati phrase are usually not separatedby a prosodi phrase break, at least in read speeh. MARY uses the hunktagger (Skut & Brants, 1998) to reognise syntati strutures of limiteddepth. The hunk tagger was applied to the textual material of the KCoRS,and the output was orreted manually.The hunk tagger assigns the phrasal ategories used in the NEGRAorpus (Brants et al., 1999), but only multi-word phrases reeive suh aphrasal hunk tag (44.5% of all word tokens in the KCoRS are not part ofa multi-word phrase). For example, if a noun phrase onsist only of onepronoun, it keeps the POS tag assigned by TnT.Out of 20 possible phrasal hunk tags, 14 are present in the KCoRS (seeTable B.3 in Appendix B.2 for a detailed list). By far the most frequentphrasal hunk tags are NP (noun phrase) and PP (adpositional phrase) �together with their respetive oordinated variants (CNP and CPP) theymake up 92% of the labelled multi-word phrases (see Figure 2.8). Top-levelhunk phrases, i.e. hunk phrases that are not embedded in any other phrase,make up 81.9% of all multi-word phrases.
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Figure 2.8.: Histogram of multi-word phrasal hunk tags in the textual ma-terial of the KCoRS. Figures for NP, PP, AP and AVP are giventogether with their respetive oordinated variants. All otherhunk tags are ollapsed into the ategory �rest�.



52 2. DatabaseA omparison of the automatially derived top-level ategories with themanual orretions revealed a word-level auray of 85.1% (i.e. the top-level phrasal ategory or POS of 85.1% of all word tokens was not hangedmanually). Regarding the absolute position of eah word within the top-levelhunks (i.e. whether it is the �rst, seond, third et. word within the hunk),the hunk tagger reahed an auray of 87.4%.Grammatial FuntionsWolters &Mixdor� (2000) reported that the grammatial funtion of a phrasehas an in�uene on the aentability of the words it ontains, e.g. nouns ingenitive adjunts are less likely to be aented than nouns in subjets. Thisould be explained by the fat that genitive adjunts are frequently used tolink new disourse entities to disourse-old entities or world knowledge.MARY ontains no grammatial funtion tagger yet, but the SCHUGparser developed at the DFKI (Delerk, 2002) is readily available for thispurpose. Therefore, SCHUG was used to assign phrasal ategories and gram-matial funtions to the textual material of the KCoRS. The SCHUG parseris a rule-based system using morphologial and part-of-speeh information.In ontrast to the hunk tagger, it assigns phrasal ategories also to phrasesonsisting of only one word. Table 2.6 lists all SCHUG ategories and theirpossible grammatial funtions.SCHUG was applied to the omplete textual material of the KCoRS,and its output was orreted manually. As shown in Figure 2.9, the most fre-quent SCHUG ategories in the KCoRS are NP, VG and PP. If the grammat-ial funtion of a noun phrase is ambiguous (aording to SCHUG's rules),SCHUG assigns a set of all grammatial funtions that are deemed possiblefor that phrase. Sine this is the ase for 49.7% of the automatially de-rived noun phrases (even for some pronouns with overt ase marking), someimprovement is neessary here. Another �eld for future improvements ofSCHUG is the reognition of embedded phrases. An inspetion of the man-



2.3. Added Features and Changes 53ategory desription possible grammatial funtionsAP adjetive phrase PREDICATIVE_APAdvP adverbial phrase PREDICATIVE_ADVPNP noun phrase SUBJ, SUBJ/DEEP_OBJ,AKK_OBJ, DAT_OBJ, GEN_OBJ,NP_ADJUNCT_GEN,PREDICATIVE_NPPP prepositional phrase PP_ADJUNCT, PP_OBJSUBORD_ subordinated lause XADJUNCT, XCOMPCLAUSEVG verb group �W word (onjuntions) �Table 2.6.: SCHUG ategories and possible grammatial funtions.ually orreted SCHUG phrases showed that 16.0% of all SCHUG phrasesin the KCoRS are embedded phrases (see Table B.2 in Appendix B.2). Cur-rently, SCHUG is only apable of reognising top-level phrases.
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Figure 2.9.: Histogram of SCHUG ategories in the textual material of theKCoRS (SUB = SUBORD_CLAUSE).A omparison of the automatially derived top-level ategories with themanual orretions revealed a word-level auray of 76.3% (i.e. the top-levelSCHUG ategory of 76.3% of all word tokens was not hanged manually),whereas the grammatial funtions were orret only for 51.0% of all words.Regarding the absolute position of eah word within the respetive top-level



54 2. Databasephrase (i.e. whether it is the �rst, seond, third et. word within the phrase),the SCHUG parser reahed an auray of 78.3%. At �rst glane theseauray �gures seem to suggest that the SCHUG parser performs worsethan the hunk tagger. However, almost half of the words do not reeive aphrasal hunk tag from the hunk tagger, instead they keep their originalpart-of-speeh tag. So the auray of the hunk tagger bene�ts very muhfrom the reliability of TnT. Nonetheless, both the SCHUG parser and thehunk tagger need further improvement.Word FrequeniesFidelholtz (1975) showed that the frequeny of a word has a signi�ant ef-fet on the redution of its vowels (the higher the word frequeny, the moreprobable a vowel redution). Word frequeny also orrelates with the on-tent/funtion word distintion: Funtion words usually have a higher fre-queny than ontent words. Thus, the aentability of a word might berather a onsequene of its frequeny than of its part-of-speeh.Even if homographi wordforms are distinguished regarding their part-of-speeh, the textual material of the KCoRS ontains only 1733 di�erentwordforms. Sine a TTS system has to rely on a muh bigger lexion, thefrequeny information that was added for eah wordform was not omputeddiretly from the KCoRS. Instead, it was taken from the lexial databaseCELEX (Baayen et al., 1995). The frequeny information in CELEX isbased on the �Mannheim� orpus (1984 version) of the �Institut für DeutsheSprahe�, whih ontains about 6.0 million words from mostly written andsome spoken soures.CELEX o�ers a variety of frequeny �gures, both for lemmas and forwordforms. I hose MannMln, i.e. the wordform frequeny saled down toa range of 1 to 1.0 million (instead of the original 1 to 6.0 million). Theminimal value of MannMln in CELEX is 0, the maximum is 25287 (for theword und). Those 227 wordforms of the KCoRS that are not present in



2.3. Added Features and Changes 55CELEX (mostly nouns), also reeived the frequeny value 0 (totalling in 352zero-frequeny wordform types).Of ourse there are wordforms that are very frequent in the KCoRS, butnot that frequent in the Mannheim orpus. For example, the most frequentwordform in the KCoRS is nah (142 tokens), whih is due to the large num-ber of train timetable queries (suh as s008: Ih möhte morgen abend nahKöln fahren). In the Mannheim orpus, nah reeives the frequeny �gureof 1738 (when saled down to the size of the KCoRS, this is the equivalentof 9 tokens). Nevertheless, both the frequeny �gures based on the KCoRSitself as well as the ones from CELEX behave very similarly when it omes totheir distribution within the KCoRS. As an be seen in Figure 2.10, there aremany wordforms in the KCoRS with a low frequeny �gure (e.g. 1 or �onlyin the ase of CELEX frequeny �gures� 0), some with a medium frequeny�gure, and only very few wordforms with a high frequeny �gure.2.3.2. Speeh DataPhonemesIn the original annotation, all plosive releases are labelled with -h, suggestingthat the release phase is not anoni, but rather an insertion. Sine releasephases of fortis plosives are generally longer than lenis releases, their labelswere hanged, marking them separately with the additional symbols p_h,t_h, k_h, b_h, d_h, g_h. Furthermore, the plosive releases were regarded asanoni.Lexial StressLexial stress information was added for all funtion words, so that all wordsreeived one primary stress loation.In the original annotation of the KCoRS, two words arry two primarystress loations: B'aden-B'aden and sp'ät'abends. After listening to the
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Figure 2.10.: Frequeny of CELEX and KCoRS frequeny �gures of word-form types in the KCoRS textual material. X-axis: The fre-queny �gure for eah wordform is either omputed diretlyfrom the KCoRS (KCoRS frequeny �gures) or taken from theMannMln �gure of CELEX and saled down to the size of theKCoRS (CELEX frequeny �gures). Y-axis: The frequeny offrequeny of wordform types is based on the KCoRS textualmaterial. Note that only the CELEX frequeny �gure an havea value of 0.realisations of the speakers, one primary stress loation was hanged to aseondary stress: B"aden-B'aden and sp"ät'abends.Syllable BoundariesAutomati syllabi�ation was arried out with a simple algorithm whih de-�ned every vowel as syllable nuleus and every sonorant /m,n,N,l/ that ispreeded by a onsonant as potential syllable nuleus. The syllabi�ation ofthe segments between the established nulei was based on the following rulesand standard phonologial priniples:
• Every word boundary and every labelled morpheme boundary is a syl-lable boundary.
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• A glottal stop /Q/ is always the onset of a syllable.
• Plosive losure and following plosive release or friative (in ase ofa�riates) are not separated by a syllable boundary.
• Ambisyllabiity: a onsonant following a lax vowel in a VCV patternis marked as ambisyllabi.
• Obligatory Coda: a syllable must be losed (or followed by an ambi-syllabi onsonant) after a short, lax vowel (exept /�, 6/).
• Maximal Onset Priniple: make the syllable onset as long as it legiti-mately an be aording to the phonotati restritions of German.Two types of syllable boundaries were distinguished: �_� marks a sylla-ble boundary whih is followed by an ambisyllabi onsonant, while normalsyllable boundaries are marked with �-�.The syllabi�ation algorithm was applied to two datasets: The �rst one(the `lexion') ontained all wordforms of the KCoRS with their respetiveanoni phoneme sequene, the seond one (`onneted speeh'), onsisted ofall realised phone sequenes of the two speakers kko/k61 and rtd/k62. Bothsyllabi�ed datasets were orreted manually, the seond one by listening toall utteranes of the two speakers. Compared to the manual orretions,for the `lexion' 99.1% of the automatially derived syllable boundaries areorret, while for `onneted speeh' the auray dropped to 97.2%. This ismainly due to the following phenomena:
• Postlexial resyllabi�ation aross word boundaries, e.g. in k61be031:gibt es realised as /g g_h I p - t t_h E s/.
• Glottal stop /Q/ is possible at the end of a syllable when it replaes aplosive, e.g. in k61mr069: Zentner realised as /t s E n Q - n 6/.
• Potentially syllabi sonorants following a vowel or /l/ are problemati,e.g. einen (realised as monosyllabi /Q aI n/ or disyllabi /Q aI -



58 2. Databasen/ ?) and rollen (monosyllabi /r O l n/ or disyllabi /r O _ l n/?). Eah deision was based on my auditory impression, e.g. monosyl-labi /r O l n/ in k62be087 and disyllabi /r O _ l n/ in k61be087(the disyllabi impression seems to be due to the slower speeh rate ofspeaker k61).F0 ValuesThe aousti parameters to predit are duration and F0. The duration ofeah phoneme an be omputed using the labelled phoneme boundaries. F0values were estimated with ESPS's get_f0 algorithm (Talkin, 1995), whihuses the normalised ross orrelation funtion and dynami programming. Asframe step, the default of 10ms was hosen; for the female speaker rtd/k62the minimum F0 value was set to 120Hz, the maximum to 400Hz, whereasfor the male speaker kko/k61 the minimum and maximum were set to 50Hzand 250Hz respetively10.Median F0 For every vowel and sonorant (m, n, N, l), the median of theseraw F0 values was alulated. The median was hosen instead of the mean,beause it is more robust to outliers. Nevertheless, there were still someerroneous median F0 values, espeially within portions spoken with a reakyvoie, beause of doubling or halving errors.Last F0 Thus, we have one F0 value for every vowel and sonorant. If thereis a pith aent on the last syllable of a prosodi phrase, and this syllableonly ontains one vowel or sonorant, one F0 value is not su�ient to apturea valley aent followed by a rising intonation ontour. Therefore, for everyprosodi phrase a �nal F0 value was stored by omputing the median of thelast three F0 values of the last vowel or sonorant of that prosodi phrase. Ifget_f0 annot estimate any F0 value, median and last F0 are set to 0.10Informal inspetion revealed that these values were adequate for those two voies.



2.3. Added Features and Changes 592.3.3. Further Possibilities and LimitationsOther features that ould be added to an annotated speeh orpus inludeword preditability, disourse features, GToBI labels, intensity and spetraltilt. Pan & Hirshberg (2000) showed that word preditability, measured interms of bigram word preditability log(Prob(wi|wi − 1)), is a useful predi-tor of pith aent plaement for nouns. In order to ompute this measurewe need a suitable textual orpus. Aiming for a rather neutral prosody ofsentenes that an our in any ontext, we would have to use a very bigtextual orpus � otherwise the measures would be very domain-spei�. Thisis in line with using the frequeny numbers from CELEX, whih were alu-lated from the 6 mio. token Mannheim Corpus rather than diretly from theKCoRS. Sine bigram word preditability an be helpful mostly for limiteddomain synthesis, I deided not to add this feature to the KCoRS.Disourse features like the givenness of a referring expression have anin�uene on the pith aent and phrasing (f. Wolters & Mixdor�, 2000),but sine the KCoRS onsists mostly of isolated sentenes and not of om-plete texts (exept for the two short stories), this kind of information annotbe added. For information strutural features, a orpus of read newspapertexts suh as the one built in the MULI projet (Baumann et al., 2004) andthe �IMS German Radio News Corpus� (Rapp, 1998) should be investigatedinstead.MARY uses GToBI labels for the symboli prosody predition. GToBIlabelling was not arried out for the two seleted speakers of the KCoRSmainly beause of two reasons:1. Even though Braunshweiler (2003) desribed an approah to preditGToBI labels automatially from the F0 urve and intensity measures,these automatially predited labels still have to be orreted manually,whih is very time-onsuming.2. The prosody predition desribed in Chapter 3 onsists of symboli



60 2. Databaseprosody predition and predition of aousti parameters. Sine theonly module of MARY needed for this approah is the MBROLA syn-thesis, GToBI labels are not neessary as intermediate symboli repre-sentation. The PROLAB labels an be used instead.Intensity and spetral tilt of realised phonemes in�uene the pereptionof rhythm, but sine they annot be modelled by MBROLA, those measure-ments were not inluded as features to predit.



61
3. Prosody Predition with CARTAs desribed in Setion 1.3, in this thesis prosody predition is de�ned asontaining all predition tasks that ontribute to the predition of the realisedphoneme, its duration, and its F0 values. The following separate preditiontasks are desribed in the subsequent setions:

• pause predition
• symboli prosody predition:

⋆ prosodi boundaries
⋆ aentuation level
⋆ aents: loation and type
⋆ phrase-�nal intonation ontours

• predition of postlexial phonologial proesses:
⋆ type of hange: none, deletion, replaement
⋆ in ase of replaement: replaement rule

• predition of aousti parameters:
⋆ duration
⋆ median F0
⋆ last F0.One major goal of this thesis is to show that the output of a text-to-speeh system an be signi�antly improved by training all models thatontribute to prosody predition on the same database. As desribed inSetion 1.3, many di�erent mahine learning algorithms have been appliedfor the di�erent predition tasks. It was not my aim to �nd the best feature



62 3. Prosody Predition with CARTset, the best algorithm, and the best model for eah predition task. InsteadI applied the same mahine learning algorithm (CART; Breiman et al., 1984)to train lassi�ation and regression trees for all predition tasks.Beause of reasons related to the implementation of the mahine learningsoftware tools (see Setion 1.2.2), all lassi�ation trees were trained withWeka (version 3.4.2; Witten & Frank, 2000), whereas all regression treeswere trained with wagon (version 1.2.3, King et al., 2003). All lassi�ationtrees were evaluated with strati�ed 10-fold ross-validation. Sine wagondoes not o�er strati�ed ross-validation, the performane of the regressiontrees was estimated on a randomly seleted separate test set.Automati feature seletion (greedy forward seletion wrapper) was onlyperformed for word-level and syllable-level predition tasks (i.e. symboliprosody predition). The phonemi datasets were too large to make auto-mati feature seletion omputationally feasible in a reasonable amount oftime (see Setion 1.2.3).Datasets 20 sentenes from the KCoRS were randomly seleted for thepereptual evaluation (see Table 4.1 in Setion 4.1.2). These 20 senteneswere not inluded for training, validation and orpus-based testing of thelassi�ation and regression trees. Apart from these 20 sentenes, the om-plete KCoRS and all added features (as desribed in Setion 2.3) are used asdatabase to produe the input datasets for Weka and wagon.3.1. Pause PreditionAs mentioned in Setion 2.2.4, only very few pauses our within a sentene(or rather: between two words), so that information about their durationis available only for 62 and 52 pauses respetively for kko/k61 and rtd/k62in the training data. Beause of the extreme data sparsity, it is impossibleto model pause duration with a regression tree. Therefore, two very simplerules based on a trial-and-error proedure with MARY were applied instead:



3.2. Symboli Prosody Predition 631. Pause loation: A word is followed by a pause, only if it is followed bya puntuation mark.2. Pause duration: If the word is followed by a omma or a dash, thepause duration is 100ms, if it is followed by another puntuation mark,the pause duration is 300ms.Of ourse, this is not a very satisfying solution, but for a suessful trainingwe would need a database that onsists of omplete texts.3.2. Symboli Prosody Predition3.2.1. Prosodi Boundary PreditionThe lassi�ation task for prosodi boundary predition is to predit for eahword whether it is followed by a prosodi boundary or not. Originally, it wasplanned to predit also the type of the boundary (reset vs. no reset), but sinethe �no reset� boundaries make up only 6% of all boundaries in the KCoRS,they proved to be impossible to predit with reasonable preision and reall.So I deided to predit only the lasses �boundary� and �no boundary�.FeaturesFor eah word the following features were extrated from the database:
• word level features, for a window of 5 words (the respetive wordand 2 neighbouring words to the left and to the right):

⋆ part-of-speeh: STTS and simpli�ed (simpli�ations as in Figure2.7)
⋆ word frequeny (CELEX)

• puntuation features:
⋆ preeding puntuation



64 3. Prosody Predition with CART
⋆ following puntuation: original and simpli�ed (none, omma,other)
⋆ absolute and relative position1: distane to preeding and follow-ing puntuation (in words), and relative position between pun-tuation marks

• sentene features:
⋆ sentene length (in words)
⋆ sentene type (as de�ned in Setion 2.3.1)
⋆ absolute and relative position of the word in sentene

• SCHUG features:
⋆ for a window of 3 SCHUG phrases (the respetive phrase and1 neighbouring phrase to the left and to the right): ategory,grammatial funtion (as in Table 2.6), and length (in words) oftopmost enompassing SCHUG phrase (depth=0)
⋆ absolute and relative position of the word within the topmostSCHUG phrase

• hunk phrase features:
⋆ for a window of 3 hunk phrases (the respetive phrase and 1neighbouring phrase to the left and to the right): ategory andlength (in words) of

⋄ topmost phrase (depth=0)
⋄ seond-level phrase (depth=1)

⋆ absolute and relative position of the word within the topmost andseond-level hunk phrase.1Calulation of all relative position features:relative position = 100 × absolute position / (length of the streth −1), so that the�rst and the last segment of a streth reeive relative position values of 0% and 100%respetively.



3.2. Symboli Prosody Predition 65All features relating to part-of-speeh, SCHUG and hunk phrases were au-tomatially predited (f. disussion in Setion 3.2.2). Whenever a featurewas missing (e.g. beause the �rst word of a sentene does not have a leftneighbour), it reeived the value −100, whih never ourred as regular valueof any feature. Thus, it was not missing for CART, but ontained usable in-formation (e.g. about the position of a word).Feature Seletion and Classi�ation TreesFor speaker kko/k61, the automati feature seletion resulted in a feature setonsisting of only two features: relative position between puntuation marksand word frequeny. For speaker rtd/k62, the seleted feature set was evenmore redued and onsisted only of the feature distane to the followingpuntuation in words. This illustrates that prosodi phrasing in read speehdepends mostly on puntuation.The two trained lassi�ation trees are very simple (see Weka output inFigure 3.1 and 3.2), e.g. for speaker rtd/k62: Only if the word is followedby a puntuation mark is it followed by a boundary. The numbers given inparentheses after eah leaf of the lassi�ation tree (�rst/seond) indiate thetotal number of instanes from the training set at the respetive leaf (�rst)and the number of inorretly lassi�ed instanes at that leaf (seond).betweenpuntposition_rel <= 94: none (3967.0/174.0)betweenpuntposition_rel > 94| CELEXfreq <= 1940: boundary (743.0/14.0)| CELEXfreq > 1940| | CELEXfreq <= 2423: none (10.0/2.0)| | CELEXfreq > 2423: boundary (30.0/2.0)Figure 3.1.: Prosodi boundary lassi�ation tree for speaker kko/k61.distanefollowingpunt <= 0: boundary (782.0/22.0)distanefollowingpunt > 0: none (3968.0/235.0)Figure 3.2.: Prosodi boundary lassi�ation tree for speaker rtd/k62.



66 3. Prosody Predition with CARTEvaluationEven though the trees are so simple, they have a fairly high auray of95.96% (kko/k61) and 94.74% (rtd/k62), illustrating that prosodi phraseboundaries an be predited fairly easily for read speeh.F-measure aurayboundary no boundarykko/k61 0.887 0.975 95.96%rtd/k62 0.866 0.967 94.74%Table 3.1.: 10-fold ross-validated performane measures for the prosodiboundary lassi�ation trees.
3.2.2. Aent and Intonation Contour PreditionIn the KCoRS, for eah word its aentuation level is annotated, rangingfrom 0 to 3. If the word arries two aents, the aentuation level is spei�edseparately for eah aent, assuming that the aentuation level spreads to allfollowing syllables in that word. Eah aent is labelled in terms of loation,type, alignment and upstep (see Setion 2.2.4).Only 5.2% of kko/k61's aents and 5.8% of rtd/k62's aents are up-stepped. Preliminary tests showed that upstep ould not be predited fromthe available features (the trained lassi�ation trees were merely deisionstumps that predited �no upstep�).Aent type and alignment were treated as one by ombining them tothe following six omplex aent types: �at, early peak, mid peak, late peak,early valley, and non-early valley.In the KCoRS, three types of intonation ontours are labelled: phrase-initial ontours, onatenation ontours, and phrase-�nal ontours (see Se-tion 2.2.4). Preliminary tests showed that phrase-initial ontours dependvery muh on the type of aent they preede and the length of the pre-head,whereas onatenation ontours depend on the types of the aents they on-



3.2. Symboli Prosody Predition 67atenate. In order not to introdue too many extra errors in the symboliprosody predition, I deided not to train any models for phrase-initial andonatenation ontours. In ontrast, the last intonation ontour of a prosodiphrase an be modelled without knowing the type of its preeding aent.Therefore, aent and intonation ontour predition onsists of four sep-arate tasks:
• for eah syllable: predition of the aentuation level
• for eah syllable: predition whether it arries an aent or not (i.e. a-ent loation)
• for eah syllable arrying an aent: omplex aent type
• for eah syllable arrying the last aent of the prosodi phrase: phrase-�nal intonation ontour.All trained lassi�ation trees are far too big to be presented on paper(e.g. the lassi�ation tree for the aentuation level predition of rtd/k62has 1025 leaves), but they an be downloaded from my thesis web page2.FeaturesFor eah anoni syllable, the same features as for prosodi boundary predi-tion were used (see Setion 3.2.1). In addition, the following features wereextrated from the database:
• syllable level features:

⋆ lexial stress
⋆ syllable length (in anoni phonemes)

• positional features:
⋆ absolute and relative position of the syllable in the word
⋆ absolute and relative position of the syllable in the sentene2http://www.brinkmann.de/KaRS/



68 3. Prosody Predition with CART
⋆ distane preeding and following prosodi boundary (in words andsyllables)
⋆ distane preeding and following pause (in words and syllables)
⋆ relative position in prosodi phrase (in words and syllables)
⋆ relative position in inter-pause streth (in words and syllables)

• sentene feature: sentene length (in syllables).All features relating to pauses and prosodi phrase boundaries are preditedby the respetive pause and prosodi boundary models.Feature SeletionGreedy forward feature seletion was arried out for all four predition tasks,separately for eah speaker. Table 3.2 shows whih features were seletedautomatially for the respetive predition task using only automatiallypredited features (≈) vs. using manually orreted features (√) (f. Se-tion 1.4 for a general disussion about the use of automatially preditedvs. manually orreted features). As a general tendeny onerning the useof syntati phrase features, the predition tasks with manually orretedfeatures used a greater number of SCHUG features, whereas the preditiontasks with automatially predited features used more hunk phrase features.For example, for the predition of aentuation level, the grammatial fun-tion of a phrase was used only if it was manually orreted. This seems tosupport the statement in Setion 2.3.1, namely that SCHUG needs furtherimprovement before it an be suessfully integrated into MARY.In order to determine whether it is important to use features that are asorret as possible, the auray values of trained lassi�ation trees usingonly automatially predited features vs. using manually orreted featureswere ompared in a preliminary experiment. As shown in Table 3.3, in nearlyall ases the lassi�ation trees trained with manually orreted features havea higher auray (determined by 10-fold ross-validation). For the predi-tion of aentuation level and aent loation the di�erenes in auray are



3.2. Symboli Prosody Predition 69predition taskaentuation aent aent �nalfeature type level loation type ontourpart of speeh √ ≈ √ ≈ √neighbour POS ≈word frequeny √ ≈ √ ≈neighbour word freq. √ ≈ √ ≈ √following puntuation √ ≈ √ √ ≈ √ ≈sentene length √ ≈ ≈ √sentene type √ ≈ √ √ ≈SCHUG ategory √ √ √neighbour SCHUG at. ≈ √SCHUG grammatial funtion √neighbour SCHUG gram.funt. √ ≈SCHUG phrase length √ √neighbour SCHUG length √hunk phrase at. ≈neighbour hunk phrase at. ≈ ≈ √ ≈ √ ≈hunk phrase length ≈ √neighbour hunk phrase length ≈lexial stress √ ≈syllable length ≈ ≈position in sentene ≈ ≈ √position between puntuation ≈position in inter-pause streth ≈ ≈ √ ≈ ≈position in prosodi phrase √ ≈ √ ≈ √ √ ≈position in SCHUG phrase √ √ ≈position in hunk phrase √ ≈position in word √ ≈ √ ≈Table 3.2.: Automatially seleted feature types for the predition of aen-tuation level, aent loation, aent type, and phrase-�nal in-tonation ontour. The features marked with √ are used for thepredition with manually orreted features. The features markedwith ≈ are used for the predition with automatially preditedfeatures.only minor. However, it ould be argued that an improvement of the pre-existing tools (TnT, SCHUG, and hunk tagger) and an improvement in the



70 3. Prosody Predition with CARTpredition of pauses and prosodi boundaries would have a positive e�et onthe auray of the predition of aent types and phrase-�nal intonationontours. Nonetheless, for the training of the lassi�ation trees desribed inthe following setions only automatially predited features were used.predition taskaentuation level aent loation aent type �nal ontourkko/k61 −0.2 0.2 1.4 0.7rtd/k62 0.4 0.3 1.6 1.5Table 3.3.: Di�erenes in auray (in perentage points) between preditiontasks using manually orreted features vs. only automatiallypredited features. A negative value means that the auray ishigher if automatially predited features are used.
Aentuation LevelClassi�ation Trees The root node of both lassi�ation trees preditingaentuation level partitions the data aording to word frequeny (≤ 549vs. > 549), followed by nodes onerning part of speeh. This illustratesthe fat that aentuation level is mainly determined by frequeny fators:The more frequent a word, the lower its probability of ontaining aentedsyllables. The lassi�ation tree for kko/k61 ends with a leaf that assignsaentuation level 0 (unaented) to all syllables in words with a frequenyhigher than 1253.Evaluation 10-fold ross-validation led to auray values of 90.3%(kko/k61) and 86.6% (rtd/k62). Detailed onfusion matries are shown inTable 3.4. We an assign a ost matrix, so that the ost of a lassi�ationerror is omputed by the distane between the atual aentuation level andthe predited one. This re�ets the amount of damage done by a wronglassi�ation. For example, if the atual aentuation level is 1 (partiallyaented), but the model predits 3, the ost is 2. The average ost is 0.142



3.2. Symboli Prosody Predition 71for kko/k61 and 0.187 for rtd/k62. We an onlude that aentuation iseasier to model for kko/k61 than for rtd/k62.kko/k61 rtd/k62atual lassi�ed asaentuation 0 1 2 3 0 1 2 30 2718 70 168 3 2690 87 183 71 122 248 129 2 118 368 171 32 158 55 4071 6 182 107 3598 503 8 1 37 34 13 6 121 129Table 3.4.: Confusion matries for aentuation level predition.Aent LoationClassi�ation Trees The root node in both lassi�ation trees for aentloation predition partitions the data aording to lexial stress, so thatonly syllables with primary stress reeive an aent. Closely following nodesonern part-of-speeh, word frequeny (only kko/k61), and relative positionof the syllable within the word. For example, in rtd/k62's lassi�ation tree,most syllables with a relative position smaller than 80% within the wordarry an aent, the others do not. This aptures the fat that most funtionwords are monosyllabi, the only syllable reeiving a position of 100%. Finerdistintions are made by part-of-speeh nodes further down the tree.Evaluation Again, the lassi�ation tree for kko/k61 (auray 93.6%) per-forms slightly better than the tree for rtd/k62 (auray 92.1%, see Table3.5).Aent TypeClassi�ation Trees The higher nodes in both lassi�ation trees predit-ing aent type partition the data aording to following puntuation anddistane to the following pause. This illustrates that aent type dependslargely on positional features. Further down the tree, rtd/k62 relies mostly



72 3. Prosody Predition with CARTF-measure aurayaent no aentkko/k61 0.893 0.954 93.6%rtd/k62 0.873 0.943 92.1%Table 3.5.: 10-fold ross-validated performane measures for the aent loa-tion lassi�ation trees.on the feature �word frequeny of the left neighbour�, whereas kko/k61's treeuses the feature �part-of-speeh of the right neighbour�.Evaluation Auray �gures for the lassi�ation trees prediting aenttype are rather low (kko/k61: 54.3%, rtd/k62: 58.1%), re�eting the di�-ulty of the task: six di�erent aent types are to be predited. However, forthis predition task the lassi�ation tree for rtd/k62 performs better thanthe tree for kko/k61.F-measures are extremely low for ��at� (< 0.06), �early valley� (< 0.1),and (only for kko/k61) �non-early valley� (0.09). As shown in Table 3.6, themost ommon mislassi�ation for �at aents and valleys are mid peaks andlate peaks. If an early valley is mislassi�ed as late peak, this error ouldbe regarded as not so severe, e.g. an inexperiened human labeller ould alsomake this mistake. Peaks are mostly mislassi�ed as other peaks.kko/k61 rtd/k62atual lassi�ed asaent type � ep mp lp ev nev � ep mp lp ev nev�at 2 5 52 28 0 0 3 7 32 47 1 2early peak 1 276 85 11 2 1 2 301 30 44 1 1mid peak 4 122 488 250 10 7 4 75 345 343 7 18late peak 5 6 241 506 10 8 6 1 165 687 4 2early valley 0 2 62 58 8 13 2 1 46 80 8 9non-early valley 1 2 44 39 13 6 2 2 26 37 3 44Table 3.6.: Confusion matries for the predition of aent types (� = �at, ep= early peak, mp = mid peak, lp = late peak, ev = early valley,nev = non-early valley).



3.2. Symboli Prosody Predition 73Phrase-Final Intonation ContourAfter manual inspetion of the data, the phrase-�nal intonation ontourlasses were simpli�ed by forming the following groups:
• lowrise: low rise, level-low rise, mid fall-low rise, and terminal fall-lowrise
• highrise: high rise, level-high rise, mid fall-high rise, and terminal fall-high rise
• level: level and level-minimal rise
• midfall: mid fall and mid fall-minimal rise
• termfall: terminal fall and terminal fall-minimal rise.Classi�ation Trees The main features used in the lassi�ation tree forspeaker kko/k61 are distane to the following prosodi boundary and sim-pli�ed part-of-speeh of the seond right neighbour. This suggests that forspeaker kko/k61 the position of the last aented syllable in the prosodiphrase is the most important fator to determine the phrase-�nal intonationontour.For speaker rtd/k62 the main features are distane to the followingpause, sentene type, and simpli�ed following puntuation. The beginning ofthe lassi�ation tree shown in Figure 3.3 reveals that speaker rtd/k62 usesmostly terminal falls in statements, exlamations, and alternative questions,low rises in wh-questions and polite questions, and high rises in yes-no ques-tions, delarative questions and negative questions. Therefore, it is worth-while to distinguish between di�erent question types, whih is in line withthe �ndings reported by Brinkmann & Benzmüller (1999).Evaluation Overall auray of both trees is 81.5% (kko/k61) and 74.1%(rtd/k62). However, the F-measures for rtd/k62 are all above 0.5, exept formid fall, whereas for kko/k61 the F-measures of high rise, level, and mid fall



74 3. Prosody Predition with CARTdistanefollowingpause_words_auto <= 1| sentenetype = st: termfall (471.0/6.0)| sentenetype = ex: termfall (24.0/1.0)| sentenetype = wh: lowrise (46.0/22.0)| sentenetype = yn: highrise (30.0/10.0)| sentenetype = dq: highrise (4.0)| sentenetype = neg: highrise (5.0/1.0)| sentenetype = alt: termfall (2.0)| sentenetype = pol: lowrise (12.0/6.0)distanefollowingpause_words_auto > 1| followingpunt_simple_word = omma[...℄Figure 3.3.: Beginning of rtd/k62's lassi�ation tree for prediting phrase-�nal intonation ontour lasses.are all below 0.2. As an be seen in the onfusion matrix for speaker kko/k61in Table 3.7, the reall of highrise is 0 (i.e the lassi�ation tree never preditsa high rise) � most high rises are even mislassi�ed as terminal falls.kko/k61 rtd/k62atual lassi�ed asaentuation lr hr lev mf tf lr hr lev mf tflowrise 175 0 8 4 14 104 13 41 7 19highrise 4 0 0 0 28 18 27 1 0 2level 52 0 6 0 5 49 0 75 5 10midfall 22 0 1 3 1 21 0 15 8 7termfall 33 0 1 0 576 32 1 15 2 525Table 3.7.: Confusion matries for the predition of phrase-�nal intonationontours.
3.3. Segmental PreditionsOn the segmental (phonemi) level, we predit the features that are neededto generate input for MBROLA, namely

• realised phoneme (i.e predition of postlexial phonologial proesses)
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• duration
• median F0
• last F0.3.3.1. FeaturesFor the predition of the segmental features, two di�erent feature sets areused. The �rst one, alled Symboli, ontains features relating to prosodiboundaries, aents, and phrase-�nal intonation ontours. The seond one,alled Diret, does not ontain any of those symboli prosody features. Asshown in Figure 4.1 (Setion 4.1.2), the Diret predition method leavesout the symboli prosody predition ompletely. This way, it loses someinformation, but it also redues error aumulation. The two feature setsfor Symboli and Diret predition are desribed in the following setions.No automati feature seletion was performed, beause the datasets were toolarge, making automati feature seletion unfeasible in a reasonable amountof time.Symboli Feature SetFor eah phoneme, the same features as for syllable-level symboli prosodypredition (see Setion 3.2.2) are used, exept for SCHUG and hunkphrase features. In addition, the following features were extrated from thedatabase:
• phoneme level features, for a window of 5 phonemes (the respetivephoneme and 2 neighbouring phonemes to the left and to the right):

⋆ phoneme identity
⋆ phoneme type (vowel, onsonant)
⋆ onsonant fortis/lenis (unde�ned, fortis, lenis)
⋆ strutural position in syllable (onset, nuleus, oda, ambisyllabi)
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⋆ number of phonemes in the same syllable struture position (notfor neighbouring phonemes)

• syllable level features:
⋆ aentuation level
⋆ aent loation (none, aent)
⋆ distane to preeding and following aented syllable

• aent group level features:
⋆ aent type
⋆ aent type of following aent group
⋆ phrase-�nal intonation ontour (�none� for non-phrase-�nal aentgroups).An aent group was de�ned as a group of syllables onsisting of oneaented syllable and all following syllables up to, but not inluding, thenext aented syllable. Syllables in pre-heads were de�ned as belonging tothe following aent group.The Symboli feature set exists in two variants: The �rst one is usedfor the predition of postlexial phonologial proesses and uses features ofanoni phonemes and syllables. The seond one is used for the preditionof duration, median F0, and last F0, and uses features of realised phonemesand syllables.Diret Feature SetFor eah phoneme, the same features as for syllable-level symboli prosodypredition (see Setion 3.2.2) are used, exept for those features relating toprosodi boundaries. In addition, the following features were extrated fromthe database:anoni phoneme level features, for a window of 5 anoniphonemes (the respetive phoneme and 2 neighbouring phonemes to



3.3. Segmental Preditions 77the left and to the right):
⋆ phoneme identity
⋆ phoneme type (vowel, onsonant)
⋆ onsonant fortis/lenis (unde�ned, fortis, lenis)
⋆ strutural position in syllable (onset, nuleus, oda, ambisyllabi)
⋆ number of anoni phonemes in the same syllable struture posi-tion (not for neighbouring phonemes).3.3.2. Predition of Postlexial PhonologialProessesGlottalisation annot be synthesised by the MBROLA synthesiser. There-fore, whenever a glottal stop was deleted, but left glottalisation behind, thisdeletion ounted as replaement (marked with the glottalisation symbol /q/).This way it was possible to insert a glottal stop of 10ms during synthesis tomimi glottalisation (f. Setion 4.1.2).The predition of postlexial phonologial proesses (i.e. predition ofthe realised phoneme) was arried out in two steps.1. Change: In the �rst step, it was predited whether the anoniphoneme was deleted, replaed, or left unhanged.2. Replaement : In the seond step, for all replaed phonemes a replae-ment rule was predited.Only ertain �replaement rules� are possible, a anoni phoneme annot bereplaed by any other phoneme. All [anoni → realised℄ pairs that ourin the KCoRS were allowed as replaement rules, e.g. the replaement of/E:/ with /e:/ was aepted as replaement rule [E: → e:℄. By preditingthese rules instead of the realised phonemes, the predition of impossiblereplaements beause of data sparsity was prevented. For example, speakerkko/k61 always leaves a anoni /Y/ unhanged. Therefore, CART had no



78 3. Prosody Predition with CARTinformation regarding replaements rules for /Y/ (data sparsity). As a result,the trained lassi�ation tree assigned the replaement rule [Q → q℄, whih isthe most frequent replaement rule. Whenever neessary, these �impossible�replaements were ignored during predition.The prevalent features used in the trees prediting hange and replae-ment are phoneme identity, features of phoneme neighbours, syllable length,strutural position in the syllable, lexial stress, and aentuation level (forthe Symboli method only). The auray �gures that are listed in Table3.8 show that the Symboli predition is not always better than the Diretpredition. hange replaementSymboli Diret Symboli Diretkko/k61 94.6% 93.2% 92.3% 92.0%rtd/k62 92.8% 92.9% 94.0% 94.8%Table 3.8.: Auray of the two tasks for the predition of postlexial phono-logial hanges.
3.3.3. Predition of Aousti ParametersWagon was used to train the regression trees for the predition of the aoustiparameters duration, median F0, and last F0. Stop values and the size ofthe held-out validation set were determined in a trial-and-error proedure byomparing the evaluation measures RMSE and orrelation oe�ient () ona separate test set. When the best settings had been determined, the wholedataset was used for the training of the �nal regression trees.Duration Predition
z-sores The only feature from the feature set that was not used for du-ration predition is phoneme identity. The reason behind this is that everyphoneme has a ertain intrinsi duration whih has a strong in�uene on the



3.3. Segmental Preditions 79duration of the phoneme, e.g. tense vowels are longer than lax vowels, andfortis plosives are longer than lenis plosives. In order to fator out the in�u-ene of intrinsi duration, the absolute duration values were onverted into
z-sores, and the mean duration and standard deviation of eah phonemewere stored in a separate �le. The z-sores that are predited by the regres-sion trees an be onverted bak into absolute duration values by applyingthe following formula:absolute duration = (z-sore × stddev) + mean durationFor the Symboli predition, the z-sores were omputed on the realisedphonemes, for the Diret predition they were omputed on the anoniphonemes.Regression trees The Symboli regression trees for duration preditionuse the following features near the roots of the trees: positional features(position in prosodi phrase, neighbouring phonemes), aent loation andtype, lexial stress, syllable struture, and phoneme type. The Diret regres-sion trees also rely heavily on positional features (neighbouring phonemes,following puntuation); in addition they use part-of-speeh, word frequeny,syllable length and struture, as well as lexial stress and phoneme type.F0 Predition
z-sores The raw F0 values were also transformed into z-sores, but not byusing separate mean and stddev values for eah phoneme. Instead, for eahspeaker the mean and stddev of the median F0 values was alulated. Byprediting F0 values in terms of z-sores it is possible to use one regressiontree for several voies. For Symboli predition, last F0 is the last F0 beforea prosodi boundary. Sine the Diret predition uses no features aboutprosodi boundaries, in this ase last F0 is the last F0 before a pause.Regression trees The Symboli regression trees for the predition of me-dian F0 use phrase-�nal intonation ontour, positional features, aent type



80 3. Prosody Predition with CARTand loation, lexial stress, and syllable struture as topmost features. TheDiret regression trees for median F0 predition rely heavily on positionalfeatures; in addition they use lexial stress, part-of-speeh, and word fre-queny.The regression trees for the predition of last F0 are ompat enough,so that one of them is shown in Figure 3.4. It an be read as follows: Theroot node asks whether the word is followed by a question mark. If yes,the next question is about the distane of the preeding pause in words. Ifthis distane is smaller than 8, the predited z-sore is 0.456 (the �rst valuegiven at eah leaf denotes the stddev of all instanes of the training set atthat leaf). If the distane is at least 8, then the next question is whetherthe sentene type is a wh-question. If yes, the predited z-sore is 0.495;all other questions have a last F0 z-sore of 1.578 (i.e they end with a highintonation). Words that are not followed by a question mark follow the otherbranh of the root node. All predited z-sores in this branh are negative,thus prediting a low F0 value.EvaluationSine wagon does not o�er strati�ed ross-validation, the evaluation was ar-ried out by dividing the dataset into a training set (90%) and a test set(10%). The evaluation measures listed in Table 3.9 show the performaneof the regression trees on the test set. In terms of RMSE and , the Sym-boli predition is always better than its respetive Diret ounterpart. Inthe ase of the Symboli predition, the evaluation on the test set uses theorret symboli prosody features from the database (prosodi boundaries,aents, phrase-�nal intonation ontours). Therefore, it is quite possiblethat the Symboli predition performs worse as soon as it is implemented ina TTS system, where it is faed with inorretly predited symboli prosodyfeatures. Sine the Diret method does not rely on any orret symboliprosody features (it uses only automatially predited features), the evalua-



3.3. Segmental Preditions 81((followingpunt_word is quest)((distanepreedingpause_words_auto < 8)((1.8746 0.456342))((sentenetype is wh)((1.4928 0.495193))((1.42952 1.57833))))((rightneighbour1_POS_auto is -100)((lexialstress is none)((leftneighbour1_POS_auto is NN)((syllpositioninword_abs < 2.3)((0.207099 -1.83956))((0.19063 -1.94317)))((leftneighbour1_simplePOS_auto is pronoun)((0.178767 -1.88098))((toplevelSCHUGhunkategory_auto is PP)((0.160586 -2.01656))((leftneighbour2_simplePOS_auto is verb)((0.166037 -2.00491))((simplePOS_auto is verb)((0.217362 -1.91042))((distanepreedingpunt_inwords < 5.2)((0.191442 -1.98462))((0.177953 -1.93929))))))))((distanepreedingpause_words_auto < 4)((0.216729 -1.96712))((syllablelengthinphonemes < 5.6)((leftneighbour1_simplePOS_auto is adj)((0.171697 -1.92763))((leftneighbour1_CELEXfreq < 2528.7)((syllablelengthinphonemes < 3.2)((0.641384 -1.75926))((0.39531 -1.69561)))((0.190776 -1.90698))))((0.934826 -1.61646)))))((0.576984 -1.48369))))Figure 3.4.: Regression tree (wagon output format) prediting last F0 z-sorefor speaker rtd/k62. At branhing nodes the �yes�-branh is given�rst, followed by the �no�-branh. The �rst value at a leaf denotesthe standard deviation, the seond value is the mean (i.e. the pre-dited last F0 z-sore). Negative z-sores denote F0 values belowthe speaker's mean, positive z-sores imply a high F0 value.tion measures an be seen as fairly aurate preditors of its performane ina omplete TTS system.



82 3. Prosody Predition with CARTThere is also an interesting di�erene between the two speakers: Du-ration predition is better for kko/k61, whereas F0 predition is better forspeaker rtd/k62.predition evaluation kko/k61 rtd/k62task measure Symboli Diret Symboli Diretduration RMSE 0.773 0.791 0.8441 0.882 0.612 0.594 0.572 0.528median F0 RMSE 0.708 0.783 0.653 0.744 0.698 0.609 0.762 0.677last F0 RMSE 1.307 1.487 0.666 1.010 0.543 0.350 0.895 0.712Table 3.9.: Evaluation of the predition of duration and F0 z-sores withregression trees trained on the Symboli and the Diret datasets.The evaluation measures are root mean squared error (RMSE)and orrelation oe�ient ().



83
4. Pereptual EvaluationIn Chapter 3, the trained lassi�ation and regression trees were evaluated byomparing their preditions with the atual realisations in the KCoRS. Theorpus-based evaluation measures RMSE and orrelation oe�ient allow usto ompare di�erent mahine learning shemes or di�erent datasets. Forexample, the F0 values of the female speaker rtd/k62 seem to be easier topredit than the F0 values of the male speaker kko/k61 (see Setion 3.3.3).On the other hand, kko/k61's models for duration predition are better thanthe ones for rtd/k62.Espeially for speeh synthesis it is advisable to test the preditions ofa model not only by omparing it to the realisations in a orpus, but alsoby measuring subjetive listener preferenes with pereption experiments, forthe following reasons:1. It is unknown whih of the following three is more/most important: agood F0 predition, a good duration predition, or a good predition ofpostlexial phonologial proesses? And even if one synthesis systemis superior to another one in all three respets, it is still possible thatthis di�erene annot be pereived by listeners.2. The orpus-based evaluation measures impliitly assume the realisa-tions of one partiular speaker as gold standard. However, usuallythere are several aeptable ways to produe an utterane. If the modelommits an error in the predition ompared to the orpus, this �error�might be just as aeptable as the orpus realisation.3. Listeners may have di�ering idiosynrati preferenes. For example,Portele (1997) and Brinkmann & Trouvain (2003) showed that one



84 4. Pereptual Evaluationgroup of listeners prefers the text-to-speeh system to speak as �or-retly� as possible, with no deviations from the anoni pronuniation,while the other group prefers the inlusion of some ommon segmentalpostlexial proesses, suh as shwa-deletion and assimilation of nasals.4. Some listeners might even prefer a mahine to sound unnatural, beausethey feel unomfortable if they annot tell whether they are ommuni-ating with a mahine or with a human being.In order to avoid implementing �improvements� to the TTS system that arenot aepted by the listeners, one should therefore ondut a pereptionexperiment.The �rst pereptual evaluations of speeh synthesis systems were intel-ligibility tests, e.g. by using semantially unpreditable sentenes (SUS test;Benoît et al., 1996). This was worthwhile for the TTS systems at that time,beause some were barely intelligible. Nowadays nearly all systems are learlyintelligible, so most pereption experiments fous on naturalness, aeptane,or preferene by asking the subjets to rate the synthesised stimuli on somesale or to ompare two (or more) stimuli with eah other.Some experiments try to ompare the systems more indiretly by givingthe subjets a task (e.g. to follow the instrutions produed by a TTS system)and measuring their reation time or reording their gaze with an eye-traker(Swift et al., 2002). If the subjets generally reat faster when listening tothe stimuli generated by one system, it is argued that this system is betterthan the others, whih is ertainly true for the respetive task.In my pereption experiment, I followed the reommendations P.85 andP.800 by ITU-T1 (International Teleommuniation Union � Teleommuni-ation Standardization Setor; ITU-T, 1994, 1996). These reommendationsdesribe proedures for the pereptual evaluation of speeh signals that havebeen agreed upon by the members of ITU-T (urrently 359 institutions world-wide). They have been tested thoroughly and an be an be viewed as a1http://www.itu.int/ITU-T/



4.1. Materials and Methods 85standard, even though they are not used very often in the speeh synthesisommunity.4.1. Materials and Methods4.1.1. General ProedureTwo of the methods desribed by the ITU-T reommendation P.800 (ITU-T, 1996) are Absolute Category Rating (ACR) and Comparison CategoryRating (CCR). In the ACR proedure, the subjets are asked to judge thequality of eah synthesised stimulus they hear using the following �ve-pointsale:
5 exellent
4 good
3 fair
2 poor
1 badThe mean of all sores (MOS = mean opinion sore) is then alulated foreah stimulus type.Aording to ITU-T (1996), the ACR method tends to lead to low sensi-tivity in distinguishing among good quality TTS systems. A modi�ed versionof the ACR proedure, the CCR proedure, a�ords higher sensitivity. In theCCR proedure, the stimuli are presented to listeners by pairs (A-B) whereA is a opy-synthesised original and B is synthesised by the systems to beompared. Some �null pairs� (A-A) are inluded to hek the quality of an-horing. Aording to reommendation P.800, samples A and B should beseparated by a pause of 500 to 1000ms duration. Sine we annot assumethat A is always more aeptable than B, the order of the samples is hosenat random for eah trial. On half of the trials, A is followed by B. On the re-maining trials, the order is reversed. This way, it is also possible to examinethe ratings of eah subjet for onsisteny. The subjets use the following



86 4. Pereptual Evaluationsale to judge the quality of the seond sample relative to the quality of the�rst sample:
3 muh better
2 better
1 slightly better
0 about the same

−1 slightly worse
−2 worse
−3 muh worseIn e�et, the subjets provide two judgements with one response: �Whihsample has better quality?� and �By how muh?�. Simple averaging of thenumerial sores should yield a mean sore of approximately 0 for all ondi-tions. It is neessary to reode the raw data: In those ases where the orderof presentation is B-A, the sign of the numerial sore must be reversed(i.e. −1 → 1, 1 → −1). These reoded sores are used to ompute CMOS(omparison mean opinion sore). Thus, the results are presented in terms ofthe A-B order. Appropriate analyses of variane (ANOVA) and a posterioriTukey HSD (Honestly Signi�ant Di�erene) multiple omparison tests anbe performed on the reoded sores. Beause of the higher sensitivity, I hosethe CCR method for my pereption experiment. The spei� set-up of theexperiment (generation and presentation of stimuli, rating proedure, andgroup of subjets) is desribed in the following setions.4.1.2. StimuliThe 20 sentenes listed in Table 4.1 were randomly seleted from the KCoRSas synthesis sentenes for the pereption experiment. They had not beenused as training, validation or test items for the lassi�ation and regressiontrees desribed in Chapter 3. The mean sentene length (in anoni syllables)is 14.5 (minimum: 5, maximum: 34).All 20 test sentenes were proessed by MARY with no manual mod-



4.1. Materials and Methods 87be006 Montag war es uns zu regnerish.be038 Die Ärzte sind damit gar niht einverstanden.be074 Vater misht gleih die Karten.n015 Der gesuhte Weg ersheint auf dem Stadtplan in rotenLeuhtpunkten, indem Sie auf die Taste mit dem entsprehendenNamen drüken.e026 Gibt es eine Zugverbindung heute abend nah Frankfurt, undwenn ja, auf welhem Gleis fährt der Zug ab?e040 Ih möhte am dreiundzwanzigsten zwölften nah Oldenburgfahren, und zwar möhte ih in Oldenburg früh sein, wenn möglihvor neun Uhr.e042 Ja das ist zu früh.ko029 Sie döst müde vor sih hin.ko039 Das Kamel hat zwei Höker.ko049 Die Bejahung dieser Frage ist meine Bedingung für einenNeuanfang.mr007 Wer weiÿ dort genau Besheid?mr016 Iss dein Essen nie hastig!mr018 Bist Du sehr kalt geworden?mr040 Sehs Mädhen wollen Shwester werden.mr088 Einige Busse fahren heute später.s041 Ih möhte in vierzehn Tagen von Münhen über Hannovernah Hamburg fahren.s072 Welhen Zug muÿ ih nehmen, um gegen zehn Uhr in Würzburgzu sein?s1017 Ahtlos wirft der Knirps Matsh durhs Ekfenster.s1040 Niht alle Menshen verkraften den Linksverkehr sofort.tk010 Bei dieser Sahlage müssen wir die Hirshjagd aufshieben unduns kurz nah neun Uhr zurükmelden.Table 4.1.: List of the 20 test sentenes (with their respetive ID in theKCoRS) for the pereption experiment.i�ations (the phonemi pronuniation was examined for errors, but nonewere deteted). MARY o�ers three female and four male MBROLA voies.For the pereption experiment, I hose the two voies that were reorded forMARY's emotional synthesis (Shröder, 2004), named de6 (male voie) andde7 (female voie). In addition to those versions produed by the original



88 4. Pereptual EvaluationMARY system, three other generation methods were applied to eah sentenefor eah voie: Copy-synthesised Originals, Diret Predition, and SymboliPredition, whih are all desribed in the following setions.2 All stimuli werestored as 16-bit, 22050 Hz wav �les.Copy-synthesised OriginalsIn order to produe the opy-synthesised originals, the following features wereextrated from the KCoRS and printed in the MBROLA format (f. Setion1.1.3):
• realised phoneme
• for eah realised phoneme: duration in ms
• for eah realised sonorant and vowel: median F0 in Hz, plaed at du-ration 50% in the phoneme
• for eah last realised phoneme before a pause: last F0 in Hz.Beause of some MARY/MBROLA harateristis, the extrated featureshad to be hanged in the following ases:
• MBROLA annot synthesise glottalisation. So, whenever a glottal stophad been deleted in the original realisation and the following realisedphoneme was glottalised, a glottal stop of 10ms was inserted in order tomimi glottalisation (or at least to make sure that some sort of junturewas audible).
• Neither of the hosen MBROLA voies distinguishes between plosivelosure and release (there is only one symbol for eah plosive). There-fore, all neighbouring plosive losures and releases were ombined intoone phoneme. Also, if the plosive losure had been deleted, but therelease was still present, the symbol was hanged into the MBROLAplosive symbol.2All stimuli are available as sound �les from http://www.brinkmann.de/KaRS/.



4.1. Materials and Methods 89
• In the KCoRS there are no phonemi labels for a�riates; losure andrelease are labelled separately. After listening to some trial stimuli, Ideided to ombine all neighbouring /t/ and /s/ to the a�riate /ts/.
• Sine MBROLA voies do not o�er /6/-diphthongs, these were dividedup into the vowel (reeiving 2/3 of the diphthong's duration, and pla-ing the median F0 value at 75% of the vowel's duration) and /6/.Based on the assumption that we are aiming for natural-sounding speehsynthesis, these opy-synthesised originals onstitute the upper limit of M-BROLA, i.e. one annot get any loser to natural read speeh with theMBROLA diphone synthesis method. Phoneti vowel redutions and nasal-isation annot be aptured at all, and glottalisation an only be mimikedvery rudely. The plosive release annot be modelled separately from theplosive losure, even though the plosive releases are deleted muh more oftenthan the losures (f. Setion 3.3.2), espeially in onsonant lusters. As in-formal inspetion revealed, plosive release deletion is sometimes suessfullyaptured by the respetive diphone (espeially by the diphones of the femalevoie de7).Symboli and Diret PreditionBoth Symboli and Diret predition are methods that use the lassi�ationand regression trees that were trained on the KCoRS database (as desribedin Chapter 3). Both methods use only automatially derived features as in-put. As shown in Figure 4.1, the Symboli method predits symboli prosodyfeatures (prosodi boundaries, aentuation level, aents, and intonationontours) before prediting the MBROLA input features realised phonemestring, duration, F0 median, and last F0. The Diret method uses preditedpauses as the only additional feature for the predition of the MBROLAfeatures. In order to generate proper MBROLA input, the predited fea-tures had to be hanged in the same way as the ones of the opy-synthesisedoriginals.
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4.1. Materials and Methods 91Stimulus PairsFor every sentene, the opy-synthesised sample (A) was paired with eah ofthe automatially predited samples (B), namely MARY, Diret, and Sym-boli. A and B were separated by a pause of 800ms. In order to be ableto examine the onsisteny of the subjets' ratings, both orders (A-B) and(B-A) were inluded in the experiment, resulting to a total of 120 (20×3×2)stimulus pairs.In addition to these stimulus pairs, the sentene Heute ist shönes Früh-lingswetter. was used to generate four pairs for the training setion at thebeginning of the experiment.Four idential (A-A) and (B-B) pairs, where both samples were exatlythe same, were also inluded. These idential pairs were used to examinewhether the subjets were listening arefully.All stimulus pairs were generated with the male voie de6 and withthe female voie de7. Sine eah stimulus pair had a mean duration of7s, the experiment would have been longer than 30 minutes if eah subjethad to rate both voies. I regard 30 minutes as the maximum length for apereption experiment where the subjets have to listen arefully and remainvery foussed on the task. Therefore, two separate experiments were set up:one with the female voie and one with the male voie.4.1.3. PresentationBefore starting the pereption experiment, the subjets were asked to �ll ina questionnaire whih asked for information regarding their age, sex, andthe region of Germany they grew up in (dialetal bakground), as well asprofessional bakground and prior experiene with speeh synthesis (hoosing�none�, �little�, �regular user�, or �expert�). After the experiment, the subjetswere asked for any omments.The pereption experiment itself was onduted with SCAPE (Systemfor Computer-Aided Pereption Experiments; Grabowski & Bauer, 2004),



92 4. Pereptual Evaluationa small, �exible program written in Java. The instrutions for the subjets(see Table C.1 in Appendix C) were presented on sreen, and the stimuli werepresented via headphones. The subjets were instruted to listen arefully toboth samples of eah pair and to rate the overall quality of the seond sampleompared to the �rst one using the seven-point CCR sale by liking on therespetive radio button (see Figure 4.2). The subjets ould listen to eahstimulus pair only one, and as soon as the radio button was liked, thenext stimulus pair was presented. After rating the four training pairs, thesubjets were prompted to ask any questions regarding the proedure of theexperiment. After the training pairs and the prompt, all stimuli (inludingthe idential pairs) were presented in a randomised order (with a di�erentorder for every subjet).

Figure 4.2.: Sreenshot of pereption experiment with SCAPE.SCAPE stores the following information for eah presented stimuluspair:
• subjet ID
• presentation number of the stimulus pair
• �lename of the stimulus pair
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• duration of the stimulus pair
• reation time, measured from the beginning of the stimulus pair
• rating.4.1.4. Subjets32 subjets took part in the pereption experiment. All are native Germanspeakers, 26 of them being students or sta� members of the Department ofGeneral Linguistis. Both synthesis voies were rated by an equal number offemale and male listeners.The ratings of eah subjet were sreened for reation time and onsis-teny. A reation time that is smaller than the duration of the stimulus pairmeans that the subjet gave his or her rating before hearing the ompletestimulus pair. Sine every stimulus pair was presented twie in the experi-ment (A-B vs. B-A), the perentage of stimuli pairs that were rated similarly(both negative, both positive, or both 0) was taken as onsisteny measure.Two subjets (neither had any prior experiene with speeh synthesis)had given more than 10 of their ratings before ompletely hearing the stimuluspair. Their onsisteny sores were also rather low (33.3% and 40%). Ionluded that those two subjets had been unable to ope with the taskand exluded their ratings from further analysis. Sine these onsistenyanalyses were onduted diretly after eah subjet had ompleted the task,we were able to reassign the following subjets to new groups, ensuring thatboth synthesis voies were rated by an equal number of female and malelisteners. The remaining 30 subjets were aged between 20 and 40 years(mean: 28 years).The dialetal bakground of the subjets might have an in�uene ontheir preferene of ertain intonational patterns and segmental postlexialproesses (e.g. onerning the replaement of /E:/ by /e:/). Sine the statis-tial models were trained on two speakers from Shleswig Holstein (NorthernGermany), the subjets were grouped into �northern� (grown up in Shleswig-



94 4. Pereptual EvaluationHolstein, Hamburg, or Lower Saxony) and �other� (grown up in any otherfederal state).Eah subjet is haraterised by the following four features (number ofsubjets with that feature in parentheses):
• sex: male (14) vs. female (16)
• prior experiene with speeh synthesis: none or little experiene (16)vs. regular user or expert (14)
• dialetal bakground: northern (8) vs. other (22)
• synthesis voie the subjet had to rate: male (15) vs. female (15).The distribution of all pairwise feature ombinations among the subjetsis listed in Table 4.2. A hi-square test revealed that unfortunately thefeatures dialetal bakground and prior experiene are not independentlydistributed among the subjets (χ2 = 4.045, p < 0.05). Only one of thesubjets who grew up in Northern Germany is a regular user or expert, theother 7 have no or little experiene with speeh synthesis. In ontrast, 59%of the subjets who grew up in another part of Germany are regular users orexperts. sex experiene synthesis voiemale female none/little reg/exp male femalebakgr. northern 3 5 7 1 4 4other 11 11 9 13 11 11sex male 6 8 7 7female 10 6 8 8exper.e none/little 9 7reg/exp 6 8Table 4.2.: Absolute frequenies of pairwise feature ombinations among thesubjets of the pereption experiment (reg/exp = regular user orexpert of speeh synthesis).



4.2. Results and Disussion 954.2. Results and DisussionThe signi�ant di�erenes and interations desribed in the following setionswere found by performing univariate analyses of variane (ANOVA) and post-ho Tukey-HSD multiple omparisons with the statistial software SPSS 10.Correlations and their signi�ane were analysed using Pearson orrelation.4.2.1. Subjets' CommentsThe omments of the subjets are not only helpful for improving the proe-dure of the experiment, they also shed light on the reasons behind some ofthe ratings:Sale One subjet (with little experiene) ommented that the seven-pointsale was too �ne-grained for him, he would have preferred a three-point sale (better vs. equal vs. worse). On the other hand, anothersubjet (expert) ommented that she was very happy with the seven-point sale, whih allowed her to make �ne distintions.Pauses Some subjets found the pause between the two samples too short.One of these subjets found it rather stressful that the next stimu-lus was played automatially after he had plaed his rating. Anothersubjet found it hard to stay onentrated throughout the whole ex-periment and would have preferred an expliit pause after a blok of 60stimuli. Espeially for naive subjets one should onsider introduinglonger pauses or allowing repeated playbak.Randomisation One subjet omplained that despite randomisation, some-times the same sentene was repeated several times. Another subjeteven suspeted that the order of stimuli depended on his ratings. Ifpossible, the �randomisation� should be ontrolled, so that two neigh-bouring stimuli pairs always onsist of di�erent sentenes.



96 4. Pereptual EvaluationSentene length One subjet (with little experiene) ommented that itwas muh easier for him to make a deision if the sentenes were longer.This is in line with the generally lower sores for longer sentenes (seeSetion 4.2.3) and the orrelation between absolute sores and onsis-teny (see Setion 4.2.2): If a subjet is unsure about his rating, hetends to give a rating that is lose to 0.Reation time Two subjets onfessed that they had plaed their ratingbefore listening to the end of the seond sample whenever the samplesdi�ered so greatly that they had a very strong preferene.Sentene hoie One subjet omplained that sentene mr018 (Bist Dusehr kalt geworden? ) was ungrammatial for her (she would have pre-ferred Ist Dir sehr kalt geworden? ).MBROLA One female subjet omplained that the fundamental frequenyof the male voie was sometimes too high, whereas one male subjetfound the low F0 of the female voie too low. This illustrates thelimitations of MBROLA (and idiosynrati preferenes).Dialetal preferenes Several subjets with a Southern German dialetalbakground (raised in Saarland, Hessen, or Baden-Württemberg) om-plained that the female opy-synthesised sample of sentene e042 (Jadas ist zu früh.) sounded perfetly natural, but very arrogant. Most ofthem said they had voted for the less natural sample, whih soundedmore friendly to them. In fat, as an be seen in Figure 4.9, the Diretand Symboli samples of e042 reeived even a positive CMOS (i.e. bet-ter than the opy-synthesised original). This illustrates the fat that anatural-sounding synthesis is not always the most aepted one.



4.2. Results and Disussion 974.2.2. ConsistenyThe mean perentage of similar ratings aross all subjets is 61.1%, showingthe di�ulty of the task. One subjet ahieved only 31.7% similar ratings,whereas the most �onsistent� subjet had 85.0% similar ratings. 79.2% of allidential pairs were reognised (i.e. they were rated with 0), but only 46.7%of the subjets reognised all four idential pairs. The perentage of similarratings of a subjet and his or her reognition rate of idential pairs do notorrelate signi�antly (orrelation oe�ient: 0.233).Consisteny (1=similar rating, 0=di�erent rating) and absolute COShave a signi�ant orrelation oe�ient of 0.335 [p ≤ 0.01℄ over all stim-uli, i.e. the more extreme the rating, the more onsistent (see Figure 4.3).For example, if an item is rated with −3, it is very likely that the seondpresentation of the item is rated with a negative sore as well.

meanons
isteny

absolute COS0 1 2 30.20.30.4
0.50.60.7
0.80.9

Figure 4.3.: Correlation between absolute COS and onsisteny of ratings.An ANOVA revealed that the mean onsisteny (proportion of similarratings aross all (A-B)/(B-A) pairs) is signi�antly higher for MARY (0.75)than for Diret (0.54) and Symboli (0.55) [p ≤ 0.005℄. This illustratesthat MARY reeives more extreme ratings and also suggest that subjets arerather unsure about their ratings of Diret and Symboli.



98 4. Pereptual Evaluation4.2.3. CMOSMain E�ets and InterationsThe mean overall CMOS (over both voies and all three synthesis methods) is
−1.04. The following signi�ant CMOS di�erenes were found (by ANOVAand Tukey HSD):

• synthesis method: Symboli (−0.76) ≈ Diret (−0.80) > MARY(−1.55) [p < 0.001℄
• synthesis voie: female voie (−0.93) > male voie (−1.15) [p <

0.001℄
• prior experiene with speeh synthesis:none/little (−0.98) > regular/expert (−1.11) [p < 0.01℄
• sex of listener: male listener (−0.96) > female listener (−1.11) [p ≤

0.001℄
• dialetal bakground: northern (−0.85) > other (−1.11) [p <

0.001℄Regarding CMOS, signi�ant interations were found for:
• synthesis voie and method [p < 0.001℄
• synthesis voie, experiene, and sex of listener (three-way interation)[p < 0.001℄.All main e�ets and interations are desribed in detail in the following se-tions.Synthesis Method Over all subjets and both synthesis voies, MARYreeives signi�antly lower ratings than both Symboli and Diret (whih donot di�er signi�antly). As shown in Figure 4.4, 24.6% of all MARY stimulireeive a COS (omparison opinion sore) of −3, in ontrast to only 9.3%Diret and 8.1% Symboli stimuli. 15.4% of all MARY stimuli have a COS



4.2. Results and Disussion 99of 0 or better, whereas 38.9% Diret and 39.4% Symboli stimuli are ratedhaving a similar or better quality than the opy-synthesised original.
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Figure 4.4.: COS umulative distributions over both synthesis voies for thethree synthesis methods MARY, Diret, and Symboli. COS = 0means that the stimulus was rated having the same overall qual-ity as the opy-synthesised original, stimuli with a positive COSwere rated having a better quality than the opy-synthesisedoriginal.
Synthesis Voie If the two synthesis voies are analysed separately, thesame signi�ant di�erene is observed for eah voie: MARY reeives sig-ni�antly lower ratings than both Symboli and Diret (whih do not di�ersigni�antly). In addition, there is an interesting interation between synthe-sis voie and method. As shown in Figure 4.5, both synthesis voies reeivethe same low CMOS for MARY (−1.55). For the Diret synthesis method,the male voie gets a lower CMOS (−0.88) than the female voie (−0.72),but this di�erene is not signi�ant. For the Symboli method, the CMOSof the male voie is signi�antly lower (−1.00) than the CMOS of the femalevoie (0.53) [p ≤ 0.005℄. The additional layer of symboli prosody preditionseems to be slightly helpful only for the female voie.



100 4. Pereptual Evaluation

⋆ female voiemale voieCMOS
synthesis methodMARY Diret Symboli-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4

⋆
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Figure 4.5.: Interation between synthesis method and synthesis voie.Prior experiene with speeh synthesis Subjets with regular/expertexperiene generally give lower ratings than subjets with no or little priorexperiene. This an be explained by the fat that through their prior expe-riene with speeh synthesis, regular/experts have a lear preferene of whata TTS system should sound like, and they are able to hear �ner di�erenes.There is also an interesting interation between synthesis method and priorexperiene [p < 0.05℄: As shown in Figure 4.6, the CMOS of regular usersand experts is espeially low for MARY (−1.71) � more experiened TTSusers expet the synthesis to sound more natural.Sex of listener Looking at the CMOS of male and female listeners, we�nd that male listeners give signi�antly higher ratings (−0.96) than femalelisteners (−1.11) (this is true for all synthesis methods). However, there is asigni�ant interation between synthesis voie, experiene, and sex of listener.As an be seen in Figure 4.7, the lowest ratings are given by �naive� femalelisteners (with no or little experiene with speeh synthesis) listening to themale voie. Naive female listeners and all male listeners prefer the femalevoie, whereas expert female listeners prefer the male voie. But sine thereare only two expert female listeners who listened to the male voie, these
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⋆ regular/expertnone/littleCMOS
synthesis methodMARY Diret Symboli-1.8-1.6-1.4-1.2-1.0-0.8-0.6

⋆

⋆ ⋆

Figure 4.6.: Interation between experiene of the listener and synthesismethod.group results have to be treated with aution. In order to deide whetherthese interations really re�et di�erenes between groups, or whether theysimply show idiosynrasies of the subjets who just happen to belong to thosegroups, we need more subjets per group.Dialetal bakground Subjets with a Northern German bakground givesigni�antly higher ratings than subjets with a non-northern bakground.As mentioned in Setion 4.1.4, the features dialetal bakground and priorexperiene are not independently distributed among the subjets. Therefore,we need further analyses to determine the ause of the higher CMOS of theNorthern German subjets: Is it higher beause they prefer the harateris-tis of their home dialet in a syntheti voie, or is it higher beause theyare more �naive� subjets, who generally give higher ratings? If the dialetalbakground of a subjet has an in�uene on the ratings, this e�et shouldonly our for those stimuli that were not generated with original MARY,beause MARY was not trained on any orpus and produes Standard Ger-man output without any redutions. Figure 4.8 shows that this is not thease: the subjets with a Northern German bakground generally give more
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male voie⋆ female voie

CMOS
listenernaivemale naivefemale expertmale expertfemale-1.3-1.2-1.1-1.0-0.9-0.8-0.7-0.6-0.5-0.4
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Figure 4.7.: Interations between synthesis voie, experiene, and sex of lis-tener. �Naive� listeners are those with no or little experiene withspeeh synthesis. �Expert� listeners are regular users or expertsof speeh synthesis.positive ratings, no matter whih synthesis method they are listening to.Therefore, the ause of the higher CMOS must be their inexperiene withspeeh synthesis.
Single SentenesA possible argument against using mahine learning (ML) methods forprosody predition is that even though the overall quality of ML-based syn-thesis systems is better than the quality of rule-based systems, ML-basedsystems show a greater variane, i.e. some sentenes of ML-based systemssound exellent, whereas others sound very bad. It ould be argued thatrule-based systems might sound worse, but beause they do so onsistently,the user is not surprised by any sudden quality hanges, leading to a higheraeptane.
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⋆ othernorthernCMOS
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Figure 4.8.: In�uene of the subjets' dialetal bakground on CMOS.Sentene Length Aross all stimuli, COS orrelates negatively with sen-tene length, i.e. the longer the sentene, the lower the rating (orrelationoe�ient −0.149, p ≤ 0.01), suggesting that listeners need longer sentenesto make onsistent deisions (f. Setion 4.2.1). The absolute value of theorrelation oe�ient is signi�antly lower for MARY (−0.098) than for Di-ret (−0.174) and Symboli (−0.191). This ould be explained by the fatthat the KCoRS onsists mostly of short sentenes, so that both ML-basedmethods perform worse for longer sentenes than for shorter ones, whereasMARY uses the same set of rules for every sentene.Variane Figures 4.9 and 4.10 show the CMOS of eah sentene separatelyfor the female and the male voie. For the female voie, the variane of CMOSis lowest for MARY (MARY: 1.48, Diret: 1.81, Symboli: 1.60). Nonethe-less, the Symboli method always reeives higher ratings than MARY, sug-gesting that the Symboli method should be the hosen for the female voie.For the male voie, the ratings of MARY even have the highest varianeof all three methods (MARY: 1.81, Diret: 1.74, Symboli: 1.68). Comparedto the Diret synthesis method, MARY is only better for sentene n015, sothat I would reommend using the Diret method for the male voie.
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Figure 4.9.: CMOS for eah sentene (female voie).4.3. ConlusionsThe pereptual evaluation showed that all three synthesis methods mostlyreeive negative sores. Even though there are some exeptions, one angenerally assume the opy-synthesised originals as gold standard. It alsoshowed that both ML-based methods (Symboli and Diret) are superior tothe original rule-based MARY method.Comparing the two ML-based methods, I onlude that the symbolilevel of prosody predition an be safely skipped without obtaining a signif-iantly lower CMOS. On the other hand, the inlusion of symboli prosodypredition is not detrimental either. Therefore, the deision whether or notto inlude the symboli level an be based entirely on the purpose of thesynthesis system. If it is an instrutional or researh tool (suh as MARY),one should inlude the symboli predition level, if it is just a �blak box�for the user, one an use the Diret predition method. If only one of thevoies used in the present study was to be hosen, it should be the femalevoie de7, whih generally reeived higher ratings.As a general rule, the more experiened a TTS user, the higher his
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Figure 4.10.: CMOS for eah sentene (male voie).expetations regarding naturalness. If we aim for a wider usage of speehsynthesis, it is neessary to improve it.Finally, for a small follow-up study, the following proedure ould be ar-ried out to �nd out whether orpus-based and pereptual evaluation measuresorrelate: By omparing the synthesised stimuli with the original realisations,for eah stimulus we ould measure
• RMSE and orrelation oe�ient of duration values
• RMSE and orrelation oe�ient of median F0 values
• auray of predited segmental hanges.These orpus-based evaluation measures ould then be diretly omparedwith the pereptual ratings. The results might also shed light on the questionwhih of the three parameters � duration, F0, or postlexial phonologialproesses � is most important.
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Conlusion and OutlookThe pereptual evaluation shows that the output of a text-to-speeh sys-tem an be signi�antly improved by training all models that ontribute toprosody predition on the same database, namely the `Kiel Corpus of ReadSpeeh', whih was enrihed with additional features. More importantly, itshows that the error introdued by symboli prosody predition pereptuallyequals the amount of error produed by the diret method that does notexploit any symboli prosody features.More time and e�ort ould be spent introduing other features and try-ing out di�erent mahine learning and feature seletion methods. However,I doubt whether the resulting models would lead to a pereptually improvedoutput. I think that the limitations of the KCoRS and MBROLA have beenreahed with the presented approah.One major drawbak of the KCoRS is its textual material onsistingalmost entirely of isolated sentenes. In order to model prosodi propertiesof longer texts, we need a orpus of read newspaper texts or radio news. Theavailable speeh orpora in that domain (IMS German Radio News Corpus,S1000P, MULI; f. Setion 2.3.3) are not ompletely labelled with segmentaland prosodi information. Therefore, a possible approah would be to extendthe annotations of these orpora.Instead of using the MBROLA diphone synthesiser, an even morepromising approah is to try a di�erent synthesis method, namely non-uniform unit seletion, whih generally produes more natural sounding out-put. The speeh material in the KCoRS, whih is not more than half anhour of speeh per speaker, is not su�ient for a reliable non-uniform unitseletion speeh synthesiser (f. Brinkmann, 1997). To my knowledge, there



108 4. Pereptual Evaluationexists no publily available German database with two or more hours oflabelled speeh per speaker so far. Therefore, it would be worthwhile pro-duing suh a large labelled speeh orpus. With this orpus of read speeh,one ould also inlude breathing pauses ourring in read speeh, making thegenerated output sound more natural.Breathing is not the only �noise� in natural speeh. Campbell (2004)reported that in a large database of daily onversational speeh (the `Ex-pressive Speeh Proessing' orpus) grunts and other noises are remarkablyfrequent. Instead of lear emotional states (suh as happiness, sadness, anger,and fear), a great variety of di�erent speaking styles is present, whih expressattitudes and interpersonal relationships.I think that the hallenge for the next years is to move onward from�reading mahines� to truly onversational speeh synthesis, whih ould beused in a dialogue system or as an aid for voally disabled persons. AsCampbell (2004) argues very onviningly, in order to ahieve this long-termgoal, we will have to move away from text-based synthesis by using a largedatabase of naturally ourring onversational speeh, whih remains to bebuilt for German.
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A. PROLABIn Table A.1, Table A.2, and Table A.3 all PROLAB labels used in theKCoRS are listed and desribed. Additionally, the absolute frequeny ofeah label is given for the omplete KCoRS, speaker kko/k61, and speakerrtd/k62.
A.1. Aent and alignment labelsabsolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62aentuation level: unaented#&0 unaented 15775 2484 2455#&%0 unertain aentuationlevel 106 4 7aentuation level: partially aented#&1- �at 390 51 65$&1- �at within a word 2 0 0#&%1- �at, unertain aentua-tion level 6 0 2#&1� mid peak 780 164 180$&1� mid peak within a word 6 2 0#&|1� mid peak with upstep 6 1 0#&%1� mid peak, unertain a-entuation level 8 0 2ontinued on next page



110 A. PROLABabsolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62#&1�% mid peak, unertain align-ment 5 0 0#&1) early peak 167 23 15$&1) early peak within a word 3 0 1#&%1) early peak, unertain a-entuation level 6 0 0#&1)% early peak, unertainalignment 1 0 0#&1( late peak 411 36 73$&1( late peak within a word 7 1 1#&|1( late peak with upstep 4 0 2#&%1( late peak, unertain a-entuation level 7 2 0#&1(% late peak, unertain align-ment 8 0 0#&1℄ early valley 78 11 7$&1℄ early valley within a word 1 0 0#&%1℄ early valley, unertain a-entuation level 1 0 0#&1℄% early valley, unertainalignment 1 0 0#&1[ non-early valley 129 5 36$&1[ non-early valley within aword 2 0 0#&1[% non-early valley, unertainalignment 4 1 1$&1[% non-early valley within aword, unertain alignment 1 0 0aentuation level: aented#&2- �at 253 37 26#&|2- �at with upstep 3 0 0#&%2- �at, unertain aentua-tion level 4 1 0#&2-% unertain �at 1 0 0ontinued on next page



A.1. Aent and alignment labels 111absolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62#&2� mid peak 3539 623 453$&2� mid peak within a word 6 0 0#&|2� mid peak with upstep 373 75 67#&%2� mid peak, unertain a-entuation level 18 1 3#&%|2� mid peak with unertainupstep 1 0 1#&|%2� mid peak with upstep, un-ertain aentuation level 1 0 0#&2�% mid peak, unertain align-ment 65 11 8#&|2�% mid peak with upstep, un-ertain alignment 2 1 0#&2) early peak 2503 357 357$&2) early peak within a word 2 1 1#&|2) early peak with upstep 25 1 7#&%2) early peak, unertain a-entuation level 1 0 0#&2)% early peak, unertainalignment 44 6 9#&2( late peak 4294 709 724$&2( late peak within a word 9 3 2#&|2( late peak with upstep 302 45 63#&%2( late peak, unertain a-entuation level 10 1 2#&2(% late peak, unertain align-ment 30 3 7#&|2(% late peak with upstep, un-ertain alignment 2 1 0#&2℄ early valley 857 133 141$&2℄ early valley within a word 4 1 1#&|2℄ early valley with upstep 9 1 0#&%2℄ early valley, unertain a-entuation level 3 0 2#&2℄% early valley, unertainalignment 16 2 2ontinued on next page



112 A. PROLABabsolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62#&|2℄% early valley with upstep,unertain alignment 1 0 0#&2[ non-early valley 606 98 79$&2[ non-early valley within aword 4 2 1#&|2[ non-early valley with up-step 12 2 1#&%2[ non-early valley, unertainaentuation level 3 2 0#&2[% non-early valley, unertainalignment 8 1 0aentuation level: reinfored#&3� mid peak 369 32 105$&3� mid peak within a word 1 0 1#&|3� mid peak with upstep 5 1 2#&3�% mid peak, unertain align-ment 2 0 0#&3) early peak 11 0 4#&3( late peak 107 6 20#&|3( late peak with upstep 1 0 0#&3(% late peak, unertain align-ment 3 0 2#&3℄ early valley 3 0 1#&3[ non-early valley 3 0 1Table A.1.: PROLAB pith aent and alignment labels used in the KCoRSwith the absolute frequeny of ourrene for the ompleteKCoRS, and the speakers kko/k61 and rtd/k62.



A.2. Intonation ontour labels 113A.2. Intonation ontour labelsabsolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62onatenation and phrase-�nal ontours#&, low rise 1428 217 222$&, low rise within a word 1 1 0#&? high rise 257 34 42#&0. level 3810 567 678$&0. level within a word 7 1 2#&%0. unertain level 5 0 1#&0; level - minimal rise 1 0 0#&0., level - low rise 1 0 1#&0.? level - high rise 2 0 2#&1. mid fall 5218 874 824$&1. mid fall within a word 30 5 5#&%1. unertain mid fall 8 0 0#&1; mid fall - minimal rise 20 0 4#&1., mid fall - low rise 54 8 5#&1.? mid fall - high rise 1 0 0#&2. terminal fall 4335 748 654$&2. terminal fall within a word 8 3 1#&%2. unertain terminal fall 13 0 0#&2; terminal fall - minimal rise 284 0 20#&2., terminal fall - low rise 50 4 22#&2.? terminal fall - high rise 6 0 6phrase-initial ontours#&HP2 high-falling pre-head 26 3 1#&HP1 high-level pre-head 466 36 49#&HP2% unertain high-falling pre-head 2 1 0#&HP1% unertain high-level pre-head 1 0 0ontinued on next page



114 A. PROLABabsolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62#&HP1� upstepped high-level pre-head 1 1 0
Table A.2.: PROLAB intonation ontour labels used in the KCoRS with theabsolute frequeny of ourrene for the omplete KCoRS, andthe speakers kko/k61 and rtd/k62.A.3. Prosodi phrase boundaries, register,and speeh rate labels absolute frequeniesPROLAB desription KCoRS kko/k61 rtd/k62prosodi phrase boundaries#&PGn with reset 6038 908 954#&=PGn without reset 423 56 62#&%PGn unertain boundary withreset 20 1 7#&%=PGn unertain boundary with-out reset 5 0 0register#&HR high register 28 2 0#&LR low register 21 2 0speeh rate#&RP inreased speeh rate 1 0 0#&RM dereased speeh rate 1 0 0Table A.3.: PROLAB prosodi phrase boundary, register and speeh rate la-bels used in the KCoRS with the absolute frequeny of ourrenefor the omplete KCoRS, and the speakers kko/k61 and rtd/k62.
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B. Syntati Features
B.1. STTS part-of-speeh tagsetIn Table B.1 all part-of-speeh tags of the Stuttgart-Tübingen Tag Set(STTS) are desribed. Additionally, the absolute frequeny of eah tag (i.e.number of words with that tag) in the KCoRS is given.POS freq desription exampleADJA 176 attributive adjetive shönes [Frühlingswet-ter℄, [den℄ elften[Dezember℄ADJD 144 prediative or adverbialadjetive [es war℄ regnerish,länger [shlafen℄ADV 409 adverb gestern, jetztAPPR 490 preposition or left partof irumposition in, durh, aufAPPRART 75 preposition with artile im, am, zumAPPO 0 postposition [ihm℄ zufolgeAPZR 5 right part of irumpo-sition [von dort℄ ausART 451 artile den, einenCARD 97 ardinal number zehn, siebzehnFM 0 material of a foreignlanguage a big �shITJ 5 interjetion naja, naKOKOM 5 omparative onjun-tion wie, alsontinued on next page



116 B. Syntati Featuresontinued from previous pagePOS freq desription exampleKON 108 oordinating onjun-tion und, oder, aberKOUI 4 subordinating onjun-tion with zu and in�ni-tive ohne [sih zu shämen℄,um [noh etwas zu er-halten℄KOUS 36 subordinating onjun-tion with a senteneNE 288 proper noun Berlin, ErnaNN 1019 ommon noun Kuhen, Hunger, VaterPDAT 28 attributive demonstra-tive pronoun diese [Drängelei℄PDS 15 substituting demonstra-tive pronoun das [paÿt℄PIAT 16 attributive inde�nitepronoun that annnotbe preeded by adeterminer keine [Sheu℄, mehrere[Tage℄PIDAT 32 attributive inde�nitepronoun that an bepreeded or followed bya determiner [von℄ beiden [Zügen℄
PIS 29 substituting inde�nitepronoun man, keinerPPER 322 irre�exive personal pro-noun ih, es, ihrPPOSAT 47 attributive possessivepronoun seine [zweite Chinareise℄PPOSS 0 substituting possessivepronoun meins, deinerPRELAT 0 attributive relative pro-noun [der Mann,℄ dessen[Hund℄PRELS 16 substituting relativepronoun [ein Wanderer,℄ der [ineinen warmen Mantelgehüllt war℄ontinued on next page



B.1. STTS part-of-speeh tagset 117ontinued from previous pagePOS freq desription examplePRF 25 re�exive personal pro-noun [Du bewirbst℄ dihPROAV 10 pronominal adverb danah, trotzdem, de-shalb, demgemäÿPTKA 11 partile with adjetiveor adverb am [shnellsten℄, zu[regnerish℄PTKANT 19 answer partile ja, nein, dankePTKNEG 33 negation partile nihtPTKVZ 50 separated verbal parti-le [auf welhem Gleisfahren die Züge℄ abPTKZU 5 zu before an in�nitive [ohne sih℄ zu [shämen℄PWAT 18 attributive interroga-tive pronoun welhe [Züge℄PWAV 47 adverbial interrogativeor relative pronoun wann, wie, wo, wobeiPWS 11 substituting interroga-tive pronoun wer, wasTRUNC 0 �rst (separated) part ofomposition An- [und Abreise℄VAFIN 130 �nite auxiliary ist, habe, hätteVMFIN 152 �nite modal [dann℄ kann [ih℄, [wir℄wollenVVFIN 380 �nite ontent verb [alle℄ eilen, [Zug℄ endet[hier℄VAIMP 1 auxiliary imperative sei [gewarnt℄VVIMP 24 ontent verb imperative ahte [auf die Autos℄VAINF 18 auxiliary in�nitive sein, haben, werdenVMINF 1 modal in�nitive [man hatte lesen℄ kön-nenVVINF 146 ontent verb in�nitive [Mutter konnte länger℄shlafenVAPP 4 auxiliary past partiiple gewordenVMPP 0 modal past partiiple [er hat es℄ gekonntVVPP 27 ontent verb past par-tiiple [wurde℄ erö�net, [hat℄angetretenontinued on next page



118 B. Syntati Featuresontinued from previous pagePOS freq desription exampleVVIZU 3 ontent verb in�nitivewith inorporated zu anzustellen,abzunehmenXY 0 non-word, ontainingspeial haraters D2XW3$, 174 omma ,$. 633 sentene �nal puntua-tion mark . ? ! :$( 8 other puntuation mark - �Table B.1.: STTS part-of-speeh tagset with the absolute frequeny (i.e.number of tokens) of eah part-of-speeh tag in the KCoRSB.2. Syntati Chunk Phrasesabsolute frequenyategory d=0 d=1 d=2 d=3 d=4 ΣAP 127 9 4 � � 140AdvP 308 36 10 � � 354NP 992 109 26 2 1 1130PP 374 139 39 2 3 557SUBORD_CLAUSE 49 18 2 1 � 70VG 809 51 19 2 1 882W 135 48 8 � � 191
Σ 2794 410 98 7 5 3324Table B.2.: Frequeny of SCHUG ategories in the textual material of theKCoRS. d gives the level of embedding, i.e. a syntati phrase(or word) with d=0 is a top-level phrase, whih is not embeddedin any other phrase.



B.2. Syntati Chunk Phrases 119
absolute frequenyategory desription d=0 d=1 d=2 d=3 ΣAA superlative phrase with am 3 � � � 3AP adjetive phrase 27 12 1 2 42AVP adverbial phrase 23 5 3 � 31CAC oordinated adpositions � � � � �CAP oordinated adjetive phrase 2 6 1 1 10CAVP oordinated adverbial phrase 2 2 � � 4CCP oordinated omplementiser � � � � �CNP oordinated noun phrase 14 15 2 1 32CO oordinated di�erent ategories 2 � � � 2CPP oordinated adpositional phrase 1 � � � 1CVP oordinated verb phrase 1 � � � 1CVZ oordinated zu-in�nitive � � � � �ISU idiosynrati unit � � � � �MPN multi-word proper noun 3 � � � 3MTA multi-token adjetive � � � � �NM multi-token number 1 � � 1 2NP noun phrase 517 41 10 � 568PP adpositional phrase 441 105 20 2 568QL quasi-language � � � � �VZ zu-marked in�nitive 5 � � � 5

Σ 1041 186 37 7 1271Table B.3.: Frequeny of phrasal hunk tags assigned with the hunk taggerto the textual material of the KCoRS. d gives the level of em-bedding, i.e. a phrase with d=0 is a top-level phrase, whih isnot embedded in any other phrase.
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121
C. Pereption ExperimentThe instrutions for the subjets of the pereption experiment were presentedon sreen and read as follows:Du nimmst an einem Experiment zur subjektiven Bewertung vonSprahsynthesemethoden teil.In diesem Experiment wirst Du paarweise Varianten vonÄuÿerungen hören, die mit vershiedenen Sprahsynthesemethodenerzeugt wurden.Du hörst jeweils eine Variante, gefolgt von einer kurzen Pause und einerzweiten Variante. Bitte höre Dir beide Varianten sorgfältig an undbeurteile die zweite Variante im Vergleih zur ersten Variantemit Hilfe der folgenden Skala:Die zweite Variante ist, verglihen mit der ersten Variante,viel besserbesseretwas besserungefähr gleihetwas shlehtershlehterviel shlehter.Bei der Bewertung geht es um Deinen persönlihen Gesamteindruk.Wir werden mit 4 Übungsbeispielen beginnen, damit Du Dih an dieTestprozedur gewöhnen und die Lautstärke so einstellen kannst, wie sieDir angenehm ist. Nah den Übungsbeispielen kannst Du eine Pauseeinlegen, um Fragen zum Ablauf des Experiments zu stellen, falls Duirgendwelhe Probleme hast.Das Experiment dauert ungefähr 30 Minuten.Vielen Dank für Deine Teilnahme! :�)Table C.1.: Instrutions for the subjets of the pereption experiment.
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