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iiiForewordThe tenth volume of PHONUS presents a 
ombined Phoneti
s and Com-putational Linguisti
s thesis whi
h was a

epted by the Philosophi
alFa
ulties of the Universität des Saarlandes in 2005. It demonstrates howspee
h-te
hnology methods and linguisti
-phoneti
 knowledge 
an be fruit-fully 
ombined in order both to in
rease our understanding of the prosodi
stru
turing of spee
h and to improve the performan
e of spee
h-te
hnologyappli
ations. The author applies ma
hine-learning pro
edures to the pros-odi
ally labelled data of the `Kiel Corpus of Read Spee
h' in order to predi
tthe prosodi
 properties of German read texts. Two di�erent predi
tionpro
edures are developed and evaluated in a systemati
 
omparison withthe 
orpus data. In a se
ond evaluation step, 20 senten
es are synthesizedusing both pro
edures and, together with a third version synthesized usinga standard synthesis system, are measured in terms of their a

eptabilityagainst a 
opy-synthesis version.William Barry & Jürgen Trouvain, Saarbrü
ken, February 2006VorwortDer zehnte Band in der Reihe PHONUS präsentiert eine kombinierte pho-netis
he und 
omputerlinguistis
he Arbeit, die im Jahre 2005 von den Phi-losophis
hen Fakultäten der Universität des Saarlandes angenommen wur-de. Die Arbeit zeigt, wie spra
hte
hnologis
he Verfahren und linguistis
h-phonetis
he Kenntnisse fru
htbar zusammenwirken können, um sowohl un-ser Verständnis der prosodis
hen Strukturierung von gespro
hener Spra
hevoranzubringen als au
h die Qualität spra
hte
hnologis
her Anwendungen zuverbessern. Die Verfasserin setzt eine Reihe von mas
hinellen Lernverfahrenein, um aus den etikettierten Daten des `Kiel Corpus of Read Spee
h' pros-odis
he Eigens
haften für gelesene deuts
he Texte in zwei unters
hiedli
henVerfahren vorherzusagen. Die Vorhersagen werden in einem systematis
henVerglei
h mit den Korpusdaten getestet. In einem zweiten S
hritt werden 20Sätze gemäÿ der beiden Verfahren synthetisiert und in einem Perzeptions-test zusammen mit der Ausgabe eines Standardsynthesesystems gegen eineCopy-Synthese-Version gemessen. Die Perzeptionsergebnisse bestätigen diegröÿerere Akzeptabilität der von der Kandidatin erarbeiteten Verfahren.William Barry & Jürgen Trouvain, Saarbrü
ken, Februar 2006



iv



Improving Prosody Predi
tionfor Spee
h SynthesisWith and Without Symboli
 Prosody Features
Caren Brin
kmann

vorgelegt alsMagisterarbeit im Fa
h Phonetik und PhonologieDiplomarbeit im Fa
h Computerlinguistikzum Thema�The `Kiel Corpus of Read Spee
h' as a Resour
e for Spee
h Synthesis�Dezember 2004

Fa
hri
htung 4.7 Allgemeine LinguistikUniversität des Saarlandes



vi

Verfasserin: Caren Brin
kmannFörsterstr. 5066111 Saarbrü
ken
aren�brin
kmann.deBetreuer: Prof. Dr. William J. BarryZweitguta
hter Magisterarbeit: PD Dr. Henning ReetzZweitguta
hterin Diplomarbeit: Dr. Sabine S
hulte im WaldeErstellungszeitraum: 23. März � 23. Dezember 2004Webseite: http://www.brin
kmann.de/KaRS/



vii
Abstra
t
The naturalness of syntheti
 spee
h produ
ed by a text-to-spee
h (TTS)system depends strongly on the predi
tion of appropriate prosody, i.e. spee
hrhythm and melody. In many TTS systems the following predi
tion tasks
ontribute to the prosodi
 stru
ture of the generated output: predi
tion ofsymboli
 prosody features (su
h as a

ents and prosodi
 phrase boundaries),postlexi
al phonologi
al pro
esses, and a
ousti
 parameters (duration andfundamental frequen
y F0). This thesis shows how to improve the prosodypredi
tion of the German TTS system MARY, using the German spee
hdatabase �Kiel Corpus of Read Spee
h� (KCoRS) 
omprehensively for allprosody predi
tion tasks.The KCoRS 
omprises over four hours of labelled read spee
h. The ori-ginal annotation in
ludes senten
e and word boundaries, realised and under-lying (lexi
al) phonemes, orthography, and pun
tuation marks. The prosodi
annotation in
orporates the following domains: lexi
al stress, a

ent, intona-tion 
ontour, prosodi
 phrase boundaries, and pauses.The original annotation of the KCoRS was extended automati
ally withthe following additional features: senten
e type, synta
ti
 phrases, gramma-ti
al fun
tions, part-of-spee
h, word frequen
y, and syllable boundaries. Onthis extended database, a set of 
lassi�
ation and regression trees (CART)were trained for all prosody predi
tion tasks.For the per
eptual evaluation of the predi
tion models, 20 German ut-teran
es were ea
h synthesised with MARY using four di�erent prosody pre-di
tion methods:

• 
opy synthesis: phoneme, duration and F0 values were extra
ted from



viii the KCoRS and 
opy-synthesised with MARY
• MARY: existing MARY system without any modi�
ation
• symboli
: all trained prosody predi
tions models were used, in
ludingpredi
tion of symboli
 prosody features (a

ents, prosodi
 phrase boun-daries, and phrase-�nal intonation 
ontours)
• dire
t: dire
t predi
tion of postlexi
al pro
esses, duration, and F0 va-lues without using symboli
 prosody features.The per
eptual evaluation showed that the overall per
eptual quality ofMARY 
an be signi�
antly improved by training all models that 
ontributeto prosody predi
tion on the same database. More importantly, it showedthat the error introdu
ed by symboli
 prosody predi
tion per
eptually equalsthe error produ
ed by the dire
t method that does not exploit any symboli
prosody features. Thus, it 
an be 
on
luded that the symboli
 level of prosodypredi
tion 
an be safely skipped, and the de
ision whether or not to in
ludethe symboli
 predi
tion 
an be based entirely on the purpose of the TTSsystem.



ix
ZusammenfassungDie Prosodiemodellierung, d.h. die Vorhersage von Spre
hrhythmus und -melodie, ist ein ents
heidender Ein�ussfaktor für die Natürli
hkeit synthe-tis
her Spra
he. Die vorliegende Arbeit untersu
ht die Einsatzmögli
hkeitendes `Kiel Corpus of Read Spee
h' (KCoRS) für die Prosodiemodellierungin der Spra
hsynthese und zeigt, wie die Prosodievorhersage des deuts
henSpra
hsynthesesystems MARY verbessert werden kann. Dabei wird der Be-gri� der Prosodiemodellierung weit gefasst und beinhaltet sowohl die Vor-hersage symbolis
her Prosodiekategorien (Akzente und prosodis
he Phrasen-grenzen), als au
h die Modellierung postlexikalis
her phonologis
her Prozesseund die Vorhersage der akustis
hen Parameter Lautdauer und Grundfrequenz(F0).Das KCoRS besteht aus mehr als vier Stunden Lesespra
he. Es ist anno-tiert mit Laut-, Wort- und Satzgrenzen, zugrundeliegenden und tatsä
hli
hrealisierten Lauten, Orthographie und Interpunktion. Die prosodis
he Anno-tation umfasst lexikalis
hen Wortakzent, Satzakzent, Intonationskonturen,prosodis
he Phrasengrenzen und Pausen.Die bestehende Annotation des KCoRS wurde automatis
h mit folgen-den Informationen ergänzt: Satztyp, syntaktis
he Phrasen und grammati-s
he Funktionen, Wortart, Worthäu�gkeit und Silbengrenzen. Auf dieser er-weiterten Datenbasis wurden mit dem mas
hinellen Lernalgorithmus CARTKlassi�kations- und Regressionsbäume für alle Teilaufgaben der Prosodiemo-dellierung trainiert.Für die perzeptuelle Evaluation der Prosodievorhersagemodelle wurdenmit Hilfe des deuts
hen Spra
hsynthesesystems MARY und den trainiertenKlassi�kations- und Regressionsbäumen 20 Äuÿerungen synthetisiert. Jede



xÄuÿerung wurde mit vier vers
hiedenen Methoden erzeugt, wobei jeweils die-selben diphonbasierte MBROLA-Stimmen verwendet wurden:
• Copy-Synthese: Phonemsymbol, Dauer und F0-Werte wurden aus demKCoRS extrahiert und mit MBROLA in MARY synthetisiert.
• MARY: Verwendung des bestehenden MARY Systems ohne Modi�ka-tion.
• Symbolis
h: Verwendung aller trainierten Modelle, inklusive der sym-bolis
hen Prosodievorhersage von Akzenten, prosodis
hen Phrasen-grenzen und phrasen�nalen Intonationskonturen.
• Direkt: Direkte Modellierung der postlexikalis
hen Prozesse, Lautdau-ern und F0-Werte ohne Verwendung symbolis
her Prosodievorhersage-modelle.Die perzeptuelle Evaluation ergab, dass die Spra
hausgabe von MARYdur
h den Einsatz der automatis
h trainierten Modelle signi�kant verbessertwerden kann. Auÿerdem wurde gezeigt, dass si
h die Methoden Symbolis
hund Direkt perzeptuell ni
ht unters
heiden. Je na
h Anwendungszwe
k desSynthesesystems kann also auf die symbolis
he Prosodievorhersage verzi
htetwerden.
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1
Introdu
tionThe �rst text-to-spee
h (TTS) systems relied mostly on rules that were hand-
rafted by human experts. The 
onstru
tion of these rules was based on in-trospe
tion, 
arefully 
ontrolled produ
tion experiments, and manual inspe
-tion of spee
h 
orpora. The parameters of these rules were often adjustedthrough a trial-and-error pro
edure by listening to synthesised utteran
es.Some of the �rst TTS systems were barely intelligible, but even if they gen-erated 
learly understandable utteran
es, they sounded quite monotonous
ompared to human spee
h.For more than a de
ade, these hand-
rafted rules have been su

essivelyrepla
ed by models that are automati
ally trained on annotated 
orpora withma
hine learning (ML) methods. For example, a spee
h 
orpus that is anno-tated with information about a

ent pla
ement 
an be used to train a modelthat predi
ts whi
h words in an utteran
e 
arry an a

ent. These models areusually more 
omplex than the hand-
rafted rules, resulting in the output ofmore varied spee
h.The 
reation of suitable databases has be
ome very important. Thesedatabases 
an be exploited for training models that solve spe
i�
 predi
tiontasks. Large annotated spee
h databases 
an also be used for non-uniformunit sele
tion synthesis, in whi
h spee
h segments of di�erent sizes are 
on-
atenated to generate natural sounding spee
h.The German spee
h database �Kiel Corpus of Read Spee
h� (hen
eforthKCoRS) was 
hosen for the present study. With only half an hour of spee
hper speaker, the KCoRS is too small to serve as a reliable spee
h database forunit-sele
tion synthesis (
f. Brin
kmann, 1997). Nevertheless, it 
an be usedfor the training of the following TTS modules 
ontributing to prosody predi
-



2 Introdu
tiontion: symboli
 predi
tion of a

ents and prosodi
 boundaries, predi
tion ofpostlexi
al phonologi
al pro
esses (i.e. pronun
iation modelling), and predi
-tion of a
ousti
 parameters (duration and F0 values). For the present study,two diphone-based voi
es of the German TTS system MARY (S
hröder &Trouvain, 2003) were used to generate syntheti
 spee
h with the values pre-di
ted by the trained models.An impressively large number of previous studies fo
ussed on the im-provement of models for one parti
ular predi
tion task, e.g. symboli
 prosodypredi
tion, duration predi
tion, or predi
tion of F0 values. Pronun
iationmodelling has been almost entirely negle
ted for spee
h synthesis appli
a-tions. Only very few studies use one database 
omprehensively for all prosodypredi
tion tasks. The evaluation of the automati
ally trained models wasmostly 
orpus-based, i.e. the predi
tions of the respe
tive model were 
om-pared with the a
tual realisations in a database. However, formal per
eptualevaluation is needed to determine whether the 
orpus-based improvementsare per
eptually relevant in a 
omplete TTS system. For example, Brin
k-mann & Trouvain (2003) showed that the 
orpus-based di�eren
es of twoduration predi
tion models 
ould not be dis
erned by listeners as soon as thesymboli
 input to the duration models was not �awless, be
ause it had beengenerated by a TTS system. Sin
e the ultimate goal in TTS is to improvethe overall quality, �TTS quality is still assessed best by human listeners�(Strom, 2002).GoalsThe major goals of this thesis are to show the following:
• The KCoRS 
an be used for ma
hine learning-based training of prosodypredi
tion models by expanding its original annotation with featuresthat 
an be derived with pre-existing tools in a reasonable amount oftime.
• The overall per
eptual quality of the German TTS system MARY
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an be signi�
antly improved by training all models that 
ontributeto prosody predi
tion on the same database, namely the KCoRS.
• The error introdu
ed by symboli
 prosody predi
tion per
eptuallyequals the amount of error produ
ed by a dire
t method whi
h doesnot exploit any symboli
 prosody features.OutlineIn Chapter 1, this thesis starts with a brief introdu
tion to the general ar
hi-te
ture of a TTS system, fo
ussing on the German TTS system MARY. Thenext se
tion des
ribes the 
ore 
on
epts and methods in ma
hine learning,explaining a parti
ular ma
hine learning algorithm, CART, whi
h was usedto train 
lassi�
ation and regression trees for prosody predi
tion. The sele
-tive summary of previous studies illustrates the diversity of ma
hine learningmethods that have been applied to prosody predi
tion tasks. Finally, the�rst 
hapter 
on
ludes with remarks on error a

umulation within a TTSsystem and outlines two approa
hes to redu
e it.Chapter 2 motivates the 
hoi
e of the KCoRS as a database for prosodypredi
tion. It gives a detailed des
ription of the original annotation in theKCoRS and explains the features that were added semi-automati
ally withpre-existing tools and tailored Perl programs. It 
on
ludes with some remarkson the limitations of the KCoRS and further possibilities.Chapter 3 des
ribes the methods that were applied to train 
lassi�
ationand regression trees for the following prosody predi
tion tasks: predi
tion ofprosodi
 boundaries, a

ent lo
ation and type, phrase-�nal intonation 
on-tours, postlexi
al phonologi
al pro
esses, duration, and F0 values. Two typesof predi
tion models were trained: The �rst one, 
alled Symboli
, uses sym-boli
 prosody features for the predi
tion of segmental features (i.e. realisedphoneme, duration, and F0). The se
ond one, 
alled Dire
t, is a methodwhi
h predi
ts the segmental features dire
tly without using any symboli
prosody features. The predi
tions of all models were evaluated by 
omparing



4 Introdu
tionthem to the a
tual realisations in the KCoRS.Chapter 4 explains the per
eption experiment that was 
arried out toevaluate the predi
tions of the automati
ally trained models per
eptually.The results of the per
eptual evaluation show that the output of the GermanTTS system MARY 
an be signi�
antly improved by training all modelsthat 
ontribute to prosody predi
tion on the KCoRS. More importantly, theyshow that the error introdu
ed by the level of symboli
 prosody predi
tionper
eptually equals the amount of error produ
ed by the dire
t method thatdoes not exploit any symboli
 prosody features.This thesis 
on
ludes with an outlook on future dire
tions in spee
hsynthesis.



5
1. Fundamentals
1.1. Text-to-Spee
h SynthesisSpee
h synthesis 
an be de�ned as the automati
 transformation of a sym-boli
 representation into an a
ousti
 signal that sounds similar to humanspee
h (Zboril, 1997). Two 
on
epts have to be distinguished:1. A spee
h synthesis system produ
es spee
h from written text (text-to-spee
h: TTS) or a 
on
eptual representation (
on
ept-to-spee
h:CTS).2. A spee
h synthesiser produ
es spee
h from a representation of 
on-trol parameters. The spee
h synthesiser is usually the last module of aspee
h synthesis system.MARY (S
hröder & Trouvain, 2003), the TTS system utilised for this study,uses the spee
h synthesiser MBROLA (Dutoit et al., 1996). The ar
hite
tureof the German MARY system, whi
h is shown in Figure 1.1, 
an be regardedas a typi
al TTS ar
hite
ture (
f. Dutoit, 1997). MARY a

epts plain textas input and is also able to parse spee
h synthesis markup su
h as SABLE(Sproat et al., 1998) and SSML1.Due to the modular ar
hite
ture, single modules 
an be repla
ed easily.An interfa
e2 allows the user to 
ontrol ea
h pro
essing step and to 
hangethe input to ea
h module manually. All MARY modules are des
ribed in thefollowing se
tions (see S
hröder, 2004, for further details). Ex
ept for the1http://www.w3.org/TR/spee
h-synthesis/2http://mary.dfki.de



6 1. Fundamentalspart-of-spee
h tagger and the 
hunk tagger, all modules within MARY arerealised with hand-
rafted rules.
Tokeniser

Tagger+Chunker

Inflection Endings

Lexicon Prosody

Phonol. Processes

Acoustic Parameters

Synthesis

Preprocessing

unknown

tokens & sentences

SABLE text

parts-of-speech & syntactic phrases

phonemes, word stress,
syllable boundaries

pitch accents,
prosodic phrases

expanded, pronounceable forms

known

duration & F0 values

sound

pronunciation in context

plain text SSML text

MaryXML markup skeleton

Sable Parser SSML Parser

Letter-to-Sound

Figure 1.1.: Ar
hite
ture of the MARY TTS system (from S
hröder, 2004).



1.1. Text-to-Spee
h Synthesis 71.1.1. Prepro
essingTokeniser As a �rst step, the text is 
ut into separate tokens, namelywords, numbers, spe
ial 
hara
ters, and pun
tuation marks. MARY uses aset of hand-
rafted rules to disambiguate periods into senten
e-�nal periods,de
imal number delimiters, and parts of ordinal numbers or abbreviations.Text normalisation The text normalisation module (termed �Prepro
ess-ing� in Figure 1.1) 
onverts numbers and abbreviations into pronoun
eableforms.1.1.2. Natural Language Pro
essingPart-of-Spee
h TaggingPart-of-spee
h (POS) tagging is 
arried out with the statisti
al tagger TnT(Brants, 2000). The German language model of TnT was trained on the an-notated NEGRA 
orpus (Brants et al., 1999) using the Stuttgart-Tübingentag set (STTS, see Appendix B.1; S
hiller et al., 1995). TnT uses se
ond or-der Markov models, where the states represent tags and the outputs representwords. Smoothing is 
arried out with 
ontext-independent linear interpola-tion of unigrams, bigrams, and trigrams. Unknown words are handled bysu�x analysis, where tag probabilities are set a

ording to the word's �nalsequen
e of 
hara
ters, with di�erent estimates for upper
ase and lower
asewords.Chunk TaggingThe 
hunk tagger des
ribed by Skut & Brants (1998) is used to re
ognisesynta
ti
 stru
tures of limited depth (�
hunk phrases�), namely the phrasal
ategories used in the NEGRA 
orpus. The 
hunk tagger uses a generalisedMarkov Model-based tagging method based on the part-of-spee
h informa-tion provided by TnT and simple morphologi
al information.



8 1. FundamentalsGrapheme-to-Phoneme ConversionMARY uses the phoneti
 alphabet SAMPA3 for German (Wells, 2004) forthe phonemi
 trans
ription, adding also lexi
al stress and syllable bound-aries. First, in�e
tion endings are added to ordinals and abbreviations by auni�
ation-based module. Se
ond, the word is looked up in a lexi
on derivedfrom CELEX (Baayen et al., 1995). If needed, a simple 
ompound treat-ment is performed. Unknown words, whi
h 
annot be phonemised by lexi-
al lookup or 
ompound treatment, are analysed by grapheme-to-phonemerules, using a statisti
al morphologi
al parser, syllabi�
ation rules, and lexi-
al stress assignment rules. The resulting trans
ription represents the 
anoni
pronun
iation, i.e. it does not 
ontain any segmental redu
tions.Symboli
 Prosody Predi
tionThe �Prosody� module assigns symboli
 GToBI labels (Gri
e et al., 2005).GToBI4 is an adaptation of ToBI (Tones and Break Indi
es; Silverman et al.,1992) for German, whi
h des
ribes the per
eived intonation 
ontour in termsof high and low tonal targets. Break indi
es are used to mark prosodi
boundaries of intermediate phrases (break index 3) and intonation phrases(break index 4). All tonal targets must be related to either an a

entedsyllable (a

ents) or the edge of a prosodi
 phrase (edge or boundary tones).GToBI a

ents are either simple tonal targets (H* and L*) or 
omplex a

ents(L+H*, L*+H, H+L*, and H+!H*; H and L relate to high and low targets, and* is used to mark the tone of the a

ented syllable). GToBI boundary tonesalso in
lude 
omplex tones.MARY's hand-
rafted prosody rules were derived through manual 
or-pus analysis and are mostly based on part-of-spee
h and pun
tuation infor-mation. Intermediate and intonation phrase breaks are inserted at pun
tu-3Throughout this text, all trans
riptions are given in SAMPA notation. For ease of read-ing all pronun
iations are given between slashes (e.g. /a:/), irrespe
tive of phonemi
or phoneti
 status.4http://www.
oli.uni-sb.de/phonetik/proje
ts/Tobi/gtobi.php3



1.1. Text-to-Spee
h Synthesis 9ation marks and at 
ertain 
hunk phrase boundaries. Some parts-of-spee
h(e.g. nouns and adje
tives) always re
eive an a

ent, others are only a

entedif the respe
tive intermediate phrase 
ontains no noun or adje
tive. The a
-tual GToBI a

ents and boundary tones are assigned a

ording to senten
etype (statement, wh-question, yes/no-question, and ex
lamation) and posi-tion of the a

ent within the prosodi
 phrase.Postlexi
al Phonologi
al Pro
essesOn
e the prosodi
 boundaries, a

ents, and boundary tones are determined,the 
anoni
 pronun
iation 
an be 
hanged by postlexi
al phonologi
al pro-
esses (
f. Kohler, 1990). These pro
esses restru
ture the utteran
e on thesegmental level as well as on the prosodi
 level. Examples of postlexi
alpro
esses in
lude
• segmental deletions and repla
ements, e.g. haben is pronoun
ed as/ha:b=m/
• vowel redu
tions, e.g. der is pronoun
ed as /d�/
• redu
ing the number of a

ents and phrase boundaries for fast spee
h.Currently, MARY applies no postlexi
al rules. The models trained for thepredi
tion of postlexi
al pro
esses (see Se
tion 3.3.2) deal with segmental
hanges only.1.1.3. Cal
ulation of A
ousti
 ParametersMARY uses the MBROLA diphone synthesiser for synthesising the utter-an
es. MBROLA pro
esses a list 
ontaining the following information:
• phoneme in SAMPA
• duration in ms
• fundamental frequen
y (F0) targets in Hz.



10 1. FundamentalsAn example of the MBROLA input format within MARY is given in Figure1.2. After ea
h phoneme, its duration is listed. The F0 values are given aspairs (relative time in %, F0 in Hz ). For example, the �rst phoneme /h/in Figure 1.2, has a duration of 72 ms, and an F0 target value of 189 Hzat the very beginning of the phoneme. Phoneme /E/ in the example even
arries two F0 target values: The �rst one (204 Hz) is rea
hed in the middleof the phoneme (50%), the se
ond one (150 Hz) is rea
hed at its end (100%).Intensity and spe
tral quality of the phonemes 
annot be 
ontrolled withMBROLA. h 72 (0,189)a 72 (87,167)l 63o: 121 (50,205)v 67E 162 (50,204) (100,150)l 55t 66_ 410#Figure 1.2.: Example of the MBROLA input format.Duration and F0 values are predi
ted by the module �A
ousti
 Param-eters� from the symboli
 output of the pre
eding modules.Duration Predi
tionThe duration of a sound segment depends on a variety of linguisti
, pragmati
and phoneti
 fa
tors (
f. Kohler, 1992b), e.g.:
• global spee
h tempo
• semanti
ally important parts of an utteran
e are produ
ed more slowly
• stress and a

entuation: stressed syllables are longer than unstressedones
• �nal lengthening at the end of a prosodi
 phrase
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• a stressed syllable is shorter if it is followed by one or more unstressedsyllables within the same word
• phonologi
al quantity: phonologi
ally long segments (tense) are longerthan phonologi
ally short segments (lax)
• phoneti
 
ontext, e.g. segmental duration before fortis/lenis
• intrinsi
 segmental duration: high vs. low vowels, plosives vs. fri
atives,fortis vs. lenis obstruents.The duration rules 
urrently implemented in MARY are a version of the Klattrules (Klatt, 1979) adapted to German (Brin
kmann & Trouvain, 2003).Klatt rules predi
t the segmental duration by multiplying the intrinsi
 dura-tion of a given phoneme with a 
ontext-dependent fa
tor. The result is thenadded to a phoneme-spe
i�
 minimal duration, whi
h 
an also be multipliedby a 
ontext-dependent fa
tor. The adaptation of the 
ontext-dependentfa
tor values to German was a
hieved by a manual trial-and-error pro
edure.F0 Predi
tionRules to transform abstra
t ToBI labels into fundamental frequen
y (F0)values were des
ribed by Anderson et al. (1984) for English. For ea
h prosodi
phrase an F0 topline and an F0 baseline are assumed, both des
ending overthe 
ourse of the utteran
e. H targets lie on the topline, whereas L targets arepositioned on the baseline. Topline and baseline 
an be varied, e.g. a

ordingto the sex of the speaker or the senten
e type (
f. Brin
kmann & Benzmüller,1999). Be
ause of the de
lination of both lines, the F0 value of a phoneme inan a

ented syllable depends on the position of the syllable in the prosodi
phrase.1.1.4. SynthesisMBROLA (Dutoit et al., 1996) is a spee
h synthesiser based on the 
on-
atenation of diphones. It takes a list of phonemes as input, together with



12 1. Fundamentalsprosodi
 information (duration of phonemes and F0 values), and produ
esspee
h samples at the sampling frequen
y of the diphone database used.The original F0 values of the diphones in the database are transformed by atime-domain algorithm with diphone smoothing 
apabilities. In this study,MARY's MBROLA diphone databases de6 (male) and de7 (female) are usedfor synthesis (see Se
tion 4.1.2).1.2. Ma
hine LearningMa
hine learning (ML) is an area of arti�
ial intelligen
e 
on
erned withthe development of te
hniques whi
h allow 
omputers to �learn� throughexperien
e by �nding and des
ribing stru
tural patterns in data. Ma
hinelearning methods take training data and form hypotheses or models that 
anbe used to make predi
tions about novel data.A training dataset 
onsists of several instan
es, i.e. representations ofobje
ts. Instan
es are des
ribed by feature ve
tors. Features 
an be 
ategor-i
al (having a �nite number of dis
rete values) or 
ontinuous (numeri
).Ma
hine learning methods 
an be applied to the following tasks:
• 
lassi�
ation: learn to put instan
es into pre-de�ned 
lasses
• numeri
 predi
tion: learn to predi
t a numeri
 quantity instead of a
lass
• asso
iation: learn relationships between features
• 
lustering: dis
over 
lasses of instan
es that belong together.The TTS modules des
ribed in Se
tion 1.1 solve 
lassi�
ation tasks (part-of-spee
h tagging, 
hunking, symboli
 prosody predi
tion, postlexi
al phonolog-i
al pro
esses) and numeri
 predi
tion tasks (
al
ulation of a
ousti
 parame-ters). The ma
hine learning algorithm CART (Classi�
ation and RegressionTrees; Breiman et al., 1984) 
an be applied to 
lassi�
ation tasks (trainingof 
lassi�
ation trees) as well as numeri
 predi
tion (training of regression



1.2. Ma
hine Learning 13trees). CART was used for all tasks relating to prosody predi
tion des
ribedin Chapter 3.Ma
hine learning algorithms 
an be divided into supervised and unsu-pervised methods. Supervised methods are used to learn the relationshipbetween independent features and a designated dependent feature. Classi�-
ation and numeri
 predi
tion algorithms are supervised methods. Unsuper-vised learning te
hniques group the instan
es of the training data without apre-spe
i�ed dependent feature. Clustering algorithms are usually unsuper-vised. Nevertheless, even for unsupervised methods human intuition 
annotbe entirely eliminated, be
ause the designer of the task must spe
ify how thedata are to be represented and what me
hanisms will be used to sear
h fora 
hara
terization of the data.1.2.1. EvaluationWhen evaluating ma
hine learning models there are some basi
 pro
eduresto follow.1. The dataset is divided into a (bigger) training set and a (smaller) testset. The training set is used to train the model, whereas the test set isused for evaluation only.2. If the ML algorithm needs an additional dataset for a pro
edure againstover�tting (e.g. pruning in CART, see Se
tion 1.2.2), a three-fold di-vision into training set, validation set, and test set is needed. Thevalidation set is used (for pruning) during the training pro
ess.3. Sin
e annotated databases are very time-
onsuming to produ
e, onedoes not want to �waste� pre
ious data for testing. The solution to thisdilemma is k-fold 
ross-validation: The 
orpus is divided into k mu-tually ex
lusive subsets (the �folds�) of approximately equal size. Themodel is trained and tested k times. Ea
h time it is trained on thedataset minus a fold and tested on that fold. The a

ura
y estimate



14 1. Fundamentalsis the average a

ura
y for the k folds. Strati�ed 
ross-validation en-sures that ea
h 
lass is properly represented in the respe
tive trainingand test sets. After evaluation, the �nal model for implementation istrained on the 
omplete dataset.Di�erent performan
e metri
s that 
an be used for evaluation are des
ribedin the following se
tion.Performan
e Metri
sClassi�
ation and numeri
 predi
tion are evaluated with di�erent perfor-man
e metri
s. Confusion matrix, a

ura
y, re
all, pre
ision, and F-measureare used for the evaluation of 
lassi�
ation models. Root mean squared er-ror (RMSE) and 
orrelation 
oe�
ient (

) are used for evaluating numeri
predi
tion models.Confusion matrix A 
onfusion matrix is a matrix showing the predi
tedand a
tual 
lassi�
ations. A 
onfusion matrix is of size L × L, where L isthe number of di�erent 
lass values. The 
onfusion matrix in Table 1.1 is for
L = 2. predi
teda
tual positive negativepositive a bnegative c dTable 1.1.: Two-by-two 
onfusion matrix for a 
lass with 2 di�erent values(positive and negative).
A

ura
y A

ura
y is de�ned as the rate of 
orre
t predi
tions made bythe model on a test set (usually given in %). Using the variable names fromTable 1.1, the formula for a

ura
y is: (a + d)/(a + b + c + d).



1.2. Ma
hine Learning 15Pre
ision and re
all If the values of the predi
ted 
lass are not evenlydistributed, pre
ision and re
all of ea
h 
lass value are more informative thanoverall a

ura
y:
• pre
ision of 
lass value �positive� = a/(a + c)

• re
all of 
lass value �positive�= a/(a + b)

• pre
ision of 
lass value �negative� = d/(b + d)

• re
all of 
lass value �negative�= d/(c + d)If just one pre
ision value is reported, it is usually the pre
ision of the �posi-tive� value (e.g. �boundary� in 
ase of prosodi
 boundary predi
tion).F-measure Pre
ision and re
all are 
ombined in the F-measure:F-measure = (2 × recall × precision)/(recall + precision).RMSE The root mean squared error is used for the evaluation of numeri
predi
tions: RMSE =

√

∑

(predicted−actual)2

nRMSE is similar to the mean absolute error, but tends to exaggerate thee�e
t of outliers.Correlation 
oe�
ient Correlation determines the extent to whi
h thea
tual and the predi
ted values are linearly related to ea
h other. The valueof 
orrelation, the 
orrelation 
oe�
ient, does not depend on the spe
i�
 mea-surement units used. For example, if the predi
ted values are all multipliedwith 100, the 
orrelation with the a
tual values remains the same. Therefore,RMSE is usually reported in addition to the 
orrelation 
oe�
ient.1.2.2. CARTCART (Breiman et al., 1984) is a ma
hine learning algorithm for automati-
ally building 
lassi�
ation and regression trees. Classi�
ation trees predi
t
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ategori
al features, while regression trees are used to predi
t numeri
 fea-tures.Classi�
ation and regression trees 
ontain a question about some featureat ea
h node in the tree. The leaves of the tree 
ontain the best predi
tionbased on the training data, usually a single member of the predi
ted 
ategor-i
al feature (
lassi�
ation) or a predi
ted mean value (numeri
 predi
tion).

Figure 1.3.: Classi�
ation tree example (simpli�ed from Figure 3.1). Nodesare marked with ellipses, leafs are presented in re
tangles.For example, the 
lassi�
ation tree in Figure 1.3 
an be used for the pre-di
tion of prosodi
 boundaries, i.e. it predi
ts whether a word is followed by aprosodi
 boundary or not. The root node (the topmost node) partitions thedata a

ording to the feature �relative position between pun
tuation marks�.If an instan
e has a value ≤ 94% for that feature, i.e. if it is not dire
tlyfollowed by a pun
tuation mark (that would result in a value of 100%), a leafis rea
hed, and the 
lassi�
ation tree predi
ts that the respe
tive word is notfollowed by a prosodi
 boundary. If the relative position between pun
tuationmarks is > 94%, the next node further down the tree 
on
erns the feature�word frequen
y�. If the word frequen
y of an instan
e is ≤ 1940 (the wordfrequen
y feature is explained in Se
tion 2.3.1), another leaf is rea
hed, and



1.2. Ma
hine Learning 17the tree predi
ts that the respe
tive word is followed by a prosodi
 boundary.If the word frequen
y is > 1940, another question 
on
erning word frequen
yhas to be answered. The next node partitions the data into instan
es witha word frequen
y value ≤ 2423 and those with a value > 2423. The formerinstan
es are predi
ted to be followed by no prosodi
 boundary, whereas thelatter ones re
eive the predi
ted value �boundary�.CART is a powerful ma
hine learning algorithm be
ause it
• permits both 
ategori
al and 
ontinuous features (as input features andpredi
ted features)
• automati
ally sele
ts the most signi�
ant features (but see Se
tion1.2.3)
• allows human interpretation of the result (up to a 
ertain extent).The basi
 CART building algorithm starts with the 
omplete trainingset and determines the feature that splits the data minimising the mean�impurity� of the partitions. This splitting pro
edure is applied re
ursivelyon ea
h partition of the data until some stop 
riterion is rea
hed (e.g. aminimal number of instan
es in the partition). Sin
e it 
hooses the lo
allybest dis
riminatory feature at ea
h stage in the pro
ess, CART is a greedyalgorithm. This is suboptimal but a full sear
h for a fully optimised set ofquestions would result in a very high 
omputational 
ost. Be
ause of thestepwise partitioning of the data, the size of the dataset that is 
onsideredat ea
h node be
omes smaller and smaller down the tree. Therefore, datasparsity 
an be a serious problem for CART, if the gaps in the training dataare a

idental rather than systemati
.Standard impurity measures are
• for 
ategori
al features: entropy × number of instan
es
• for 
ontinuous features: variance × number of instan
es.5A very basi
 form of the tree building algorithm would lead to a fully5Entropy or varian
e alone would favour overly small partitions.



18 1. Fundamentalsexhaustive 
lassi�
ation of all instan
es in the training set, and the resultingtree would over�t the data. A method to build trees that are more suitableto make the right predi
tions for new, unseen data is 
alled pruning. Thismethod holds out a portion of the training data (the validation set). Thetrained tree is pruned ba
k until evaluation on the validation set does notimprove any further.
ToolsThe following software tools were used for the training of 
lassi�
ation andregression trees for prosody predi
tion (as des
ribed in Chapter 3):

• Weka (Witten & Frank, 2000), version 3.4.2 with Java SDK 1.5.0.Weka is a 
olle
tion of ma
hine learning algorithms and 
ontains toolsfor data pre-pro
essing, 
lassi�
ation, regression, 
lustering, asso
ia-tion rules, and visualisation. Weka is open sour
e software implementedin Java.
• wagon (King et al., 2003), version 1.2.3. wagon is an exe
utableC/C++ program, part of the Edinburgh Spee
h Tools Library.The CART algorithm implemented in Weka allows multiply bran
hingnodes, whereas wagon trains only binary bran
hing trees. Weka has beendeveloped as an instru
tional tool for ma
hine learning algorithms. There-fore, and be
ause of the implementation in Java, the CART algorithm inWeka is 
omparatively slow and very memory-intensive. For the prosodypredi
tion models des
ribed in Chapter 3, Weka was used for the training of
lassi�
ation trees, whereas regression trees were trained with wagon.The tailored program that was used to extra
t the information fromthe database in the ne
essary format was written in Perl (Wall et al., 2000).Perl was also used to implement a prototype that in
orporates the trained
lassi�
ation and regression trees for prosody predi
tion.



1.2. Ma
hine Learning 191.2.3. Feature Sele
tionIn theory, most ma
hine learning algorithms learn automati
ally whi
h arethe most appropriate features to make their predi
tions. For example, CARTshould never sele
t irrelevant features, so that adding more features shouldonly lead to better 
lassi�
ation performan
e, never to worse results. How-ever, John (1997) reported that 
lassi�
ation a

ura
y of the CART algo-rithm deteriorates (typi
ally by 5% to 10%) when a random binary feature isadded to standard datasets. Even more surprisingly, sometimes the in
lusionof highly relevant features 
an also diminish the 
lassi�
ation a

ura
y (by1% to 5% in the situations tested). Naive Bayes, another 
lassi�
ation algo-rithm, assumes that all features are independent of ea
h other. Therefore itrobustly ignores irrelevant features, but its 
lassi�
ation a

ura
y is damagedheavily when redundant features are added.Sin
e most ma
hine learning algorithms are negatively a�e
ted by irrele-vant or redundant features, it is important to pre
ede training with a featuresele
tion stage that sele
ts only the most relevant features for the predi
tiontask. �The best way to sele
t relevant attributes is manually, based on adeep understanding of the learning problem and what the attributes a
tuallymean. However, automati
 methods 
an also be useful.� (Witten & Frank,2000).Filters and Wrappers Automati
 feature sele
tion methods 
an be di-vided into �lter methods and wrapper methods. Filter methods sele
t thebest features a

ording to a reasonable 
riterion that is independent of thetask. For example, a �lter 
an sele
t those features that are most linearly
orrelated to the target 
lass. Wrapper methods apply a 
hosen ma
hinelearning algorithm (e.g. CART) to every subset of features. The best subsetis the one with the best evaluation measures.Greedy Sear
h Sin
e the number of possible feature subsets in
reases ex-ponentially with the number of features, exhaustive sear
h is impra
ti
al in



20 1. Fundamentalsmost 
ases. Therefore the feature spa
e is sear
hed greedily, either startingwith an empty feature set and adding one feature at a time (forward sele
-tion), or starting with the 
omplete feature set and deleting features one at atime (ba
kward elimination). The greedy sear
h stops if the performan
e ofthe trained model does not in
rease anymore (or some other stopping 
rite-rion is rea
hed). Forward sele
tion usually results in smaller feature subsetsthan ba
kward elimination.Complexity The CART algorithms implemented in Weka and wagon bothallow using a feature sele
tion wrapper. Wrappers are potentially very time
onsuming, be
ause the ma
hine learning algorithm is 
arried out numeroustimes. The number of 
lassi�
ation or regression trees that are trained duringfeature sele
tion depends on the number of features in the original feature set(m) and the number of sele
ted features (k). The forward sele
tion wrapperstarts out with testing ea
h feature, thus building m trees. The featurethat was used for building the best tree is retained, so that in the next step
m − 1 trees are built, and so on until the feature sele
tion stops, be
ausethe performan
e of the trees does not in
rease anymore. At that point,
(2m − k)(k + 1)/2 trees have been built. In the worst 
ase (k = m), thenumber of trees to be built during feature sele
tion is quadrati
 to the sizeof the original feature set (O(m2)).The time needed to build a single tree depends on the number of in-stan
es in the dataset (n) and the size of the feature set (m). The 
om-putational 
ost of the CART tree indu
tion algorithm (in
luding pruning)is O(mn log n) + O(n (log n)2) (Witten & Frank, 2000). The smallestdataset used for the training of prosody predi
tion models (see Se
tion 3.2.1)
onsisted of 4750 instan
es with 52 features (word-level prosodi
 boundarypredi
tion), whereas the largest dataset 
onsisted of 22094 instan
es with83 features (phoneme-level duration predi
tion). Thus, wrapper-based auto-mati
 feature sele
tion was only feasible in a reasonable amount of time forpredi
tion tasks on word or syllable level (i.e. symboli
 prosody predi
tion).



1.3. Prosody Predi
tion with Ma
hine Learning Methods 21The phoneme-level 
lassi�
ation and regression trees were trained withoutprior automati
 feature sele
tion.1.3. Prosody Predi
tion with Ma
hineLearning MethodsIn this thesis, the term �prosody predi
tion� is de�ned rather broadly as thegroup of all predi
tion models that 
ontribute to the rhythm and the melodyof a synthesised utteran
e. More pre
isely, it in
ludes all predi
tion modelsfrom symboli
 prosody predi
tion, over the predi
tion of postlexi
al phono-logi
al pro
esses to the predi
tion of a
ousti
 parameters. The predi
tion ofa
ousti
 parameters is limited to the predi
tion of duration and F0 values,be
ause these are the only two parameters that 
an be 
ontrolled for ea
hphoneme using the MBROLA synthesiser. Other a
ousti
 parameters that
ontribute to the per
eption of rhythm are intensity and spe
tral 
hara
ter-isti
s (e.g. steeper spe
tral tilt for redu
ed vowels).Various ma
hine learning algorithms have been applied to di�erentprosody predi
tion tasks. Unless two algorithms are applied to the samedataset, the reported results are hard to 
ompare be
ause of the idiosyn-
rasies of the di�erent datasets used for training. Nevertheless, the reportedevaluation measures illustrate the di�
ulty of the respe
tive task.Predi
tion of Prosodi
 BoundariesFordy
e & Ostendorf (1998) used transformation-based learning (TBL) and
lassi�
ation trees (CART) for the predi
tion of prosodi
 boundary lo
ations.TBL is a supervised ma
hine learning formalism introdu
ed by Brill (1995)for part-of-spee
h tagging. It �nds an ordered sequen
e of rules whi
h su

es-sively 
hange an initial 
lassi�
ation of the data. These rules are 
hosen bya greedy sear
h over the entire 
orpus to minimise the overall 
lassi�
ationerror. Both TBL and CART were trained on the Boston University Radio



22 1. FundamentalsNews Corpus (Ostendorf et al., 1995). In terms of a

ura
y, the 
lassi�
ationtree slightly outperformed TBL (84.1% vs. 82.6%).Atterer & S
hulte im Walde (2004) developed a relatively simple prob-abilisti
 
ontext-free grammar (PCFG, 
f. Manning & S
hütze, 2001, 
h. 11)for assigning intonation phrase boundaries to German text using STTS part-of-spee
h tags. To determine the probabilities of the grammar rules, thePCFG was trained in four iterations on 6,000 words (380 senten
es) of theIMS Radio News Corpus (Rapp, 1998). The PCFG was 
ompared with an ap-proa
h based on Hidden Markov Models (HMMs; similar to Taylor & Bla
k,1998) using a window of POS-bigrams and a 
ontext length of 6. Evalua-tion showed that the PCFG was inferior to the HMMs (F-measure: 0.741vs. 0.843).Fa
krell et al. (1999, 2001) used 
lassi�
ation trees (CART) and two-layer neural networks (NN) to predi
t prosodi
 phrase boundary strength be-tween words, values ranging from 0 to 3. Both were trained on databases ofsix di�erent languages (Dut
h, English, Fren
h, German, Italian, and Span-ish). The evaluation measures over all languages showed that both methodsperformed equally well. The a

ura
y rates for the German database were74.8% (NN) and 72.7% (CART).Zervas et al. (2003) used CART, Naive Bayes and a Bayesian Network topredi
t prosodi
 boundary lo
ations in a 
orpus of Modern Greek. CART (F-measure 0.608) and Naive Bayes (0.629) were outperformed by the BayesianNetwork (0.704).A

ent Predi
tionFordy
e & Ostendorf (1998) also used transformation-based learning (TBL)and 
lassi�
ation trees (CART) for the predi
tion of pit
h a

ent lo
ationsin the Boston University Radio News Corpus. For a

ent predi
tion, TBLoutperformed CART (a

ura
y: 86.8% vs. 85.6%).Fa
krell et al. (1999, 2001) used regression trees (CART) and two-layer



1.3. Prosody Predi
tion with Ma
hine Learning Methods 23neural networks (NN) to predi
t word prominen
e, values ranging from 0 to9. Evaluation on databases of six di�erent languages showed that CARTperforms slightly better than NN. The a

ura
y rates (exa
t 
lassi�
ation+/-1) for German are 74.5% (NN) and 74.8% (CART).Hirs
hberg & Rambow (2001) used a propositional rule learner, RIPPER(Cohen, 1995) to predi
t pit
h a

ent lo
ations (i.e. whether a word 
arriedan a

ent or not). The model is expressed as an ordered set of if-then-rules(i.e. ea
h rule only applies if the pre
eding ones do not) whi
h 
ontain ea
ha 
onjun
tion of 
onditions and a 
onsequent 
lassi�
ation. RIPPER wastrained on a 
orpus of read Wall Street Journal texts, whi
h were trans
ribedand annotated with ToBI labels. The best feature set used for training ledto an F-measure of 0.903.Postlexi
al Phonologi
al Pro
essesMost studies dealing with pronun
iation variation are 
on
erned with auto-mati
 spee
h re
ognition (ASR). Some synthesis-related studies used pronun-
iation modelling for improved labelling of large databases for unit-sele
tionspee
h synthesis (Bennett & Bla
k, 2003; Jilka & Syrdal, 2002; Breuer,2000). Whenever possible, these databases are labelled automati
ally, sothat an a

urate pronun
iation predi
tion is important. Otherwise the re-alised phonemes are always labelled with their 
anoni
 
ounterparts, nottaking into a

ount any redu
tions.Hoste et al. (2000) used TBL and CART to extra
t phonemi
 knowl-edge and rules from pairs of pronun
iation lexi
ons for Northern Dut
h andFlemish. The motivation was to adapt spee
h synthesis systems to regionalvariants. The overall a

ura
y in predi
ting the pronun
iation of a Flemishword pronun
iation from the Dut
h pronun
iation was 89% for TBL and 92%for CART.Miller (1998) inferred individual postlexi
al phonologies from labelled
orpora of read Ameri
an English using a re
urrent neural network. The



24 1. Fundamentalsmain postlexi
al phonologi
al pro
esses to be modelled were glottalisation,vowel redu
tions and the redu
ed realisation of /t/ (e.g. as �ap). The highesta

ura
y rea
hed was 89.6%.Duration Predi
tionOne of the �rst ma
hine learning te
hniques that was applied to duration pre-di
tion is CART (Riley, 1992). The regression trees trained by Brin
kmann& Trouvain (2003) rea
hed an RMSE of 22.46 ms (male voi
e) and 21.40 ms(female voi
e), performing signi�
antly better than the tested Klatt rules.Nonetheless, this di�eren
e was not per
eptible on
e the duration predi
tionmodels were implemented in MARY.Sin
e data sparsity 
an pose a problem for CART, other ma
hine learn-ing te
hniques have been suggested for duration predi
tion. Möbius & vanSanten (1996) applied a sums-of-produ
ts model (a supervised, data-drivenapproa
h) to the Kiel Corpus of Read Spee
h. The overall 
orrelation be-tween observed and predi
ted durations is 0.896. Riedi (1997) used Multi-variate Adaptive Regression Splines (MARS) to predi
t segmental durationsfrom a 
orpus of German read spee
h. The resulting model has a 
orrelation
oe�
ient of 0.90.Goubanova & Taylor (2000) 
ompared a Bayesian Network (BN) toCART and to a sums-of-produ
ts model. All three models were trainedon a database of Ameri
an English read spee
h. BN a
hieved a RMSE of 5ms, outperforming both CART (20 ms) and the sums-of-produ
ts model (9ms).F0 Predi
tionBla
k & Hunt (1996) predi
ted three F0 values for every syllable with linearregression models, using features representing ToBI labels, lexi
al stress andsyllable position. The linear regression models were trained on the BostonUniversity Radio News Corpus (Ostendorf et al., 1995). The F0 
ontours
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umulation 25generated by this method have a 
orrelation 
oe�
ient of 0.62 and 34.8 HzRMSE when 
ompared with the original realisations, whereas a previous rule-driven method (Anderson et al., 1984) resulted in a 
orrelation 
oe�
ient of0.40 and 44.7 Hz RMSE.The F0 predi
tion des
ribed by Dusterho� & Bla
k (1997) used CART topredi
t parameterised des
riptions of the F0 
ontour using the Tilt intonationmodel (Taylor & Bla
k, 1994). Evaluation on the Boston University RadioNews Corpus resulted in a 
orrelation 
oe�
ient of 0.60 and 32.5 Hz RMSE.Syrdal et al. (1998) 
ompared three di�erent F0 predi
tion methods,namely one primarily rule-based approa
h and two data-driven approa
hes,on a 
orpus of read prompts and Wall Street Journal texts. The rule-basedapproa
h was based on manually 
orre
ted ToBI labels, the two data-drivenapproa
hes used parameterised des
riptions of the F0 
ontour with Tilt orPaIntE parameters (Parametri
 Intonation Events; Möhler & Conkie, 1998).All methods were 
ompared in a formal listening test. PaIntE re
eived thehighest mean opinion s
ores (on a 5-point s
ale), followed by the rule-basedapproa
h and the Tilt method, whi
h re
eived the lowest s
ores.1.4. Error A

umulationAs 
an be seen in Figure 1.1, a TTS system 
onsists of several modules. Allthose modules make predi
tions that are not 100% perfe
t. Whenever onemodule makes an error, the modules that follow further down the pro
ess-ing 
hain �inherit� this error. If their predi
tions depend on a feature thatwas predi
ted in
orre
tly, they are likely to produ
e a follow-up error. Forexample, if the part-of-spee
h tagger predi
ts that a word is a 
ontent wordrather than a fun
tion word, the symboli
 prosody predi
tion will probablyput an a

ent on that word, even though it should not be a

ented.Automati
 training of statisti
al models is usually 
arried out on 
orporathat have been labelled semi-automati
ally, i.e. where the annotations were
he
ked manually. Thus, the annotations are near-perfe
t. Therefore, the



26 1. Fundamentalsstatisti
al models that were trained on perfe
t data make their predi
tionsbased on the assumption that their input is perfe
t. When these models arethen implemented into a TTS system, they will most 
ertainly get input that
ontains some errors. Some of these errors will have no further e�e
t, somewill lead to follow-up errors. Two methods aiming at redu
ing error a

u-mulation in a TTS system are explained in the following se
tions: The �rstone uses only automati
ally predi
ted features during training, the se
ondone predi
ts the a
ousti
 parameters dire
tly without using any intermediatesymboli
 prosody features.1.4.1. Training on Automati
ally Predi
ted FeaturesThe �rst method uses the same tools and models that are implemented inthe respe
tive TTS system to label the training data. For example, for thetraining of the symboli
 prosody predi
tion model, the automati
 predi
tionsof the POS tagger and the 
hunk tagger are used without any manual 
orre
-tions. In addition, the newly-trained prosodi
 boundary predi
tion model isused to relabel the training data, i.e. whenever the model predi
ts a prosodi
boundary, this is annotated in the database. The a

ent predi
tion model isthen trained on this partly erroneously labelled database. The predi
tionsof the a

ent model are in turn used to re-label the database with a

entinformation for the training of duration and F0 predi
tion models.Training the models on automati
ally predi
ted features has the follow-ing advantage: Sin
e the models are trained on erroneous data, they 
an�learn� to make right predi
tions from erroneous input (as long as the errorsare not random). When implemented in a 
omplete TTS system, the predi
-tions for duration and F0 might be better than those from models that weretrained on perfe
t data.Fordy
e & Ostendorf (1998) 
ompared two models for a

ent predi
tion:The �rst model was trained on a database 
ontaining manually 
orre
tedprosodi
 boundaries, the se
ond model was trained on automati
ally pre-
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umulation 27di
ted boundaries. The a

ura
y of the �rst model deteriorated from 86.8%to 86.3% when it re
eived automati
ally predi
ted features as input, whereasthe se
ond model rea
hed an a

ura
y of 86.7% on automati
ally predi
tedfeatures. They 
on
luded that most of the loss in a

ura
y 
an be regained byretraining the a

ent predi
tion model on automati
ally predi
ted features.In a for
ed-preferen
e 
omparison listening test, Fa
krell et al. (1999)
ompared the following two methods for the predi
tion of duration and F0:The �rst method (
alled MAN) used models that were trained on a manually
orre
ted database, whereas the se
ond method (
alled AUT) used only au-tomati
ally labelled training data. Both methods were 
ompared with ea
hother, as well as to 
opy-synthesised utteran
es (i.e. duration and F0 valueswere 
opied from a re
ording) and a pre-existing TTS system. Fa
krell et al.(1999) found that the di�eren
e between MAN and AUT is not signi�
ant,and that the 
opy-synthesised originals are signi�
antly better than MANand the pre-existing TTS system.Both studies suggest that predi
tion models 
an be trained on auto-mati
ally predi
ted features without resulting in a deteriorated performan
e.However, there are two potential problems to be addressed:1. The models are trained on data 
ontaining very system-spe
i�
 er-rors. Whenever a model further up the pro
essing 
hain is 
hanged, allmodels that depend on its output have to be retrained. In 
ontrast, amodel that is trained on manually 
orre
ted data 
an be applied moregenerally.2. If the TTS system is not used as a �bla
k box�, but rather as an instru
-tional or resear
h tool (su
h as MARY), the user is able to manually
hange intermediate representations. This 
an lead to rather strangebehaviour of models that have been trained on automati
ally predi
teddata. Consider the following example: For some reason the symboli
a

ent predi
tion always wrongly predi
ts a peak (high) a

ent insteadof a valley (low) a

ent under 
ertain 
onditions. Imagine that the F0
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tion has learned to 
orre
t this error by assigning a low F0 valueunder these 
onditions, even though the symboli
 a

ent predi
tionpredi
ts a peak a

ent. If a user now expli
itly assigns a peak a

ent,it might happen that the produ
ed output will have a low F0 value forthe phonemes in the a�e
ted syllables.As des
ribed in Se
tion 3.2.2, the importan
e of using manually 
or-re
ted features was tested in a preliminary experiment. As shown in Table3.3, the di�eren
es in a

ura
y between predi
tion tasks using only automat-i
ally predi
ted features vs. using manually 
orre
ted features were rathersmall.Therefore, and as a solution to the problems des
ribed above, the �nalsymboli
 predi
tion models des
ribed in Se
tion 3.2 were trained on auto-mati
ally predi
ted features, whereas the so-
alled Symboli
 duration andF0 predi
tion models des
ribed in Se
tion 3.3 were trained on 
orre
t sym-boli
 prosody features.1.4.2. Dire
t Predi
tionThe se
ond method aims at redu
ing error a

umulation simply by predi
tingduration and F0 values dire
tly without intermediate symboli
 prosody pre-di
tion. So-
alled Dire
t predi
tion models, whi
h do not use any symboli
prosody features, are des
ribed in Se
tion 3.3. Both the Symboli
 and theDire
t models are in
luded in the per
eptual evaluation (Chapter 4), showingthat they do not di�er signi�
antly.Nevertheless, the Dire
t predi
tion method is not a viable solution forTTS systems that are to be used as instru
tional or resear
h tools, be
auseit does not o�er an intermediate symboli
 prosody representation that 
ouldbe manipulated by the user.



29
2. DatabaseAs illustrated in Se
tion 1.3, di�erent ma
hine learning algorithms often leadto similar results as long as the 
hosen database (
orpus) 
ontains the infor-mation needed for training. The 
hoi
e of a suitable 
orpus and the repre-sentation of the data is of utmost importan
e. In order to train models forprosody predi
tion we need a spee
h 
orpus that is annotated with informa-tion about:

• word boundaries
• syllable boundaries
• phonemi
 (even better: phoneti
) segmental labels
• pauses
• prosodi
 phrase boundaries
• a

ents (lo
ation and type)
• boundary tones or phrase-�nal intonation 
ontours
• lexi
al stress.Unfortunately, 
orpora of read spee
h with these levels of annotationdo not abound for German. Apart from the �Kiel Corpus of Read Spee
h�1,whi
h is des
ribed in detail in the following se
tions, I know of only two otherGerman annotated spee
h 
orpora: the �IMS German Radio News Corpus�(Rapp, 1998) and the �Siemens Synthesis Corpus (SI1000P)�2. Both 
ontainread spee
h of professional broad
asting announ
ers. The former 
onsists of1http://www.ipds.uni-kiel.de/publikationen/k
rsp.en.html2http://www.phonetik.uni-muen
hen.de/Bas/BasSI1000Peng.html



30 2. Databaseradio news items and is available upon personal request. The latter 
ontains1000 newspaper senten
es, and the li
ense is rather expensive. Both 
orporaare only partly annotated with the required information, and the automati
segmental annotations were not manually veri�ed for the whole material.The KCoRS has several advantages: It is publi
ly available at a lowpri
e, it is almost 
ompletely annotated with the information needed forprosody predi
tion, and the annotations are manually veri�ed. Nevertheless,it has one drawba
k: It 
onsists mostly of isolated senten
es (there are justtwo 
omplete texts). Prosodi
 phenomena that depend on paragraph orinformation stru
ture 
annot be modelled with the KCoRS. Pause modellingis also pra
ti
ally impossible (
f. Se
tion 3.1). However, those short
omingsare outweighed by the very 
omprehensive and 
onsistent annotation.Another question that arises when 
hoosing a suitable 
orpus is whetherone should base the prosodi
 models on read or rather on spontaneous spee
h.The Institute of Phoneti
s and Digital Spee
h Pro
essing (IPDS) at the Uni-versity of Kiel also o�ers the �Kiel Corpus of Spontaneous Spee
h� (KCoSS),whi
h is annotated in the same way as the KCoRS. So, why not use theKCoSS, sin
e its 
ontents are mu
h 
loser to spee
h o

urring in real lifethan the ones of the KCoRS? One of my goals was to improve MARY, aGerman text -to-spee
h system, whi
h is a reading ma
hine, rather than a
ommuni
ation ma
hine. Of 
ourse, MARY 
ould be used as the output de-vi
e of a dialogue system. However, an important prerequisite would be thatthe generated utteran
es are also �spontaneous�. To my knowledge, breath-ing, ba
k-
hannel utteran
es, grunts, hesitations and similar 
hara
teristi
sof 
onversational spee
h are not implemented in 
urrent dialogue systems.So, for the time being, it makes more sense to train the statisti
al models onread spee
h rather than on spontaneous spee
h.It is very important to get to know the details of a database beforestarting to train any models. For example, the �rst German synthesiser thatwas built for the unit-sele
tion synthesis system CHATR (Bla
k & Taylor,1994) was very unsatisfa
tory (sometimes even unintelligible) mainly for two



2.1. The Kiel Corpus of Read Spee
h 31reasons (Brin
kmann, 1997):1. We had not realised that the two speakers who had read the 
ompletetextual material of the KCoRS were ea
h named with two di�erentIDs in di�erent parts of the 
orpus (kko and k61 for the male speaker,and rtd and k62 for the female speaker). Thus, less than half of theavailable spee
h material was used at �rst.2. We did not know that the segmental labelling in the KCoRS is mostlyphonemi
 (with only a few phoneti
 additions). For example, we be-lieved that a segment labelled with /i:/ is always a tense long vowel,when in fa
t it is often realised as a short s
hwa-like vowel in fun
tionwords. So, when su
h a redu
ed variant was used by CHATR within ana

ented, unredu
ed syllable, the resulting synthesised spee
h be
amealmost unintelligible.In Se
tion 2.1 and 2.2 the material and the original annotation of theKCoRS are des
ribed in detail. These two se
tions are mainly written forthose who would like to use the KCoRS themselves but are daunted by thelabelling format, whi
h 
an be rather 
onfusing for �rst-time users. In Se
tion2.3, I des
ribe the features that I added to the KCoRS and the tools I usedfor these additions. Finally, I 
on
lude with some remarks on the limitationsof the KCoRS, and why some features were not added.2.1. The Kiel Corpus of Read Spee
hThe KCoRS is a 
orpus of read German, whi
h was 
olle
ted and annotatedat the IPDS. It 
omprises over four hours of labelled read spee
h and isavailable on CD-ROM (IPDS, 1994).The KCoRS originates from the PHONDAT proje
t, preparatory worksstarting in 1989. The aim of the proje
t was to build a phoneti
 database ofspoken German as a resour
e for automati
 spee
h re
ognition and general



32 2. Databaselinguisti
, phonologi
al and phoneti
 questions (Kohler, 1992d). Within thePHONDAT proje
t, the same textual material (des
ribed in Se
tion 2.1.1)was used for re
ordings at four di�erent universities in Germany � Bo
hum,Bonn, Kiel and Mün
hen. Only the spee
h material re
orded at the Univer-sity of Kiel 
onstitutes the KCoRS.2.1.1. Textual MaterialThe textual material3 
onsists mostly of isolated senten
es taken from a va-riety of 
ontexts.
• Phoneti
ally balan
ed material (398 senten
es4): The startingpoint for the 
ompilation of phoneti
ally balan
ed material were the`Berlin and Marburg senten
es' (Sots
he
k, 1984). These are shortsenten
es with high-frequen
y vo
abulary, whi
h 
ontain all Germanphonemes and many of the phoneme pairs that are allowed a

ordingto the phonota
ti
 restri
tions of German (Kohler, 1992
). The othersenten
es of the phoneti
ally balan
ed material were 
hosen so that allpossible German phoneme pairs are 
overed.
• Two short stories (22 senten
es): �Die Butterges
hi
hte� and �Nord-wind und Sonne� (German version of �The Northwind and the Sun�).
• Train timetable queries (204 senten
es):� �Siemens senten
es�: invented, grammati
ally 
orre
t senten
es,e.g. I
h brau
he für übernä
hsten Montag na
hmittag eine Zug-verbindung von Baden-Baden na
h Oldenburg.� �Erlangen senten
es�: sele
ted transliterations of re
orded spon-taneous dialogues (not always grammati
ally 
orre
t), e.g. Grüÿ3The 
omplete textual material of the KCoRS is listed on the following web pages:http://www.phonetik.uni-muen
hen.de/Bas/BasPD1Contentshttp://www.phonetik.uni-muen
hen.de/Bas/BasPD2Contents4In the KCoRS, everything that ends either in a full stop, a question mark, or an ex
la-mation mark 
ounts as a senten
e.



2.1. The Kiel Corpus of Read Spee
h 33Gott, i
h bräu
hte eine Fahrkarte na
h Hamburg und wollte fra-gen, also wann der Zug abgeht dann.In total, these are 624 senten
es, 
ontaining 4932 word tokens and 1673word types (i.e. orthographi
ally di�erent words). The main textual 
har-a
teristi
s are summarised in Table 2.1. With a mean value of 7.9 words,the senten
es are relatively short. The shortest senten
es 
onsist of only oneword, and all of them are �Erlangen senten
es� (e.g. nein or danke). Thisillustrates that one-word utteran
es are quite possible in spontaneous spee
h.The longest senten
e 
ontains 29 words and is part of the short story �DieButterges
hi
hte�. 
omplete phoneti
ally restmaterial balan
edmean senten
e length (in words) 7.9 6.2 11.0frequen
y of senten
es 22.3% 10.1% 43.8%with at least one 
ommafrequen
y of 16.3% 5.8% 35.0%interrogative senten
esfrequen
y of ex
lamations 4.6% 6.5% 1.8%Table 2.1.: Chara
teristi
s of the KCoRS textual material. Figures are givenfor the 
omplete textual material and two subsets: the phoneti-
ally balan
ed material and the rest of the 
orpus (i.e. short storiesand train timetable queries).The histogram of senten
e lengths in Figure 2.1 shows that the singlemost frequent senten
e length is 5 words (senten
es with a length of 5 wordsmake up more than a quarter of the whole 
orpus), but this peak is almostentirely 
aused by the phoneti
ally balan
ed material. Within the rest ofthe textual material, the senten
e lengths are mu
h more evenly distributed.Only 22.3% of the 624 senten
es 
ontain a 
omma, whi
h is mainly due tothe general shortness of the senten
es. The KCoRS in
ludes 102 interroga-tive senten
es (senten
es ending with a question mark) and 29 ex
lamations(senten
es ending with an ex
lamation mark).
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Figure 2.1.: Histogram of senten
e lengths (
ounted in number of words) inthe textual material of the KCoRS. Noti
e the di�eren
e betweenthe phoneti
ally balan
ed material (mostly short senten
es) andthe short stories and train timetable queries (longer senten
es,more evenly distributed senten
e lengths).All of these textual 
hara
teristi
s have to be kept in mind as possiblein�uen
ing fa
tors for the performan
e of the statisti
al models that weretrained on the database.2.1.2. Re
ordingsThe PHONDAT proje
t was 
arried out in two phases. For PHONDAT1 thephoneti
ally balan
ed material and the short stories were re
orded. PHON-DAT2 
overed the train timetable queries.At the IPDS, 53 speakers (26 female, 27 male, all older than 20 years)were re
orded in a sound-treated room. One female and one male speakerread the whole textual material, ea
h of the remaining 51 speakers read asub
orpus of the 624 di�erent senten
es. Every speaker was advised to read
arefully but �uently. If an error o

urred, the re
ording was interrupted bythe supervisor and the senten
e was repeated.



2.2. Original Annotation 35The signals were digitized at 16kHz sampling frequen
y with 16-bit res-olution. They were stored in separate �les for ea
h senten
e and asso
i-ated with exa
tly one label �le with the following �le naming 
onventions:xxxyyyyy.16 for the signal �les and xxxyyyyy.s1h for the label �les, wherexxx is the speaker ID and yyyyy the senten
e ID5. For the PHONDAT1 ma-terial, the speaker ID follows the format k<number>, and information aboutthe speaker is 
oded as follows:
• even number → female speaker
• odd number → male speaker
• number <= 30 → speaker is not older than 30
• number > 60 → speaker is older than 30.This 
oding 
onvention was abandoned in PHONDAT2, so that the twospeakers who read the whole 
orpus ea
h have two di�erent speaker IDs,depending on the part of the 
orpus: the female speaker is named k62 andrtd, the male speaker has the speaker IDs k61 and kko. For the trainingof the prosody models (
f. Chapter 3), only the data of those two speak-ers is used. The 
omplete spee
h material of kko/k61 is 43.5 minutes long,rtd/k62's material amounts to 41 minutes. Dedu
ting all pauses (most ofthem are at the beginning and at the end of a �le), this leads to 29 minutes(kko/k61) and 26 minutes (rtd/k62) of `pauseless' spee
h material.2.2. Original AnnotationThe 
hara
ter set used in the label �les is 7-bit ASCII, where German umlautsare represented with spe
ial 
hara
ters (e.g. �}� for �ü�). As 
an be seen inthe example in Figure 2.2, the label �les have the following syntax:<name of label �le><orthography>oend5For the PHONDAT2 material, the senten
e ID 
onsists only of four digits (yyyy).
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anoni
al trans
ription>kend<realised form>hend<start sample> <label> <start time><start sample> <label> <start time>. . .The 
anoni
al trans
ription was derived semi-automati
ally from theorthography by manually 
orre
ting the output of the grapheme-to-phoneme
onversion module of the German text-to-spee
h synthesis system RULSYS(Kohler, 1992a).The �eld <realised form> 
ontains the sequen
e of all labels from the<label> se
tion without any position markers. Aiming for brevity, the la-bels are very 
ompa
t and rather hard to de
ipher for �rst-time users of theKCoRS. For example, #&1( labels an early peak a

ent with the a

entua-tion level 1, whereas #&1. denotes the intonation 
ontour �mid fall�. In thefollowing se
tions, all annotation symbols for the �eld <label> are des
ribedin detail.2.2.1. OrthographyThe orthographi
al representation of the words is given at the very beginningof the label �le in the �eld <orthography>. Within the <label> se
tion, thefollowing symbols relating to the orthography are used:
• Word boundaries: The symbol of the �rst phoneme of a word is markedwith a pre�xed ##. All labels within a word are pre�xed with $, allothers start with #.
• Senten
e boundaries are labelled with #
: with the same sample num-ber as the �rst phoneme of the senten
e.
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• Pun
tuation marks are always pre
eded by #. ! ? . , are anno-tated as they appear in the <orthography>, other pun
tuations marks(e.g. the 
olon) are labelled with , .

k61be022.s1hA
hte auf die Autos!oendQ 'a x t � Q aU f+ d i:+ Q 'aU t o: s !kend
: &2( Q- 'a x t -h � &0 Q- aU f+ &0 d -h i:+ &1. &2)Q- -q 'aU t -h o: s ! &2. &PGnhend 8455 #
: 0.52837508455 #&2( 0.52837508455 ##Q- 0.52837508455 $'a 0.52837509853 $x 0.615750011308 $t 0.706687512181 $-h 0.761250012431 $� 0.776875013378 #&0 0.836062513378 ##Q- 0.836062513378 $aU 0.836062514881 $f+ 0.930000015839 #&0 0.989875015839 ##d 0.989875016445 $-h 1.027750016632 $i:+ 1.039437518001 #&1. 1.125000018001 #&2) 1.125000018001 ##Q- 1.125000018001 $-q 1.125000018001 $'aU 1.125000020987 $t 1.311625021886 $-h 1.367812522588 $o: 1.411687525240 $s 1.577437529161 #! 1.822500029161 #&2. 1.822500029161 #&PGn 1.8225000Figure 2.2.: KCoRS label �le k61be022.s1h



38 2. Database2.2.2. Morpheme Boundaries and Parts-of-Spee
hOnly those morpheme boundaries that are 
onne
ted with parti
ular phoneti

hara
teristi
s (e.g. lengthening or aspiration) are marked using $# before thephoneme symbol.Fun
tion words are marked by pla
ing the symbol + after the symbol ofthe last phoneme of the word (e.g. $i:+ at sample 16632 in Figure 2.2).2.2.3. PhonemesThe segmental labelling of the KCoRS is �broad phoneti
� (Barry & Four
in,1992), i.e. the segmental label inventory is �essentially phonologi
al with asmall number of phoneti
 additions� (Kohler et al., 1995). It is based on the
anoni
al trans
ription, and the phonemes6 are trans
ribed with a modi�edversion of SAMPA (Spee
h Assessment Methods Phoneti
 Alphabet; Wells,2004):
• 21 vowels (7 short vowels, 8 long vowels, 3 diphthongs, 2 s
hwas, 1nasal vowel7): I, Y, E, 9, a, O, U, i:, y:, e:, 2:, E:, a:, o:, u:, aI, OY,aU, �, 6, a�
• 15 /6/-diphthongs (short or long vowels followed by the vo
alised r/6/,e.g. /i:6/ in Bier): I6, Y6, E6, 96, a6, O6, U6, i:6, y:6, e:6, 2:6,E:6, a:6, o:6, u:6
• 22 
onsonants, in
luding the glottal stop /Q/: p, b, t, d, k, g, Q, m, n,N, f, v, s, z, S, Z, C, x, r, h, j, l.Whenever the realised form deviates from the 
anoni
 trans
ription, the fol-lowing symbols are added:6Sin
e the trans
ription in the KCoRS is mostly phonemi
, I refer to the labelled soundsas �phonemes� throughout this text and refrain from distinguishing between phonesand phonemes.7German SAMPA has symbols for four di�erent nasal vowels, but only one of themappears in the KCoRS.
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• Deletions are marked with a hyphen after the symbol of the deletedphoneme, e.g. Q-.
• Insertions are marked with a hyphen before the symbol of the insertedsegment, e.g. -t.
• Repla
ements are marked with a hyphen after the symbol of the 
anoni
form, followed by the realised form, e.g. n-m (where n is realised as m).Only phonemi
 
hanges (e.g. redu
tion from a full vowel to s
hwa) arelabelled this way, phoneti
 variations in vowel quality or quantity arenot marked.Table 2.2 lists the per
entage of deletions, repla
ements and insertions of all
anoni
 phonemes. The most 
ommonly deleted 
anoni
 phonemes are /Q/(kko/k61: 64% vs. rtd/k62: 54%), /�/ (38% vs. 47%), and plosive releases(36% vs. 39%). deletions repla
ements insertionskko/k61 12.2% 2.0% 0.17%rtd/k62 13.7% 2.1% 0.05%Table 2.2.: Per
entage of deletions, repla
ements and insertions of all 
anoni
phonemes for speakers kko/k61 and rtd/k62.In addition to the 
anoni
 labels, the following labels are used to markphoneti
 aspe
ts of the realised segments:
• Glottalisation / 
reaky voi
e is labelled with -q.
• Nasalisation is labelled with -�, only if a nasal has been deleted andthe neighbouring realised phonemes are nasalised.
• Hesitational lengthening: If a segment is hesitationally lengthened, thelabel z: is pla
ed at the sample number of the following phoneme(i.e. after the lengthened phoneme).
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• Plosive release: The 
losure and the release phase of a plosive are la-belled separately. The release is always trans
ribed with -h, regardlessof the respe
tive plosive. If the plosive is followed by a fri
ative, theplosive release phase is usually not labelled separately but assigned tothe duration of the fri
ative.
• Un
ertainty: If the beginning of a phoneme 
annot be determined with
ertainty, the 
orresponding label is pre�xed with %.2.2.4. ProsodyThe KCoRS is annotated with the prosodi
 labelling system PROLAB (Koh-ler, 1995; Peters & Kohler, 2004), whi
h is based on the pit
h 
ontour-basedKiel Intonation Model (KIM; Kohler, 1997). It in
orporates the followingdomains: lexi
al stress, a

ent, intonation 
ontour, prosodi
 boundaries, andpauses. Labels for a

ent, intonation 
ontour and prosodi
 boundaries always
ontain & in order to separate them from the segmental labels.Lexi
al StressThere are no syllable boundaries marked in the KCoRS. Therefore, primaryand se
ondary lexi
al stress is indi
ated by pre�xing the symbol of the vowelof the stressed syllable with ' or " respe
tively (e.g. $'a at sample 8455 inFigure 2.2).Fun
tion words re
eive no lexi
al stress marking, even though there areseveral multi-syllabi
 fun
tion words in German (e.g. warum, desto, wegen).If a fun
tion word 
arries a senten
e a

ent (see below), the label $'' isinserted before the vowel of the stressed syllable.If the realised lexi
al stress position in a word deviates from the 
anoni
altrans
ription, this is marked the same way as phonemi
 
hanges (see Se
tion2.2.3, e.g. a-'a:).
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entSenten
e a

ent is usually an attribute of the whole word. Therefore, thea

ent labels are pla
ed before the respe
tive word and pre�xed with #&. Ifa word 
arries more than one a

ent and one a

ent label must be pla
edwithin a word, it is pre�xed with $&. Usually, the a

ent falls on the syllablewith primary stress. If a vowel is pre
eded by the label $'', the a

entfalls on the syllable 
ontaining that vowel. If a word 
arries more than onea

ent, a senten
e a

ent marker is provided for ea
h a

ent, either before therespe
tive morpheme boundary (if present), or dire
tly before the a

entedphoneme.Within one a

ent label, the following information is 
oded: a

entua-tion level, a

ent type, alignment, and upstep. A 
omplete list of all PRO-LAB a

ent labels that o

ur in the KCoRS is given in Appendix A.1.A

entuation level Four levels of a

entuation are distinguished:0 una

ented1 partially a

ented2 a

ented3 reinfor
ed.As shown in Figure 2.3, the most frequent a

entuation level is 0, 
loselyfollowed by 2. Speaker kko/k61 produ
ed only 39 reinfor
ed a

ents 
om-pared to 136 reinfor
ed a

ents for speaker rtd/k62.A

ent type and alignment Any syllable that is not una

ented (i.e. islabelled with an a

entuation > 0), 
arries one of three possible a

ent types:�at, peak, or valley. In addition, peak and valley labels 
arry informationabout their alignment, i.e. the position of the maximum or minimum in theF0 
ontour with respe
t to the a

ented syllable.Flat a

ents show very little 
hange in F0 a
ross several phonemes orsyllables, even though an a

ent 
an be per
eived. Kohler (2003) 
alls this
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Figure 2.3.: Absolute frequen
y of a

entuation levels for speaker kko/k61and rtd/k62.type of a

ent for
e a

ent in order to distinguish it from pit
h a

ents, whi
hare always asso
iated with an F0 movement. In PROLAB, �at a

ents arelabelled with -.Peak a

ents have a lo
al maximum in the F0 
ontour in the neighbour-hood of the a

ented syllable. Three values for alignment are available forpeak a

ents: early, mid, and late, with the respe
tive F0 maximum before,within, and after the nu
leus of the a

ented syllable. The PROLAB labelsare: ) (early peak), � (mid peak), and ( (late peak). Figure 2.4 shows thatpeak a

ents are the most frequent a

ent types for both speakers (kko/k61:85.8%, rtd/k62: 85.2%).Valley a

ents have a lo
al minimum in the F0 
ontour in the neighbour-hood of the a

ented syllable. Only two types of alignment are distinguishedfor valley a

ents: ℄ (early valley: F0 minimum before the nu
leus of thea

ented syllable) and [ (non-early valley: F0 minimum within or after thenu
leus of the a

ented syllable).
Upstep As a default, the F0 minima and maxima of the a

ents are ex-pe
ted to de
line over the 
ourse of an utteran
e, so that the �rst peak a

entin an utteran
e is higher than the se
ond one and so on (for a detailed dis
us-sion of de
lination 
f. Cohen et al., 1982). Therefore, this regular `downstep'
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Figure 2.4.: Absolute frequen
y of a

ent types for speaker kko/k61 andrtd/k62 (n.e. valley = non-early valley).of a

ents is not labelled. However, when an a

ent's minimum or maximumis higher than, or as high as the pre
eding a

ent, it is labelled with upstep:|. All a

ents with an a

entuation level greater than 0 
an be upstepped.Only 5.2% of kko/k61's a

ents and 5.8% of rtd/k62's a

ents are upstepped.
Intonation ContoursCon
atenation and phrase-�nal 
ontours PROLAB labels for intona-tion 
ontours between a

ented words (so-
alled �
on
atenation 
ontours�)and at the end of a prosodi
 phrase (phrase-�nal 
ontours) always end witha pun
tuation mark: ; is used to label a minimal rise (�pseudo-terminal 
on-tour�; Peters, 1999), , denotes a low rise, ? marks a high rise and . is usedfor several types of falls. The . is pre
eded by a digit to denote the strengthof the fall: 0 (level), 1 (mid fall), and 2 (terminal fall). All fall 
ategories
an be 
ombined with all rise 
ategories resulting in 9 additional, 
omplexintonation 
ontours. All intonation 
ontour labels are listed in AppendixA.2. As shown in Figure 2.5, falls form the most frequent 
lass of intonation
ontours, whereas high rises are very infrequent.
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Figure 2.5.: Absolute frequen
y of simpli�ed 
on
atenation and phrase-�nal
ontours (simpli�
ation as des
ribed in Se
tion 3.2.2).Phrase-initial 
ontours Most prosodi
 phrases begin with several una
-
ented syllables, the �pre-head�. As a default, the F0 
ontour of this pre-headis lower than the F0 maximum of the �rst a

ented syllable. Two �high pre-head� 
ategories are labelled in PROLAB: HP1 marks a pre-head with a F0
ontour that is as high as the following a

ent, whereas HP2 is used for apre-head starting with a high F0 
ontour that falls steadily until the �rsta

ented syllable is rea
hed. If the �rst a

ent is a valley, it is not possible todistinguish between low and high pre-head. In these 
ases, the default (lowpre-head) is assumed.Prosodi
 boundaries, register, and spee
h rateProsodi
 phrase boundaries are marked with PGn. They are phoneti
allysignalled by phrase-�nal segmental lengthening and usually by F0 resettingafter them. They often 
oin
ide with pauses (see below). Phrase boundariesare not further divided into sub
lasses with di�ering boundary strengths (adivision into PG1 and PG2 was planned, but has not been 
arried out to date).Usually, the de
lination of the a

ents is reset at the beginning of aprosodi
 phrase and the downstep starts anew. If there is no reset after aprosodi
 phrase boundary, the boundary is labelled with =PGn.If a speaker deviates from his or her normal F0 range, this is labelled



2.2. Original Annotation 45with HR (high register) or LR (low register). Similarly, deviations from thenormal speaking rate of the speaker are marked with RP (rate plus) or RM (rateminus). Sin
e register and spee
h rate labels are very rare in the KCoRS (theywere introdu
ed to PROLAB mainly for spontaneous spee
h), they were notused for statisti
al modelling.PausesThe following types of pauses are labelled in the KCoRS:
• silent pause (p:)
• pause �lled with� breathing (h:)� 
li
king or lip-sma
king (s:)� segmental material be
ause the speaker stumbled or misread aword (v:).The vast majority of the pauses produ
ed by the sele
ted speakerskko/k61 and rtd/k62 are silent pauses (95% and 97% respe
tively), whi
his not surprising given the fa
t that most senten
es are rather short andprodu
ed in isolation. Speaker kko/k61 produ
es more pauses than speakerrtd/k62, whi
h is in line with his slower spee
h rate.prosodi
 boundary typeno boundary reset no reset totalkko / rtd kko / rtd kko / rtd kko / rtdpause 0 / 1 673 / 653 2 / 4 675 / 658no pause 3967 / 3905 236 / 311 54 / 58 4257 / 4274total 3967 / 3906 909 / 964 56 / 62 4932Table 2.3.: Co-o

urren
es of following prosodi
 boundaries and pauses perword for speaker kko/k61 and rtd/k62.Summarising the 
o-o

urren
es of pauses and prosodi
 boundaries inTable 2.3, we 
an formulate the following sets of simple rules:
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tion of pauses from boundaries (a

ura
y: 94.4%)
• no boundary ⇒ no pause
• �no reset� boundary ⇒ no pause
• reset boundary ⇒ pause2. predi
tion of boundaries from pauses (a

ura
y: 93.2%)
• pause ⇒ reset boundary
• no pause ⇒ no boundarySin
e most pauses o

ur at the beginning or at the end of the spee
h�les, we have very little data about the duration of pauses. Therefore, theKCoRS is not a suitable training database for pause modelling (
f. Se
tion3.1).2.3. Added Features and ChangesAlthough the KCoRS already 
ontains a lot of information and is annotatedvery 
onsistently, I added several features8 that are important for prosodypredi
tion. Con
erning the textual data these are: senten
e type, part ofspee
h, synta
ti
 phrases, grammati
al fun
tions, and word frequen
ies. Theannotation of the spee
h signal was enri
hed with information about syllableboundaries and F0 median values. In addition to some minor 
hanges to theorthography, I 
hanged the annotation of lexi
al stress and some phonemelabels. All these additions and 
hanges are des
ribed in detail in the followingse
tions.Sin
e the models that are trained on these features shall eventually beimplemented in MARY as an alternative prosody predi
tion, the tools I 
hosefor automati
ally adding features to the KCoRS had to satisfy one of thefollowing 
onditions: They had to be either:8All �les 
ontaining the added features are available fromhttp://www.brin
kmann.de/KaRS/.
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• already implemented in MARY (part-of-spee
h tagger, synta
ti
 
hunktagger)
• easily implementable with a small algorithm (senten
e type, syllableboundaries)
• publi
ly available (word frequen
ies from CELEX)
• available within the DFKI (SCHUG parser for grammati
al fun
tions).Some of the automati
ally added features were 
orre
ted manually (part-of-spee
h, synta
ti
 phrases, grammati
al fun
tions, syllable boundaries),others were not 
orre
ted, either be
ause this would have been too time-
onsuming (F0 values) or be
ause it is unne
essary (senten
e type, word fre-quen
ies). Both automati
ally derived and manually 
orre
ted feature setswere tried out for symboli
 prosody predi
tion (
f. Se
tion 3.2) in order toestimate the amount of error introdu
ed to the models by erroneous featurevalues.2.3.1. Textual DataOrthographyIn order to fa
ilitate textual pro
essing, the orthography was 
hanged in thefollowing 
ases:
• spelling mistakes were 
orre
ted, e.g. Jung's in senten
e mr006 was
hanged to Jungs
• numbers were expanded, e.g. 11. in senten
e 
n020 was 
onverted intoelften
• spellings of denominations for the time of day were harmonised follow-ing �55(6) of the new regulations of German orthography (IDS, 1996):denominations for the time of day are 
apitalised when they followheute, (vor)gestern or (über)morgen, e.g. heute Abend.
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e TypeBrin
kmann & Benzmüller (1999) showed that in German s
ripted spee
h thefour utteran
e types statement, wh-question, yes/no-question, and de
lara-tive question di�er signi�
antly 
on
erning �nal boundary tone, F0 range,and F0 slope. Therefore, every senten
e in the textual material of the KCoRSwas automati
ally labelled with one of the following senten
e types: state-ment (ends with a full stop), ex
lamation (ends with an ex
lamation mark),or question (ends with a question mark). The questions were further subdi-vided into the types listed in Table 2.4.type des
ription examplewh-question 
ontains an interrog-ative pro-form Wann geht dernä
hste Zug na
hMannheim?yes-no question in�e
ted verb at thebeginning of the sen-ten
e Steigt Dein Dra
hensehr ho
h?negative yes-no q. 
ontains ni
ht or kein Muÿ der Zu
ker ni
htdort drüben stehen?alternative question presents two possibleanswers 
onne
tedwith oder Wüns
hen SieRau
her oder Ni
h-trau
her?de
larative question same word order as ina statement Und später fährtkeiner mehr?polite request starts with KönntenSie ... or Können Sie... Könnten Sie mir bitteZüge von Regensburgna
h Frankfurt heuteabend sagen?Table 2.4.: Question types in the textual material of the KCoRS.As 
an be seen in Figure 2.6, the most frequent senten
e type in theKCoRS is the statement (78.7%). 104 senten
es (16.7%) were 
lassi�ed asquestions9, and only 29 (4.6%) as ex
lamations.9Two senten
es ending with a full stop were 
lassi�ed as polite requests, thus falling intothe 
ategory �question�.
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Figure 2.6.: Histogram of senten
e types in the textual material of the KCoRS(q. = question, neg. =negative).Part-of-Spee
h TagsThe original annotation of the KCoRS distinguishes between fun
tion and
ontent words, re�e
ting the assumption that fun
tion words are usuallyuna

ented. A more re�ned part-of-spee
h 
lassi�
ation 
ould be helpful forthe predi
tion of a

entuation. For example, separated verbal parti
les andattributive inde�nite pronouns (keine, beide) are often a

ented, even thoughthey are usually 
lassi�ed as fun
tion words.Part-of-spee
h tagging was 
arried out in two steps. First, the statisti
altagger TnT (Brants, 2000) was applied to the textual data. The Germanlanguage model of TnT had been trained on the annotated NEGRA 
orpus(Brants et al., 1999) using the Stuttgart-Tübingen tag set (STTS). Se
ond,the tags were manually 
orre
ted following the guidelines for STTS (S
hilleret al., 1995).A 
omparison between the statisti
ally tagged data and the manually
orre
ted version revealed that only 3.4% of the tags had to be 
orre
ted.Table 2.5 shows that TnT performs signi�
antly better on known tokens(i.e. tokens that are part of the lexi
on generated from the NEGRA 
orpus)



50 2. Databasethan on unknown tokens. Even though the KCoRS textual data is ratherunlike the NEGRA 
orpus (whi
h is a 
olle
tion of newspaper texts), thea

ura
y �gures are very similar.per
entage tagging a

ura
yunknown tokens known tokens unknown tokens overallKCoRS 10.9% 97.8% 86.9% 96.6%NEGRA 11.9% 97.7% 89.0% 96.7%Table 2.5.: TnT's part-of-spee
h tagging a

ura
y for the KCoRS textualdata and the NEGRA 
orpus (�gures for NEGRA from Brants,2000). Unknown tokens are tokens that are not in the lexi
ongenerated from the NEGRA training 
orpus.Out of 54 possible STTS tags, 47 are present in the KCoRS (see Ap-pendix B.1 for a 
omplete list of STTS tags with examples and informationabout their absolute frequen
y in the KCoRS). Only the following seven tagsare missing: APPO, FM, PPOSS, PRELAT, TRUNC, VMPP, and XY.
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Figure 2.7.: Histogram of simpli�ed part-of-spee
h 
ategories in the textualmaterial of the KCoRS.



2.3. Added Features and Changes 51Synta
ti
 ChunksWords that belong to the same synta
ti
 phrase are usually not separatedby a prosodi
 phrase break, at least in read spee
h. MARY uses the 
hunktagger (Skut & Brants, 1998) to re
ognise synta
ti
 stru
tures of limiteddepth. The 
hunk tagger was applied to the textual material of the KCoRS,and the output was 
orre
ted manually.The 
hunk tagger assigns the phrasal 
ategories used in the NEGRA
orpus (Brants et al., 1999), but only multi-word phrases re
eive su
h aphrasal 
hunk tag (44.5% of all word tokens in the KCoRS are not part ofa multi-word phrase). For example, if a noun phrase 
onsist only of onepronoun, it keeps the POS tag assigned by TnT.Out of 20 possible phrasal 
hunk tags, 14 are present in the KCoRS (seeTable B.3 in Appendix B.2 for a detailed list). By far the most frequentphrasal 
hunk tags are NP (noun phrase) and PP (adpositional phrase) �together with their respe
tive 
oordinated variants (CNP and CPP) theymake up 92% of the labelled multi-word phrases (see Figure 2.8). Top-level
hunk phrases, i.e. 
hunk phrases that are not embedded in any other phrase,make up 81.9% of all multi-word phrases.
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Figure 2.8.: Histogram of multi-word phrasal 
hunk tags in the textual ma-terial of the KCoRS. Figures for NP, PP, AP and AVP are giventogether with their respe
tive 
oordinated variants. All other
hunk tags are 
ollapsed into the 
ategory �rest�.



52 2. DatabaseA 
omparison of the automati
ally derived top-level 
ategories with themanual 
orre
tions revealed a word-level a

ura
y of 85.1% (i.e. the top-level phrasal 
ategory or POS of 85.1% of all word tokens was not 
hangedmanually). Regarding the absolute position of ea
h word within the top-level
hunks (i.e. whether it is the �rst, se
ond, third et
. word within the 
hunk),the 
hunk tagger rea
hed an a

ura
y of 87.4%.Grammati
al Fun
tionsWolters &Mixdor� (2000) reported that the grammati
al fun
tion of a phrasehas an in�uen
e on the a

entability of the words it 
ontains, e.g. nouns ingenitive adjun
ts are less likely to be a

ented than nouns in subje
ts. This
ould be explained by the fa
t that genitive adjun
ts are frequently used tolink new dis
ourse entities to dis
ourse-old entities or world knowledge.MARY 
ontains no grammati
al fun
tion tagger yet, but the SCHUGparser developed at the DFKI (De
ler
k, 2002) is readily available for thispurpose. Therefore, SCHUG was used to assign phrasal 
ategories and gram-mati
al fun
tions to the textual material of the KCoRS. The SCHUG parseris a rule-based system using morphologi
al and part-of-spee
h information.In 
ontrast to the 
hunk tagger, it assigns phrasal 
ategories also to phrases
onsisting of only one word. Table 2.6 lists all SCHUG 
ategories and theirpossible grammati
al fun
tions.SCHUG was applied to the 
omplete textual material of the KCoRS,and its output was 
orre
ted manually. As shown in Figure 2.9, the most fre-quent SCHUG 
ategories in the KCoRS are NP, VG and PP. If the grammat-i
al fun
tion of a noun phrase is ambiguous (a

ording to SCHUG's rules),SCHUG assigns a set of all grammati
al fun
tions that are deemed possiblefor that phrase. Sin
e this is the 
ase for 49.7% of the automati
ally de-rived noun phrases (even for some pronouns with overt 
ase marking), someimprovement is ne
essary here. Another �eld for future improvements ofSCHUG is the re
ognition of embedded phrases. An inspe
tion of the man-
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ategory des
ription possible grammati
al fun
tionsAP adje
tive phrase PREDICATIVE_APAdvP adverbial phrase PREDICATIVE_ADVPNP noun phrase SUBJ, SUBJ/DEEP_OBJ,AKK_OBJ, DAT_OBJ, GEN_OBJ,NP_ADJUNCT_GEN,PREDICATIVE_NPPP prepositional phrase PP_ADJUNCT, PP_OBJSUBORD_ subordinated 
lause XADJUNCT, XCOMPCLAUSEVG verb group �W word (
onjun
tions) �Table 2.6.: SCHUG 
ategories and possible grammati
al fun
tions.ually 
orre
ted SCHUG phrases showed that 16.0% of all SCHUG phrasesin the KCoRS are embedded phrases (see Table B.2 in Appendix B.2). Cur-rently, SCHUG is only 
apable of re
ognising top-level phrases.
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Figure 2.9.: Histogram of SCHUG 
ategories in the textual material of theKCoRS (SUB = SUBORD_CLAUSE).A 
omparison of the automati
ally derived top-level 
ategories with themanual 
orre
tions revealed a word-level a

ura
y of 76.3% (i.e. the top-levelSCHUG 
ategory of 76.3% of all word tokens was not 
hanged manually),whereas the grammati
al fun
tions were 
orre
t only for 51.0% of all words.Regarding the absolute position of ea
h word within the respe
tive top-level



54 2. Databasephrase (i.e. whether it is the �rst, se
ond, third et
. word within the phrase),the SCHUG parser rea
hed an a

ura
y of 78.3%. At �rst glan
e thesea

ura
y �gures seem to suggest that the SCHUG parser performs worsethan the 
hunk tagger. However, almost half of the words do not re
eive aphrasal 
hunk tag from the 
hunk tagger, instead they keep their originalpart-of-spee
h tag. So the a

ura
y of the 
hunk tagger bene�ts very mu
hfrom the reliability of TnT. Nonetheless, both the SCHUG parser and the
hunk tagger need further improvement.Word Frequen
iesFidelholtz (1975) showed that the frequen
y of a word has a signi�
ant ef-fe
t on the redu
tion of its vowels (the higher the word frequen
y, the moreprobable a vowel redu
tion). Word frequen
y also 
orrelates with the 
on-tent/fun
tion word distin
tion: Fun
tion words usually have a higher fre-quen
y than 
ontent words. Thus, the a

entability of a word might berather a 
onsequen
e of its frequen
y than of its part-of-spee
h.Even if homographi
 wordforms are distinguished regarding their part-of-spee
h, the textual material of the KCoRS 
ontains only 1733 di�erentwordforms. Sin
e a TTS system has to rely on a mu
h bigger lexi
on, thefrequen
y information that was added for ea
h wordform was not 
omputeddire
tly from the KCoRS. Instead, it was taken from the lexi
al databaseCELEX (Baayen et al., 1995). The frequen
y information in CELEX isbased on the �Mannheim� 
orpus (1984 version) of the �Institut für Deuts
heSpra
he�, whi
h 
ontains about 6.0 million words from mostly written andsome spoken sour
es.CELEX o�ers a variety of frequen
y �gures, both for lemmas and forwordforms. I 
hose MannMln, i.e. the wordform frequen
y s
aled down toa range of 1 to 1.0 million (instead of the original 1 to 6.0 million). Theminimal value of MannMln in CELEX is 0, the maximum is 25287 (for theword und). Those 227 wordforms of the KCoRS that are not present in



2.3. Added Features and Changes 55CELEX (mostly nouns), also re
eived the frequen
y value 0 (totalling in 352zero-frequen
y wordform types).Of 
ourse there are wordforms that are very frequent in the KCoRS, butnot that frequent in the Mannheim 
orpus. For example, the most frequentwordform in the KCoRS is na
h (142 tokens), whi
h is due to the large num-ber of train timetable queries (su
h as s008: I
h mö
hte morgen abend na
hKöln fahren). In the Mannheim 
orpus, na
h re
eives the frequen
y �gureof 1738 (when s
aled down to the size of the KCoRS, this is the equivalentof 9 tokens). Nevertheless, both the frequen
y �gures based on the KCoRSitself as well as the ones from CELEX behave very similarly when it 
omes totheir distribution within the KCoRS. As 
an be seen in Figure 2.10, there aremany wordforms in the KCoRS with a low frequen
y �gure (e.g. 1 or �onlyin the 
ase of CELEX frequen
y �gures� 0), some with a medium frequen
y�gure, and only very few wordforms with a high frequen
y �gure.2.3.2. Spee
h DataPhonemesIn the original annotation, all plosive releases are labelled with -h, suggestingthat the release phase is not 
anoni
, but rather an insertion. Sin
e releasephases of fortis plosives are generally longer than lenis releases, their labelswere 
hanged, marking them separately with the additional symbols p_h,t_h, k_h, b_h, d_h, g_h. Furthermore, the plosive releases were regarded as
anoni
.Lexi
al StressLexi
al stress information was added for all fun
tion words, so that all wordsre
eived one primary stress lo
ation.In the original annotation of the KCoRS, two words 
arry two primarystress lo
ations: B'aden-B'aden and sp'ät'abends. After listening to the
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Figure 2.10.: Frequen
y of CELEX and KCoRS frequen
y �gures of word-form types in the KCoRS textual material. X-axis: The fre-quen
y �gure for ea
h wordform is either 
omputed dire
tlyfrom the KCoRS (KCoRS frequen
y �gures) or taken from theMannMln �gure of CELEX and s
aled down to the size of theKCoRS (CELEX frequen
y �gures). Y-axis: The frequen
y offrequen
y of wordform types is based on the KCoRS textualmaterial. Note that only the CELEX frequen
y �gure 
an havea value of 0.realisations of the speakers, one primary stress lo
ation was 
hanged to ase
ondary stress: B"aden-B'aden and sp"ät'abends.Syllable BoundariesAutomati
 syllabi�
ation was 
arried out with a simple algorithm whi
h de-�ned every vowel as syllable nu
leus and every sonorant /m,n,N,l/ that ispre
eded by a 
onsonant as potential syllable nu
leus. The syllabi�
ation ofthe segments between the established nu
lei was based on the following rulesand standard phonologi
al prin
iples:
• Every word boundary and every labelled morpheme boundary is a syl-lable boundary.
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• A glottal stop /Q/ is always the onset of a syllable.
• Plosive 
losure and following plosive release or fri
ative (in 
ase ofa�ri
ates) are not separated by a syllable boundary.
• Ambisyllabi
ity: a 
onsonant following a lax vowel in a VCV patternis marked as ambisyllabi
.
• Obligatory Coda: a syllable must be 
losed (or followed by an ambi-syllabi
 
onsonant) after a short, lax vowel (ex
ept /�, 6/).
• Maximal Onset Prin
iple: make the syllable onset as long as it legiti-mately 
an be a

ording to the phonota
ti
 restri
tions of German.Two types of syllable boundaries were distinguished: �_� marks a sylla-ble boundary whi
h is followed by an ambisyllabi
 
onsonant, while normalsyllable boundaries are marked with �-�.The syllabi�
ation algorithm was applied to two datasets: The �rst one(the `lexi
on') 
ontained all wordforms of the KCoRS with their respe
tive
anoni
 phoneme sequen
e, the se
ond one (`
onne
ted spee
h'), 
onsisted ofall realised phone sequen
es of the two speakers kko/k61 and rtd/k62. Bothsyllabi�ed datasets were 
orre
ted manually, the se
ond one by listening toall utteran
es of the two speakers. Compared to the manual 
orre
tions,for the `lexi
on' 99.1% of the automati
ally derived syllable boundaries are
orre
t, while for `
onne
ted spee
h' the a

ura
y dropped to 97.2%. This ismainly due to the following phenomena:
• Postlexi
al resyllabi�
ation a
ross word boundaries, e.g. in k61be031:gibt es realised as /g g_h I p - t t_h E s/.
• Glottal stop /Q/ is possible at the end of a syllable when it repla
es aplosive, e.g. in k61mr069: Zentner realised as /t s E n Q - n 6/.
• Potentially syllabi
 sonorants following a vowel or /l/ are problemati
,e.g. einen (realised as monosyllabi
 /Q aI n/ or disyllabi
 /Q aI -



58 2. Databasen/ ?) and rollen (monosyllabi
 /r O l n/ or disyllabi
 /r O _ l n/?). Ea
h de
ision was based on my auditory impression, e.g. monosyl-labi
 /r O l n/ in k62be087 and disyllabi
 /r O _ l n/ in k61be087(the disyllabi
 impression seems to be due to the slower spee
h rate ofspeaker k61).F0 ValuesThe a
ousti
 parameters to predi
t are duration and F0. The duration ofea
h phoneme 
an be 
omputed using the labelled phoneme boundaries. F0values were estimated with ESPS's get_f0 algorithm (Talkin, 1995), whi
huses the normalised 
ross 
orrelation fun
tion and dynami
 programming. Asframe step, the default of 10ms was 
hosen; for the female speaker rtd/k62the minimum F0 value was set to 120Hz, the maximum to 400Hz, whereasfor the male speaker kko/k61 the minimum and maximum were set to 50Hzand 250Hz respe
tively10.Median F0 For every vowel and sonorant (m, n, N, l), the median of theseraw F0 values was 
al
ulated. The median was 
hosen instead of the mean,be
ause it is more robust to outliers. Nevertheless, there were still someerroneous median F0 values, espe
ially within portions spoken with a 
reakyvoi
e, be
ause of doubling or halving errors.Last F0 Thus, we have one F0 value for every vowel and sonorant. If thereis a pit
h a

ent on the last syllable of a prosodi
 phrase, and this syllableonly 
ontains one vowel or sonorant, one F0 value is not su�
ient to 
apturea valley a

ent followed by a rising intonation 
ontour. Therefore, for everyprosodi
 phrase a �nal F0 value was stored by 
omputing the median of thelast three F0 values of the last vowel or sonorant of that prosodi
 phrase. Ifget_f0 
annot estimate any F0 value, median and last F0 are set to 0.10Informal inspe
tion revealed that these values were adequate for those two voi
es.



2.3. Added Features and Changes 592.3.3. Further Possibilities and LimitationsOther features that 
ould be added to an annotated spee
h 
orpus in
ludeword predi
tability, dis
ourse features, GToBI labels, intensity and spe
traltilt. Pan & Hirs
hberg (2000) showed that word predi
tability, measured interms of bigram word predi
tability log(Prob(wi|wi − 1)), is a useful predi
-tor of pit
h a

ent pla
ement for nouns. In order to 
ompute this measurewe need a suitable textual 
orpus. Aiming for a rather neutral prosody ofsenten
es that 
an o

ur in any 
ontext, we would have to use a very bigtextual 
orpus � otherwise the measures would be very domain-spe
i�
. Thisis in line with using the frequen
y numbers from CELEX, whi
h were 
al
u-lated from the 6 mio. token Mannheim Corpus rather than dire
tly from theKCoRS. Sin
e bigram word predi
tability 
an be helpful mostly for limiteddomain synthesis, I de
ided not to add this feature to the KCoRS.Dis
ourse features like the givenness of a referring expression have anin�uen
e on the pit
h a

ent and phrasing (
f. Wolters & Mixdor�, 2000),but sin
e the KCoRS 
onsists mostly of isolated senten
es and not of 
om-plete texts (ex
ept for the two short stories), this kind of information 
annotbe added. For information stru
tural features, a 
orpus of read newspapertexts su
h as the one built in the MULI proje
t (Baumann et al., 2004) andthe �IMS German Radio News Corpus� (Rapp, 1998) should be investigatedinstead.MARY uses GToBI labels for the symboli
 prosody predi
tion. GToBIlabelling was not 
arried out for the two sele
ted speakers of the KCoRSmainly be
ause of two reasons:1. Even though Brauns
hweiler (2003) des
ribed an approa
h to predi
tGToBI labels automati
ally from the F0 
urve and intensity measures,these automati
ally predi
ted labels still have to be 
orre
ted manually,whi
h is very time-
onsuming.2. The prosody predi
tion des
ribed in Chapter 3 
onsists of symboli




60 2. Databaseprosody predi
tion and predi
tion of a
ousti
 parameters. Sin
e theonly module of MARY needed for this approa
h is the MBROLA syn-thesis, GToBI labels are not ne
essary as intermediate symboli
 repre-sentation. The PROLAB labels 
an be used instead.Intensity and spe
tral tilt of realised phonemes in�uen
e the per
eptionof rhythm, but sin
e they 
annot be modelled by MBROLA, those measure-ments were not in
luded as features to predi
t.



61
3. Prosody Predi
tion with CARTAs des
ribed in Se
tion 1.3, in this thesis prosody predi
tion is de�ned as
ontaining all predi
tion tasks that 
ontribute to the predi
tion of the realisedphoneme, its duration, and its F0 values. The following separate predi
tiontasks are des
ribed in the subsequent se
tions:

• pause predi
tion
• symboli
 prosody predi
tion:

⋆ prosodi
 boundaries
⋆ a

entuation level
⋆ a

ents: lo
ation and type
⋆ phrase-�nal intonation 
ontours

• predi
tion of postlexi
al phonologi
al pro
esses:
⋆ type of 
hange: none, deletion, repla
ement
⋆ in 
ase of repla
ement: repla
ement rule

• predi
tion of a
ousti
 parameters:
⋆ duration
⋆ median F0
⋆ last F0.One major goal of this thesis is to show that the output of a text-to-spee
h system 
an be signi�
antly improved by training all models that
ontribute to prosody predi
tion on the same database. As des
ribed inSe
tion 1.3, many di�erent ma
hine learning algorithms have been appliedfor the di�erent predi
tion tasks. It was not my aim to �nd the best feature



62 3. Prosody Predi
tion with CARTset, the best algorithm, and the best model for ea
h predi
tion task. InsteadI applied the same ma
hine learning algorithm (CART; Breiman et al., 1984)to train 
lassi�
ation and regression trees for all predi
tion tasks.Be
ause of reasons related to the implementation of the ma
hine learningsoftware tools (see Se
tion 1.2.2), all 
lassi�
ation trees were trained withWeka (version 3.4.2; Witten & Frank, 2000), whereas all regression treeswere trained with wagon (version 1.2.3, King et al., 2003). All 
lassi�
ationtrees were evaluated with strati�ed 10-fold 
ross-validation. Sin
e wagondoes not o�er strati�ed 
ross-validation, the performan
e of the regressiontrees was estimated on a randomly sele
ted separate test set.Automati
 feature sele
tion (greedy forward sele
tion wrapper) was onlyperformed for word-level and syllable-level predi
tion tasks (i.e. symboli
prosody predi
tion). The phonemi
 datasets were too large to make auto-mati
 feature sele
tion 
omputationally feasible in a reasonable amount oftime (see Se
tion 1.2.3).Datasets 20 senten
es from the KCoRS were randomly sele
ted for theper
eptual evaluation (see Table 4.1 in Se
tion 4.1.2). These 20 senten
eswere not in
luded for training, validation and 
orpus-based testing of the
lassi�
ation and regression trees. Apart from these 20 senten
es, the 
om-plete KCoRS and all added features (as des
ribed in Se
tion 2.3) are used asdatabase to produ
e the input datasets for Weka and wagon.3.1. Pause Predi
tionAs mentioned in Se
tion 2.2.4, only very few pauses o

ur within a senten
e(or rather: between two words), so that information about their durationis available only for 62 and 52 pauses respe
tively for kko/k61 and rtd/k62in the training data. Be
ause of the extreme data sparsity, it is impossibleto model pause duration with a regression tree. Therefore, two very simplerules based on a trial-and-error pro
edure with MARY were applied instead:



3.2. Symboli
 Prosody Predi
tion 631. Pause lo
ation: A word is followed by a pause, only if it is followed bya pun
tuation mark.2. Pause duration: If the word is followed by a 
omma or a dash, thepause duration is 100ms, if it is followed by another pun
tuation mark,the pause duration is 300ms.Of 
ourse, this is not a very satisfying solution, but for a su

essful trainingwe would need a database that 
onsists of 
omplete texts.3.2. Symboli
 Prosody Predi
tion3.2.1. Prosodi
 Boundary Predi
tionThe 
lassi�
ation task for prosodi
 boundary predi
tion is to predi
t for ea
hword whether it is followed by a prosodi
 boundary or not. Originally, it wasplanned to predi
t also the type of the boundary (reset vs. no reset), but sin
ethe �no reset� boundaries make up only 6% of all boundaries in the KCoRS,they proved to be impossible to predi
t with reasonable pre
ision and re
all.So I de
ided to predi
t only the 
lasses �boundary� and �no boundary�.FeaturesFor ea
h word the following features were extra
ted from the database:
• word level features, for a window of 5 words (the respe
tive wordand 2 neighbouring words to the left and to the right):

⋆ part-of-spee
h: STTS and simpli�ed (simpli�
ations as in Figure2.7)
⋆ word frequen
y (CELEX)

• pun
tuation features:
⋆ pre
eding pun
tuation
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tion with CART
⋆ following pun
tuation: original and simpli�ed (none, 
omma,other)
⋆ absolute and relative position1: distan
e to pre
eding and follow-ing pun
tuation (in words), and relative position between pun
-tuation marks

• senten
e features:
⋆ senten
e length (in words)
⋆ senten
e type (as de�ned in Se
tion 2.3.1)
⋆ absolute and relative position of the word in senten
e

• SCHUG features:
⋆ for a window of 3 SCHUG phrases (the respe
tive phrase and1 neighbouring phrase to the left and to the right): 
ategory,grammati
al fun
tion (as in Table 2.6), and length (in words) oftopmost en
ompassing SCHUG phrase (depth=0)
⋆ absolute and relative position of the word within the topmostSCHUG phrase

• 
hunk phrase features:
⋆ for a window of 3 
hunk phrases (the respe
tive phrase and 1neighbouring phrase to the left and to the right): 
ategory andlength (in words) of

⋄ topmost phrase (depth=0)
⋄ se
ond-level phrase (depth=1)

⋆ absolute and relative position of the word within the topmost andse
ond-level 
hunk phrase.1Cal
ulation of all relative position features:relative position = 100 × absolute position / (length of the stret
h −1), so that the�rst and the last segment of a stret
h re
eive relative position values of 0% and 100%respe
tively.



3.2. Symboli
 Prosody Predi
tion 65All features relating to part-of-spee
h, SCHUG and 
hunk phrases were au-tomati
ally predi
ted (
f. dis
ussion in Se
tion 3.2.2). Whenever a featurewas missing (e.g. be
ause the �rst word of a senten
e does not have a leftneighbour), it re
eived the value −100, whi
h never o

urred as regular valueof any feature. Thus, it was not missing for CART, but 
ontained usable in-formation (e.g. about the position of a word).Feature Sele
tion and Classi�
ation TreesFor speaker kko/k61, the automati
 feature sele
tion resulted in a feature set
onsisting of only two features: relative position between pun
tuation marksand word frequen
y. For speaker rtd/k62, the sele
ted feature set was evenmore redu
ed and 
onsisted only of the feature distan
e to the followingpun
tuation in words. This illustrates that prosodi
 phrasing in read spee
hdepends mostly on pun
tuation.The two trained 
lassi�
ation trees are very simple (see Weka output inFigure 3.1 and 3.2), e.g. for speaker rtd/k62: Only if the word is followedby a pun
tuation mark is it followed by a boundary. The numbers given inparentheses after ea
h leaf of the 
lassi�
ation tree (�rst/se
ond) indi
ate thetotal number of instan
es from the training set at the respe
tive leaf (�rst)and the number of in
orre
tly 
lassi�ed instan
es at that leaf (se
ond).betweenpun
tposition_rel <= 94: none (3967.0/174.0)betweenpun
tposition_rel > 94| CELEXfreq <= 1940: boundary (743.0/14.0)| CELEXfreq > 1940| | CELEXfreq <= 2423: none (10.0/2.0)| | CELEXfreq > 2423: boundary (30.0/2.0)Figure 3.1.: Prosodi
 boundary 
lassi�
ation tree for speaker kko/k61.distan
efollowingpun
t <= 0: boundary (782.0/22.0)distan
efollowingpun
t > 0: none (3968.0/235.0)Figure 3.2.: Prosodi
 boundary 
lassi�
ation tree for speaker rtd/k62.
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tion with CARTEvaluationEven though the trees are so simple, they have a fairly high a

ura
y of95.96% (kko/k61) and 94.74% (rtd/k62), illustrating that prosodi
 phraseboundaries 
an be predi
ted fairly easily for read spee
h.F-measure a

ura
yboundary no boundarykko/k61 0.887 0.975 95.96%rtd/k62 0.866 0.967 94.74%Table 3.1.: 10-fold 
ross-validated performan
e measures for the prosodi
boundary 
lassi�
ation trees.
3.2.2. A

ent and Intonation Contour Predi
tionIn the KCoRS, for ea
h word its a

entuation level is annotated, rangingfrom 0 to 3. If the word 
arries two a

ents, the a

entuation level is spe
i�edseparately for ea
h a

ent, assuming that the a

entuation level spreads to allfollowing syllables in that word. Ea
h a

ent is labelled in terms of lo
ation,type, alignment and upstep (see Se
tion 2.2.4).Only 5.2% of kko/k61's a

ents and 5.8% of rtd/k62's a

ents are up-stepped. Preliminary tests showed that upstep 
ould not be predi
ted fromthe available features (the trained 
lassi�
ation trees were merely de
isionstumps that predi
ted �no upstep�).A

ent type and alignment were treated as one by 
ombining them tothe following six 
omplex a

ent types: �at, early peak, mid peak, late peak,early valley, and non-early valley.In the KCoRS, three types of intonation 
ontours are labelled: phrase-initial 
ontours, 
on
atenation 
ontours, and phrase-�nal 
ontours (see Se
-tion 2.2.4). Preliminary tests showed that phrase-initial 
ontours dependvery mu
h on the type of a

ent they pre
ede and the length of the pre-head,whereas 
on
atenation 
ontours depend on the types of the a

ents they 
on-
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atenate. In order not to introdu
e too many extra errors in the symboli
prosody predi
tion, I de
ided not to train any models for phrase-initial and
on
atenation 
ontours. In 
ontrast, the last intonation 
ontour of a prosodi
phrase 
an be modelled without knowing the type of its pre
eding a

ent.Therefore, a

ent and intonation 
ontour predi
tion 
onsists of four sep-arate tasks:
• for ea
h syllable: predi
tion of the a

entuation level
• for ea
h syllable: predi
tion whether it 
arries an a

ent or not (i.e. a
-
ent lo
ation)
• for ea
h syllable 
arrying an a

ent: 
omplex a

ent type
• for ea
h syllable 
arrying the last a

ent of the prosodi
 phrase: phrase-�nal intonation 
ontour.All trained 
lassi�
ation trees are far too big to be presented on paper(e.g. the 
lassi�
ation tree for the a

entuation level predi
tion of rtd/k62has 1025 leaves), but they 
an be downloaded from my thesis web page2.FeaturesFor ea
h 
anoni
 syllable, the same features as for prosodi
 boundary predi
-tion were used (see Se
tion 3.2.1). In addition, the following features wereextra
ted from the database:
• syllable level features:

⋆ lexi
al stress
⋆ syllable length (in 
anoni
 phonemes)

• positional features:
⋆ absolute and relative position of the syllable in the word
⋆ absolute and relative position of the syllable in the senten
e2http://www.brin
kmann.de/KaRS/
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⋆ distan
e pre
eding and following prosodi
 boundary (in words andsyllables)
⋆ distan
e pre
eding and following pause (in words and syllables)
⋆ relative position in prosodi
 phrase (in words and syllables)
⋆ relative position in inter-pause stret
h (in words and syllables)

• senten
e feature: senten
e length (in syllables).All features relating to pauses and prosodi
 phrase boundaries are predi
tedby the respe
tive pause and prosodi
 boundary models.Feature Sele
tionGreedy forward feature sele
tion was 
arried out for all four predi
tion tasks,separately for ea
h speaker. Table 3.2 shows whi
h features were sele
tedautomati
ally for the respe
tive predi
tion task using only automati
allypredi
ted features (≈) vs. using manually 
orre
ted features (√) (
f. Se
-tion 1.4 for a general dis
ussion about the use of automati
ally predi
tedvs. manually 
orre
ted features). As a general tenden
y 
on
erning the useof synta
ti
 phrase features, the predi
tion tasks with manually 
orre
tedfeatures used a greater number of SCHUG features, whereas the predi
tiontasks with automati
ally predi
ted features used more 
hunk phrase features.For example, for the predi
tion of a

entuation level, the grammati
al fun
-tion of a phrase was used only if it was manually 
orre
ted. This seems tosupport the statement in Se
tion 2.3.1, namely that SCHUG needs furtherimprovement before it 
an be su

essfully integrated into MARY.In order to determine whether it is important to use features that are as
orre
t as possible, the a

ura
y values of trained 
lassi�
ation trees usingonly automati
ally predi
ted features vs. using manually 
orre
ted featureswere 
ompared in a preliminary experiment. As shown in Table 3.3, in nearlyall 
ases the 
lassi�
ation trees trained with manually 
orre
ted features havea higher a

ura
y (determined by 10-fold 
ross-validation). For the predi
-tion of a

entuation level and a

ent lo
ation the di�eren
es in a

ura
y are
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tion taska

entuation a

ent a

ent �nalfeature type level lo
ation type 
ontourpart of spee
h √ ≈ √ ≈ √neighbour POS ≈word frequen
y √ ≈ √ ≈neighbour word freq. √ ≈ √ ≈ √following pun
tuation √ ≈ √ √ ≈ √ ≈senten
e length √ ≈ ≈ √senten
e type √ ≈ √ √ ≈SCHUG 
ategory √ √ √neighbour SCHUG 
at. ≈ √SCHUG grammati
al fun
tion √neighbour SCHUG gram.fun
t. √ ≈SCHUG phrase length √ √neighbour SCHUG length √
hunk phrase 
at. ≈neighbour 
hunk phrase 
at. ≈ ≈ √ ≈ √ ≈
hunk phrase length ≈ √neighbour 
hunk phrase length ≈lexi
al stress √ ≈syllable length ≈ ≈position in senten
e ≈ ≈ √position between pun
tuation ≈position in inter-pause stret
h ≈ ≈ √ ≈ ≈position in prosodi
 phrase √ ≈ √ ≈ √ √ ≈position in SCHUG phrase √ √ ≈position in 
hunk phrase √ ≈position in word √ ≈ √ ≈Table 3.2.: Automati
ally sele
ted feature types for the predi
tion of a

en-tuation level, a

ent lo
ation, a

ent type, and phrase-�nal in-tonation 
ontour. The features marked with √ are used for thepredi
tion with manually 
orre
ted features. The features markedwith ≈ are used for the predi
tion with automati
ally predi
tedfeatures.only minor. However, it 
ould be argued that an improvement of the pre-existing tools (TnT, SCHUG, and 
hunk tagger) and an improvement in the
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tion with CARTpredi
tion of pauses and prosodi
 boundaries would have a positive e�e
t onthe a

ura
y of the predi
tion of a

ent types and phrase-�nal intonation
ontours. Nonetheless, for the training of the 
lassi�
ation trees des
ribed inthe following se
tions only automati
ally predi
ted features were used.predi
tion taska

entuation level a

ent lo
ation a

ent type �nal 
ontourkko/k61 −0.2 0.2 1.4 0.7rtd/k62 0.4 0.3 1.6 1.5Table 3.3.: Di�eren
es in a

ura
y (in per
entage points) between predi
tiontasks using manually 
orre
ted features vs. only automati
allypredi
ted features. A negative value means that the a

ura
y ishigher if automati
ally predi
ted features are used.
A

entuation LevelClassi�
ation Trees The root node of both 
lassi�
ation trees predi
tinga

entuation level partitions the data a

ording to word frequen
y (≤ 549vs. > 549), followed by nodes 
on
erning part of spee
h. This illustratesthe fa
t that a

entuation level is mainly determined by frequen
y fa
tors:The more frequent a word, the lower its probability of 
ontaining a

entedsyllables. The 
lassi�
ation tree for kko/k61 ends with a leaf that assignsa

entuation level 0 (una

ented) to all syllables in words with a frequen
yhigher than 1253.Evaluation 10-fold 
ross-validation led to a

ura
y values of 90.3%(kko/k61) and 86.6% (rtd/k62). Detailed 
onfusion matri
es are shown inTable 3.4. We 
an assign a 
ost matrix, so that the 
ost of a 
lassi�
ationerror is 
omputed by the distan
e between the a
tual a

entuation level andthe predi
ted one. This re�e
ts the amount of damage done by a wrong
lassi�
ation. For example, if the a
tual a

entuation level is 1 (partiallya

ented), but the model predi
ts 3, the 
ost is 2. The average 
ost is 0.142
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tion 71for kko/k61 and 0.187 for rtd/k62. We 
an 
on
lude that a

entuation iseasier to model for kko/k61 than for rtd/k62.kko/k61 rtd/k62a
tual 
lassi�ed asa

entuation 0 1 2 3 0 1 2 30 2718 70 168 3 2690 87 183 71 122 248 129 2 118 368 171 32 158 55 4071 6 182 107 3598 503 8 1 37 34 13 6 121 129Table 3.4.: Confusion matri
es for a

entuation level predi
tion.A

ent Lo
ationClassi�
ation Trees The root node in both 
lassi�
ation trees for a

entlo
ation predi
tion partitions the data a

ording to lexi
al stress, so thatonly syllables with primary stress re
eive an a

ent. Closely following nodes
on
ern part-of-spee
h, word frequen
y (only kko/k61), and relative positionof the syllable within the word. For example, in rtd/k62's 
lassi�
ation tree,most syllables with a relative position smaller than 80% within the word
arry an a

ent, the others do not. This 
aptures the fa
t that most fun
tionwords are monosyllabi
, the only syllable re
eiving a position of 100%. Finerdistin
tions are made by part-of-spee
h nodes further down the tree.Evaluation Again, the 
lassi�
ation tree for kko/k61 (a

ura
y 93.6%) per-forms slightly better than the tree for rtd/k62 (a

ura
y 92.1%, see Table3.5).A

ent TypeClassi�
ation Trees The higher nodes in both 
lassi�
ation trees predi
t-ing a

ent type partition the data a

ording to following pun
tuation anddistan
e to the following pause. This illustrates that a

ent type dependslargely on positional features. Further down the tree, rtd/k62 relies mostly
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tion with CARTF-measure a

ura
ya

ent no a

entkko/k61 0.893 0.954 93.6%rtd/k62 0.873 0.943 92.1%Table 3.5.: 10-fold 
ross-validated performan
e measures for the a

ent lo
a-tion 
lassi�
ation trees.on the feature �word frequen
y of the left neighbour�, whereas kko/k61's treeuses the feature �part-of-spee
h of the right neighbour�.Evaluation A

ura
y �gures for the 
lassi�
ation trees predi
ting a

enttype are rather low (kko/k61: 54.3%, rtd/k62: 58.1%), re�e
ting the di�-
ulty of the task: six di�erent a

ent types are to be predi
ted. However, forthis predi
tion task the 
lassi�
ation tree for rtd/k62 performs better thanthe tree for kko/k61.F-measures are extremely low for ��at� (< 0.06), �early valley� (< 0.1),and (only for kko/k61) �non-early valley� (0.09). As shown in Table 3.6, themost 
ommon mis
lassi�
ation for �at a

ents and valleys are mid peaks andlate peaks. If an early valley is mis
lassi�ed as late peak, this error 
ouldbe regarded as not so severe, e.g. an inexperien
ed human labeller 
ould alsomake this mistake. Peaks are mostly mis
lassi�ed as other peaks.kko/k61 rtd/k62a
tual 
lassi�ed asa

ent type � ep mp lp ev nev � ep mp lp ev nev�at 2 5 52 28 0 0 3 7 32 47 1 2early peak 1 276 85 11 2 1 2 301 30 44 1 1mid peak 4 122 488 250 10 7 4 75 345 343 7 18late peak 5 6 241 506 10 8 6 1 165 687 4 2early valley 0 2 62 58 8 13 2 1 46 80 8 9non-early valley 1 2 44 39 13 6 2 2 26 37 3 44Table 3.6.: Confusion matri
es for the predi
tion of a

ent types (� = �at, ep= early peak, mp = mid peak, lp = late peak, ev = early valley,nev = non-early valley).
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tion 73Phrase-Final Intonation ContourAfter manual inspe
tion of the data, the phrase-�nal intonation 
ontour
lasses were simpli�ed by forming the following groups:
• lowrise: low rise, level-low rise, mid fall-low rise, and terminal fall-lowrise
• highrise: high rise, level-high rise, mid fall-high rise, and terminal fall-high rise
• level: level and level-minimal rise
• midfall: mid fall and mid fall-minimal rise
• termfall: terminal fall and terminal fall-minimal rise.Classi�
ation Trees The main features used in the 
lassi�
ation tree forspeaker kko/k61 are distan
e to the following prosodi
 boundary and sim-pli�ed part-of-spee
h of the se
ond right neighbour. This suggests that forspeaker kko/k61 the position of the last a

ented syllable in the prosodi
phrase is the most important fa
tor to determine the phrase-�nal intonation
ontour.For speaker rtd/k62 the main features are distan
e to the followingpause, senten
e type, and simpli�ed following pun
tuation. The beginning ofthe 
lassi�
ation tree shown in Figure 3.3 reveals that speaker rtd/k62 usesmostly terminal falls in statements, ex
lamations, and alternative questions,low rises in wh-questions and polite questions, and high rises in yes-no ques-tions, de
larative questions and negative questions. Therefore, it is worth-while to distinguish between di�erent question types, whi
h is in line withthe �ndings reported by Brin
kmann & Benzmüller (1999).Evaluation Overall a

ura
y of both trees is 81.5% (kko/k61) and 74.1%(rtd/k62). However, the F-measures for rtd/k62 are all above 0.5, ex
ept formid fall, whereas for kko/k61 the F-measures of high rise, level, and mid fall
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tion with CARTdistan
efollowingpause_words_auto <= 1| senten
etype = st: termfall (471.0/6.0)| senten
etype = ex: termfall (24.0/1.0)| senten
etype = wh: lowrise (46.0/22.0)| senten
etype = yn: highrise (30.0/10.0)| senten
etype = dq: highrise (4.0)| senten
etype = neg: highrise (5.0/1.0)| senten
etype = alt: termfall (2.0)| senten
etype = pol: lowrise (12.0/6.0)distan
efollowingpause_words_auto > 1| followingpun
t_simple_word = 
omma[...℄Figure 3.3.: Beginning of rtd/k62's 
lassi�
ation tree for predi
ting phrase-�nal intonation 
ontour 
lasses.are all below 0.2. As 
an be seen in the 
onfusion matrix for speaker kko/k61in Table 3.7, the re
all of highrise is 0 (i.e the 
lassi�
ation tree never predi
tsa high rise) � most high rises are even mis
lassi�ed as terminal falls.kko/k61 rtd/k62a
tual 
lassi�ed asa

entuation lr hr lev mf tf lr hr lev mf tflowrise 175 0 8 4 14 104 13 41 7 19highrise 4 0 0 0 28 18 27 1 0 2level 52 0 6 0 5 49 0 75 5 10midfall 22 0 1 3 1 21 0 15 8 7termfall 33 0 1 0 576 32 1 15 2 525Table 3.7.: Confusion matri
es for the predi
tion of phrase-�nal intonation
ontours.
3.3. Segmental Predi
tionsOn the segmental (phonemi
) level, we predi
t the features that are neededto generate input for MBROLA, namely

• realised phoneme (i.e predi
tion of postlexi
al phonologi
al pro
esses)
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• duration
• median F0
• last F0.3.3.1. FeaturesFor the predi
tion of the segmental features, two di�erent feature sets areused. The �rst one, 
alled Symboli
, 
ontains features relating to prosodi
boundaries, a

ents, and phrase-�nal intonation 
ontours. The se
ond one,
alled Dire
t, does not 
ontain any of those symboli
 prosody features. Asshown in Figure 4.1 (Se
tion 4.1.2), the Dire
t predi
tion method leavesout the symboli
 prosody predi
tion 
ompletely. This way, it loses someinformation, but it also redu
es error a

umulation. The two feature setsfor Symboli
 and Dire
t predi
tion are des
ribed in the following se
tions.No automati
 feature sele
tion was performed, be
ause the datasets were toolarge, making automati
 feature sele
tion unfeasible in a reasonable amountof time.Symboli
 Feature SetFor ea
h phoneme, the same features as for syllable-level symboli
 prosodypredi
tion (see Se
tion 3.2.2) are used, ex
ept for SCHUG and 
hunkphrase features. In addition, the following features were extra
ted from thedatabase:
• phoneme level features, for a window of 5 phonemes (the respe
tivephoneme and 2 neighbouring phonemes to the left and to the right):

⋆ phoneme identity
⋆ phoneme type (vowel, 
onsonant)
⋆ 
onsonant fortis/lenis (unde�ned, fortis, lenis)
⋆ stru
tural position in syllable (onset, nu
leus, 
oda, ambisyllabi
)
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⋆ number of phonemes in the same syllable stru
ture position (notfor neighbouring phonemes)

• syllable level features:
⋆ a

entuation level
⋆ a

ent lo
ation (none, a

ent)
⋆ distan
e to pre
eding and following a

ented syllable

• a

ent group level features:
⋆ a

ent type
⋆ a

ent type of following a

ent group
⋆ phrase-�nal intonation 
ontour (�none� for non-phrase-�nal a

entgroups).An a

ent group was de�ned as a group of syllables 
onsisting of onea

ented syllable and all following syllables up to, but not in
luding, thenext a

ented syllable. Syllables in pre-heads were de�ned as belonging tothe following a

ent group.The Symboli
 feature set exists in two variants: The �rst one is usedfor the predi
tion of postlexi
al phonologi
al pro
esses and uses features of
anoni
 phonemes and syllables. The se
ond one is used for the predi
tionof duration, median F0, and last F0, and uses features of realised phonemesand syllables.Dire
t Feature SetFor ea
h phoneme, the same features as for syllable-level symboli
 prosodypredi
tion (see Se
tion 3.2.2) are used, ex
ept for those features relating toprosodi
 boundaries. In addition, the following features were extra
ted fromthe database:
anoni
 phoneme level features, for a window of 5 
anoni
phonemes (the respe
tive phoneme and 2 neighbouring phonemes to
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tions 77the left and to the right):
⋆ phoneme identity
⋆ phoneme type (vowel, 
onsonant)
⋆ 
onsonant fortis/lenis (unde�ned, fortis, lenis)
⋆ stru
tural position in syllable (onset, nu
leus, 
oda, ambisyllabi
)
⋆ number of 
anoni
 phonemes in the same syllable stru
ture posi-tion (not for neighbouring phonemes).3.3.2. Predi
tion of Postlexi
al Phonologi
alPro
essesGlottalisation 
annot be synthesised by the MBROLA synthesiser. There-fore, whenever a glottal stop was deleted, but left glottalisation behind, thisdeletion 
ounted as repla
ement (marked with the glottalisation symbol /q/).This way it was possible to insert a glottal stop of 10ms during synthesis tomimi
 glottalisation (
f. Se
tion 4.1.2).The predi
tion of postlexi
al phonologi
al pro
esses (i.e. predi
tion ofthe realised phoneme) was 
arried out in two steps.1. Change: In the �rst step, it was predi
ted whether the 
anoni
phoneme was deleted, repla
ed, or left un
hanged.2. Repla
ement : In the se
ond step, for all repla
ed phonemes a repla
e-ment rule was predi
ted.Only 
ertain �repla
ement rules� are possible, a 
anoni
 phoneme 
annot berepla
ed by any other phoneme. All [
anoni
 → realised℄ pairs that o

urin the KCoRS were allowed as repla
ement rules, e.g. the repla
ement of/E:/ with /e:/ was a

epted as repla
ement rule [E: → e:℄. By predi
tingthese rules instead of the realised phonemes, the predi
tion of impossiblerepla
ements be
ause of data sparsity was prevented. For example, speakerkko/k61 always leaves a 
anoni
 /Y/ un
hanged. Therefore, CART had no
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ements rules for /Y/ (data sparsity). As a result,the trained 
lassi�
ation tree assigned the repla
ement rule [Q → q℄, whi
h isthe most frequent repla
ement rule. Whenever ne
essary, these �impossible�repla
ements were ignored during predi
tion.The prevalent features used in the trees predi
ting 
hange and repla
e-ment are phoneme identity, features of phoneme neighbours, syllable length,stru
tural position in the syllable, lexi
al stress, and a

entuation level (forthe Symboli
 method only). The a

ura
y �gures that are listed in Table3.8 show that the Symboli
 predi
tion is not always better than the Dire
tpredi
tion. 
hange repla
ementSymboli
 Dire
t Symboli
 Dire
tkko/k61 94.6% 93.2% 92.3% 92.0%rtd/k62 92.8% 92.9% 94.0% 94.8%Table 3.8.: A

ura
y of the two tasks for the predi
tion of postlexi
al phono-logi
al 
hanges.
3.3.3. Predi
tion of A
ousti
 ParametersWagon was used to train the regression trees for the predi
tion of the a
ousti
parameters duration, median F0, and last F0. Stop values and the size ofthe held-out validation set were determined in a trial-and-error pro
edure by
omparing the evaluation measures RMSE and 
orrelation 
oe�
ient (

) ona separate test set. When the best settings had been determined, the wholedataset was used for the training of the �nal regression trees.Duration Predi
tion
z-s
ores The only feature from the feature set that was not used for du-ration predi
tion is phoneme identity. The reason behind this is that everyphoneme has a 
ertain intrinsi
 duration whi
h has a strong in�uen
e on the
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tions 79duration of the phoneme, e.g. tense vowels are longer than lax vowels, andfortis plosives are longer than lenis plosives. In order to fa
tor out the in�u-en
e of intrinsi
 duration, the absolute duration values were 
onverted into
z-s
ores, and the mean duration and standard deviation of ea
h phonemewere stored in a separate �le. The z-s
ores that are predi
ted by the regres-sion trees 
an be 
onverted ba
k into absolute duration values by applyingthe following formula:absolute duration = (z-s
ore × stddev) + mean durationFor the Symboli
 predi
tion, the z-s
ores were 
omputed on the realisedphonemes, for the Dire
t predi
tion they were 
omputed on the 
anoni
phonemes.Regression trees The Symboli
 regression trees for duration predi
tionuse the following features near the roots of the trees: positional features(position in prosodi
 phrase, neighbouring phonemes), a

ent lo
ation andtype, lexi
al stress, syllable stru
ture, and phoneme type. The Dire
t regres-sion trees also rely heavily on positional features (neighbouring phonemes,following pun
tuation); in addition they use part-of-spee
h, word frequen
y,syllable length and stru
ture, as well as lexi
al stress and phoneme type.F0 Predi
tion
z-s
ores The raw F0 values were also transformed into z-s
ores, but not byusing separate mean and stddev values for ea
h phoneme. Instead, for ea
hspeaker the mean and stddev of the median F0 values was 
al
ulated. Bypredi
ting F0 values in terms of z-s
ores it is possible to use one regressiontree for several voi
es. For Symboli
 predi
tion, last F0 is the last F0 beforea prosodi
 boundary. Sin
e the Dire
t predi
tion uses no features aboutprosodi
 boundaries, in this 
ase last F0 is the last F0 before a pause.Regression trees The Symboli
 regression trees for the predi
tion of me-dian F0 use phrase-�nal intonation 
ontour, positional features, a

ent type
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tion with CARTand lo
ation, lexi
al stress, and syllable stru
ture as topmost features. TheDire
t regression trees for median F0 predi
tion rely heavily on positionalfeatures; in addition they use lexi
al stress, part-of-spee
h, and word fre-quen
y.The regression trees for the predi
tion of last F0 are 
ompa
t enough,so that one of them is shown in Figure 3.4. It 
an be read as follows: Theroot node asks whether the word is followed by a question mark. If yes,the next question is about the distan
e of the pre
eding pause in words. Ifthis distan
e is smaller than 8, the predi
ted z-s
ore is 0.456 (the �rst valuegiven at ea
h leaf denotes the stddev of all instan
es of the training set atthat leaf). If the distan
e is at least 8, then the next question is whetherthe senten
e type is a wh-question. If yes, the predi
ted z-s
ore is 0.495;all other questions have a last F0 z-s
ore of 1.578 (i.e they end with a highintonation). Words that are not followed by a question mark follow the otherbran
h of the root node. All predi
ted z-s
ores in this bran
h are negative,thus predi
ting a low F0 value.EvaluationSin
e wagon does not o�er strati�ed 
ross-validation, the evaluation was 
ar-ried out by dividing the dataset into a training set (90%) and a test set(10%). The evaluation measures listed in Table 3.9 show the performan
eof the regression trees on the test set. In terms of RMSE and 

, the Sym-boli
 predi
tion is always better than its respe
tive Dire
t 
ounterpart. Inthe 
ase of the Symboli
 predi
tion, the evaluation on the test set uses the
orre
t symboli
 prosody features from the database (prosodi
 boundaries,a

ents, phrase-�nal intonation 
ontours). Therefore, it is quite possiblethat the Symboli
 predi
tion performs worse as soon as it is implemented ina TTS system, where it is fa
ed with in
orre
tly predi
ted symboli
 prosodyfeatures. Sin
e the Dire
t method does not rely on any 
orre
t symboli
prosody features (it uses only automati
ally predi
ted features), the evalua-



3.3. Segmental Predi
tions 81((followingpun
t_word is quest)((distan
epre
edingpause_words_auto < 8)((1.8746 0.456342))((senten
etype is wh)((1.4928 0.495193))((1.42952 1.57833))))((rightneighbour1_POS_auto is -100)((lexi
alstress is none)((leftneighbour1_POS_auto is NN)((syllpositioninword_abs < 2.3)((0.207099 -1.83956))((0.19063 -1.94317)))((leftneighbour1_simplePOS_auto is pronoun)((0.178767 -1.88098))((toplevelSCHUG
hunk
ategory_auto is PP)((0.160586 -2.01656))((leftneighbour2_simplePOS_auto is verb)((0.166037 -2.00491))((simplePOS_auto is verb)((0.217362 -1.91042))((distan
epre
edingpun
t_inwords < 5.2)((0.191442 -1.98462))((0.177953 -1.93929))))))))((distan
epre
edingpause_words_auto < 4)((0.216729 -1.96712))((syllablelengthinphonemes < 5.6)((leftneighbour1_simplePOS_auto is adj)((0.171697 -1.92763))((leftneighbour1_CELEXfreq < 2528.7)((syllablelengthinphonemes < 3.2)((0.641384 -1.75926))((0.39531 -1.69561)))((0.190776 -1.90698))))((0.934826 -1.61646)))))((0.576984 -1.48369))))Figure 3.4.: Regression tree (wagon output format) predi
ting last F0 z-s
orefor speaker rtd/k62. At bran
hing nodes the �yes�-bran
h is given�rst, followed by the �no�-bran
h. The �rst value at a leaf denotesthe standard deviation, the se
ond value is the mean (i.e. the pre-di
ted last F0 z-s
ore). Negative z-s
ores denote F0 values belowthe speaker's mean, positive z-s
ores imply a high F0 value.tion measures 
an be seen as fairly a

urate predi
tors of its performan
e ina 
omplete TTS system.



82 3. Prosody Predi
tion with CARTThere is also an interesting di�eren
e between the two speakers: Du-ration predi
tion is better for kko/k61, whereas F0 predi
tion is better forspeaker rtd/k62.predi
tion evaluation kko/k61 rtd/k62task measure Symboli
 Dire
t Symboli
 Dire
tduration RMSE 0.773 0.791 0.8441 0.882

 0.612 0.594 0.572 0.528median F0 RMSE 0.708 0.783 0.653 0.744

 0.698 0.609 0.762 0.677last F0 RMSE 1.307 1.487 0.666 1.010

 0.543 0.350 0.895 0.712Table 3.9.: Evaluation of the predi
tion of duration and F0 z-s
ores withregression trees trained on the Symboli
 and the Dire
t datasets.The evaluation measures are root mean squared error (RMSE)and 
orrelation 
oe�
ient (

).
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4. Per
eptual EvaluationIn Chapter 3, the trained 
lassi�
ation and regression trees were evaluated by
omparing their predi
tions with the a
tual realisations in the KCoRS. The
orpus-based evaluation measures RMSE and 
orrelation 
oe�
ient allow usto 
ompare di�erent ma
hine learning s
hemes or di�erent datasets. Forexample, the F0 values of the female speaker rtd/k62 seem to be easier topredi
t than the F0 values of the male speaker kko/k61 (see Se
tion 3.3.3).On the other hand, kko/k61's models for duration predi
tion are better thanthe ones for rtd/k62.Espe
ially for spee
h synthesis it is advisable to test the predi
tions ofa model not only by 
omparing it to the realisations in a 
orpus, but alsoby measuring subje
tive listener preferen
es with per
eption experiments, forthe following reasons:1. It is unknown whi
h of the following three is more/most important: agood F0 predi
tion, a good duration predi
tion, or a good predi
tion ofpostlexi
al phonologi
al pro
esses? And even if one synthesis systemis superior to another one in all three respe
ts, it is still possible thatthis di�eren
e 
annot be per
eived by listeners.2. The 
orpus-based evaluation measures impli
itly assume the realisa-tions of one parti
ular speaker as gold standard. However, usuallythere are several a

eptable ways to produ
e an utteran
e. If the model
ommits an error in the predi
tion 
ompared to the 
orpus, this �error�might be just as a

eptable as the 
orpus realisation.3. Listeners may have di�ering idiosyn
rati
 preferen
es. For example,Portele (1997) and Brin
kmann & Trouvain (2003) showed that one



84 4. Per
eptual Evaluationgroup of listeners prefers the text-to-spee
h system to speak as �
or-re
tly� as possible, with no deviations from the 
anoni
 pronun
iation,while the other group prefers the in
lusion of some 
ommon segmentalpostlexi
al pro
esses, su
h as s
hwa-deletion and assimilation of nasals.4. Some listeners might even prefer a ma
hine to sound unnatural, be
ausethey feel un
omfortable if they 
annot tell whether they are 
ommuni-
ating with a ma
hine or with a human being.In order to avoid implementing �improvements� to the TTS system that arenot a

epted by the listeners, one should therefore 
ondu
t a per
eptionexperiment.The �rst per
eptual evaluations of spee
h synthesis systems were intel-ligibility tests, e.g. by using semanti
ally unpredi
table senten
es (SUS test;Benoît et al., 1996). This was worthwhile for the TTS systems at that time,be
ause some were barely intelligible. Nowadays nearly all systems are 
learlyintelligible, so most per
eption experiments fo
us on naturalness, a

eptan
e,or preferen
e by asking the subje
ts to rate the synthesised stimuli on somes
ale or to 
ompare two (or more) stimuli with ea
h other.Some experiments try to 
ompare the systems more indire
tly by givingthe subje
ts a task (e.g. to follow the instru
tions produ
ed by a TTS system)and measuring their rea
tion time or re
ording their gaze with an eye-tra
ker(Swift et al., 2002). If the subje
ts generally rea
t faster when listening tothe stimuli generated by one system, it is argued that this system is betterthan the others, whi
h is 
ertainly true for the respe
tive task.In my per
eption experiment, I followed the re
ommendations P.85 andP.800 by ITU-T1 (International Tele
ommuni
ation Union � Tele
ommuni-
ation Standardization Se
tor; ITU-T, 1994, 1996). These re
ommendationsdes
ribe pro
edures for the per
eptual evaluation of spee
h signals that havebeen agreed upon by the members of ITU-T (
urrently 359 institutions world-wide). They have been tested thoroughly and 
an be 
an be viewed as a1http://www.itu.int/ITU-T/



4.1. Materials and Methods 85standard, even though they are not used very often in the spee
h synthesis
ommunity.4.1. Materials and Methods4.1.1. General Pro
edureTwo of the methods des
ribed by the ITU-T re
ommendation P.800 (ITU-T, 1996) are Absolute Category Rating (ACR) and Comparison CategoryRating (CCR). In the ACR pro
edure, the subje
ts are asked to judge thequality of ea
h synthesised stimulus they hear using the following �ve-points
ale:
5 ex
ellent
4 good
3 fair
2 poor
1 badThe mean of all s
ores (MOS = mean opinion s
ore) is then 
al
ulated forea
h stimulus type.A

ording to ITU-T (1996), the ACR method tends to lead to low sensi-tivity in distinguishing among good quality TTS systems. A modi�ed versionof the ACR pro
edure, the CCR pro
edure, a�ords higher sensitivity. In theCCR pro
edure, the stimuli are presented to listeners by pairs (A-B) whereA is a 
opy-synthesised original and B is synthesised by the systems to be
ompared. Some �null pairs� (A-A) are in
luded to 
he
k the quality of an-
horing. A

ording to re
ommendation P.800, samples A and B should beseparated by a pause of 500 to 1000ms duration. Sin
e we 
annot assumethat A is always more a

eptable than B, the order of the samples is 
hosenat random for ea
h trial. On half of the trials, A is followed by B. On the re-maining trials, the order is reversed. This way, it is also possible to examinethe ratings of ea
h subje
t for 
onsisten
y. The subje
ts use the following
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ale to judge the quality of the se
ond sample relative to the quality of the�rst sample:
3 mu
h better
2 better
1 slightly better
0 about the same

−1 slightly worse
−2 worse
−3 mu
h worseIn e�e
t, the subje
ts provide two judgements with one response: �Whi
hsample has better quality?� and �By how mu
h?�. Simple averaging of thenumeri
al s
ores should yield a mean s
ore of approximately 0 for all 
ondi-tions. It is ne
essary to re
ode the raw data: In those 
ases where the orderof presentation is B-A, the sign of the numeri
al s
ore must be reversed(i.e. −1 → 1, 1 → −1). These re
oded s
ores are used to 
ompute CMOS(
omparison mean opinion s
ore). Thus, the results are presented in terms ofthe A-B order. Appropriate analyses of varian
e (ANOVA) and a posterioriTukey HSD (Honestly Signi�
ant Di�eren
e) multiple 
omparison tests 
anbe performed on the re
oded s
ores. Be
ause of the higher sensitivity, I 
hosethe CCR method for my per
eption experiment. The spe
i�
 set-up of theexperiment (generation and presentation of stimuli, rating pro
edure, andgroup of subje
ts) is des
ribed in the following se
tions.4.1.2. StimuliThe 20 senten
es listed in Table 4.1 were randomly sele
ted from the KCoRSas synthesis senten
es for the per
eption experiment. They had not beenused as training, validation or test items for the 
lassi�
ation and regressiontrees des
ribed in Chapter 3. The mean senten
e length (in 
anoni
 syllables)is 14.5 (minimum: 5, maximum: 34).All 20 test senten
es were pro
essed by MARY with no manual mod-



4.1. Materials and Methods 87be006 Montag war es uns zu regneris
h.be038 Die Ärzte sind damit gar ni
ht einverstanden.be074 Vater mis
ht glei
h die Karten.
n015 Der gesu
hte Weg ers
heint auf dem Stadtplan in rotenLeu
htpunkten, indem Sie auf die Taste mit dem entspre
hendenNamen drü
ken.e026 Gibt es eine Zugverbindung heute abend na
h Frankfurt, undwenn ja, auf wel
hem Gleis fährt der Zug ab?e040 I
h mö
hte am dreiundzwanzigsten zwölften na
h Oldenburgfahren, und zwar mö
hte i
h in Oldenburg früh sein, wenn mögli
hvor neun Uhr.e042 Ja das ist zu früh.ko029 Sie döst müde vor si
h hin.ko039 Das Kamel hat zwei Hö
ker.ko049 Die Bejahung dieser Frage ist meine Bedingung für einenNeuanfang.mr007 Wer weiÿ dort genau Bes
heid?mr016 Iss dein Essen nie hastig!mr018 Bist Du sehr kalt geworden?mr040 Se
hs Mäd
hen wollen S
hwester werden.mr088 Einige Busse fahren heute später.s041 I
h mö
hte in vierzehn Tagen von Mün
hen über Hannoverna
h Hamburg fahren.s072 Wel
hen Zug muÿ i
h nehmen, um gegen zehn Uhr in Würzburgzu sein?s1017 A
htlos wirft der Knirps Mats
h dur
hs E
kfenster.s1040 Ni
ht alle Mens
hen verkraften den Linksverkehr sofort.tk010 Bei dieser Sa
hlage müssen wir die Hirs
hjagd aufs
hieben unduns kurz na
h neun Uhr zurü
kmelden.Table 4.1.: List of the 20 test senten
es (with their respe
tive ID in theKCoRS) for the per
eption experiment.i�
ations (the phonemi
 pronun
iation was examined for errors, but nonewere dete
ted). MARY o�ers three female and four male MBROLA voi
es.For the per
eption experiment, I 
hose the two voi
es that were re
orded forMARY's emotional synthesis (S
hröder, 2004), named de6 (male voi
e) andde7 (female voi
e). In addition to those versions produ
ed by the original



88 4. Per
eptual EvaluationMARY system, three other generation methods were applied to ea
h senten
efor ea
h voi
e: Copy-synthesised Originals, Dire
t Predi
tion, and Symboli
Predi
tion, whi
h are all des
ribed in the following se
tions.2 All stimuli werestored as 16-bit, 22050 Hz wav �les.Copy-synthesised OriginalsIn order to produ
e the 
opy-synthesised originals, the following features wereextra
ted from the KCoRS and printed in the MBROLA format (
f. Se
tion1.1.3):
• realised phoneme
• for ea
h realised phoneme: duration in ms
• for ea
h realised sonorant and vowel: median F0 in Hz, pla
ed at du-ration 50% in the phoneme
• for ea
h last realised phoneme before a pause: last F0 in Hz.Be
ause of some MARY/MBROLA 
hara
teristi
s, the extra
ted featureshad to be 
hanged in the following 
ases:
• MBROLA 
annot synthesise glottalisation. So, whenever a glottal stophad been deleted in the original realisation and the following realisedphoneme was glottalised, a glottal stop of 10ms was inserted in order tomimi
 glottalisation (or at least to make sure that some sort of jun
turewas audible).
• Neither of the 
hosen MBROLA voi
es distinguishes between plosive
losure and release (there is only one symbol for ea
h plosive). There-fore, all neighbouring plosive 
losures and releases were 
ombined intoone phoneme. Also, if the plosive 
losure had been deleted, but therelease was still present, the symbol was 
hanged into the MBROLAplosive symbol.2All stimuli are available as sound �les from http://www.brin
kmann.de/KaRS/.
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• In the KCoRS there are no phonemi
 labels for a�ri
ates; 
losure andrelease are labelled separately. After listening to some trial stimuli, Ide
ided to 
ombine all neighbouring /t/ and /s/ to the a�ri
ate /ts/.
• Sin
e MBROLA voi
es do not o�er /6/-diphthongs, these were dividedup into the vowel (re
eiving 2/3 of the diphthong's duration, and pla
-ing the median F0 value at 75% of the vowel's duration) and /6/.Based on the assumption that we are aiming for natural-sounding spee
hsynthesis, these 
opy-synthesised originals 
onstitute the upper limit of M-BROLA, i.e. one 
annot get any 
loser to natural read spee
h with theMBROLA diphone synthesis method. Phoneti
 vowel redu
tions and nasal-isation 
annot be 
aptured at all, and glottalisation 
an only be mimi
kedvery 
rudely. The plosive release 
annot be modelled separately from theplosive 
losure, even though the plosive releases are deleted mu
h more oftenthan the 
losures (
f. Se
tion 3.3.2), espe
ially in 
onsonant 
lusters. As in-formal inspe
tion revealed, plosive release deletion is sometimes su

essfully
aptured by the respe
tive diphone (espe
ially by the diphones of the femalevoi
e de7).Symboli
 and Dire
t Predi
tionBoth Symboli
 and Dire
t predi
tion are methods that use the 
lassi�
ationand regression trees that were trained on the KCoRS database (as des
ribedin Chapter 3). Both methods use only automati
ally derived features as in-put. As shown in Figure 4.1, the Symboli
 method predi
ts symboli
 prosodyfeatures (prosodi
 boundaries, a

entuation level, a

ents, and intonation
ontours) before predi
ting the MBROLA input features realised phonemestring, duration, F0 median, and last F0. The Dire
t method uses predi
tedpauses as the only additional feature for the predi
tion of the MBROLAfeatures. In order to generate proper MBROLA input, the predi
ted fea-tures had to be 
hanged in the same way as the ones of the 
opy-synthesisedoriginals.
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Figure 4.1.: Generation of MBROLA input for �Symboli
� and �Dire
t� stim-uli.



4.1. Materials and Methods 91Stimulus PairsFor every senten
e, the 
opy-synthesised sample (A) was paired with ea
h ofthe automati
ally predi
ted samples (B), namely MARY, Dire
t, and Sym-boli
. A and B were separated by a pause of 800ms. In order to be ableto examine the 
onsisten
y of the subje
ts' ratings, both orders (A-B) and(B-A) were in
luded in the experiment, resulting to a total of 120 (20×3×2)stimulus pairs.In addition to these stimulus pairs, the senten
e Heute ist s
hönes Früh-lingswetter. was used to generate four pairs for the training se
tion at thebeginning of the experiment.Four identi
al (A-A) and (B-B) pairs, where both samples were exa
tlythe same, were also in
luded. These identi
al pairs were used to examinewhether the subje
ts were listening 
arefully.All stimulus pairs were generated with the male voi
e de6 and withthe female voi
e de7. Sin
e ea
h stimulus pair had a mean duration of7s, the experiment would have been longer than 30 minutes if ea
h subje
thad to rate both voi
es. I regard 30 minutes as the maximum length for aper
eption experiment where the subje
ts have to listen 
arefully and remainvery fo
ussed on the task. Therefore, two separate experiments were set up:one with the female voi
e and one with the male voi
e.4.1.3. PresentationBefore starting the per
eption experiment, the subje
ts were asked to �ll ina questionnaire whi
h asked for information regarding their age, sex, andthe region of Germany they grew up in (diale
tal ba
kground), as well asprofessional ba
kground and prior experien
e with spee
h synthesis (
hoosing�none�, �little�, �regular user�, or �expert�). After the experiment, the subje
tswere asked for any 
omments.The per
eption experiment itself was 
ondu
ted with SCAPE (Systemfor Computer-Aided Per
eption Experiments; Grabowski & Bauer, 2004),
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eptual Evaluationa small, �exible program written in Java. The instru
tions for the subje
ts(see Table C.1 in Appendix C) were presented on s
reen, and the stimuli werepresented via headphones. The subje
ts were instru
ted to listen 
arefully toboth samples of ea
h pair and to rate the overall quality of the se
ond sample
ompared to the �rst one using the seven-point CCR s
ale by 
li
king on therespe
tive radio button (see Figure 4.2). The subje
ts 
ould listen to ea
hstimulus pair only on
e, and as soon as the radio button was 
li
ked, thenext stimulus pair was presented. After rating the four training pairs, thesubje
ts were prompted to ask any questions regarding the pro
edure of theexperiment. After the training pairs and the prompt, all stimuli (in
ludingthe identi
al pairs) were presented in a randomised order (with a di�erentorder for every subje
t).

Figure 4.2.: S
reenshot of per
eption experiment with SCAPE.SCAPE stores the following information for ea
h presented stimuluspair:
• subje
t ID
• presentation number of the stimulus pair
• �lename of the stimulus pair
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• duration of the stimulus pair
• rea
tion time, measured from the beginning of the stimulus pair
• rating.4.1.4. Subje
ts32 subje
ts took part in the per
eption experiment. All are native Germanspeakers, 26 of them being students or sta� members of the Department ofGeneral Linguisti
s. Both synthesis voi
es were rated by an equal number offemale and male listeners.The ratings of ea
h subje
t were s
reened for rea
tion time and 
onsis-ten
y. A rea
tion time that is smaller than the duration of the stimulus pairmeans that the subje
t gave his or her rating before hearing the 
ompletestimulus pair. Sin
e every stimulus pair was presented twi
e in the experi-ment (A-B vs. B-A), the per
entage of stimuli pairs that were rated similarly(both negative, both positive, or both 0) was taken as 
onsisten
y measure.Two subje
ts (neither had any prior experien
e with spee
h synthesis)had given more than 10 of their ratings before 
ompletely hearing the stimuluspair. Their 
onsisten
y s
ores were also rather low (33.3% and 40%). I
on
luded that those two subje
ts had been unable to 
ope with the taskand ex
luded their ratings from further analysis. Sin
e these 
onsisten
yanalyses were 
ondu
ted dire
tly after ea
h subje
t had 
ompleted the task,we were able to reassign the following subje
ts to new groups, ensuring thatboth synthesis voi
es were rated by an equal number of female and malelisteners. The remaining 30 subje
ts were aged between 20 and 40 years(mean: 28 years).The diale
tal ba
kground of the subje
ts might have an in�uen
e ontheir preferen
e of 
ertain intonational patterns and segmental postlexi
alpro
esses (e.g. 
on
erning the repla
ement of /E:/ by /e:/). Sin
e the statis-ti
al models were trained on two speakers from S
hleswig Holstein (NorthernGermany), the subje
ts were grouped into �northern� (grown up in S
hleswig-
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eptual EvaluationHolstein, Hamburg, or Lower Saxony) and �other� (grown up in any otherfederal state).Ea
h subje
t is 
hara
terised by the following four features (number ofsubje
ts with that feature in parentheses):
• sex: male (14) vs. female (16)
• prior experien
e with spee
h synthesis: none or little experien
e (16)vs. regular user or expert (14)
• diale
tal ba
kground: northern (8) vs. other (22)
• synthesis voi
e the subje
t had to rate: male (15) vs. female (15).The distribution of all pairwise feature 
ombinations among the subje
tsis listed in Table 4.2. A 
hi-square test revealed that unfortunately thefeatures diale
tal ba
kground and prior experien
e are not independentlydistributed among the subje
ts (χ2 = 4.045, p < 0.05). Only one of thesubje
ts who grew up in Northern Germany is a regular user or expert, theother 7 have no or little experien
e with spee
h synthesis. In 
ontrast, 59%of the subje
ts who grew up in another part of Germany are regular users orexperts. sex experien
e synthesis voi
emale female none/little reg/exp male femaleba
kgr. northern 3 5 7 1 4 4other 11 11 9 13 11 11sex male 6 8 7 7female 10 6 8 8exper.
e none/little 9 7reg/exp 6 8Table 4.2.: Absolute frequen
ies of pairwise feature 
ombinations among thesubje
ts of the per
eption experiment (reg/exp = regular user orexpert of spee
h synthesis).



4.2. Results and Dis
ussion 954.2. Results and Dis
ussionThe signi�
ant di�eren
es and intera
tions des
ribed in the following se
tionswere found by performing univariate analyses of varian
e (ANOVA) and post-ho
 Tukey-HSD multiple 
omparisons with the statisti
al software SPSS 10.Correlations and their signi�
an
e were analysed using Pearson 
orrelation.4.2.1. Subje
ts' CommentsThe 
omments of the subje
ts are not only helpful for improving the pro
e-dure of the experiment, they also shed light on the reasons behind some ofthe ratings:S
ale One subje
t (with little experien
e) 
ommented that the seven-points
ale was too �ne-grained for him, he would have preferred a three-point s
ale (better vs. equal vs. worse). On the other hand, anothersubje
t (expert) 
ommented that she was very happy with the seven-point s
ale, whi
h allowed her to make �ne distin
tions.Pauses Some subje
ts found the pause between the two samples too short.One of these subje
ts found it rather stressful that the next stimu-lus was played automati
ally after he had pla
ed his rating. Anothersubje
t found it hard to stay 
on
entrated throughout the whole ex-periment and would have preferred an expli
it pause after a blo
k of 60stimuli. Espe
ially for naive subje
ts one should 
onsider introdu
inglonger pauses or allowing repeated playba
k.Randomisation One subje
t 
omplained that despite randomisation, some-times the same senten
e was repeated several times. Another subje
teven suspe
ted that the order of stimuli depended on his ratings. Ifpossible, the �randomisation� should be 
ontrolled, so that two neigh-bouring stimuli pairs always 
onsist of di�erent senten
es.
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e length One subje
t (with little experien
e) 
ommented that itwas mu
h easier for him to make a de
ision if the senten
es were longer.This is in line with the generally lower s
ores for longer senten
es (seeSe
tion 4.2.3) and the 
orrelation between absolute s
ores and 
onsis-ten
y (see Se
tion 4.2.2): If a subje
t is unsure about his rating, hetends to give a rating that is 
lose to 0.Rea
tion time Two subje
ts 
onfessed that they had pla
ed their ratingbefore listening to the end of the se
ond sample whenever the samplesdi�ered so greatly that they had a very strong preferen
e.Senten
e 
hoi
e One subje
t 
omplained that senten
e mr018 (Bist Dusehr kalt geworden? ) was ungrammati
al for her (she would have pre-ferred Ist Dir sehr kalt geworden? ).MBROLA One female subje
t 
omplained that the fundamental frequen
yof the male voi
e was sometimes too high, whereas one male subje
tfound the low F0 of the female voi
e too low. This illustrates thelimitations of MBROLA (and idiosyn
rati
 preferen
es).Diale
tal preferen
es Several subje
ts with a Southern German diale
talba
kground (raised in Saarland, Hessen, or Baden-Württemberg) 
om-plained that the female 
opy-synthesised sample of senten
e e042 (Jadas ist zu früh.) sounded perfe
tly natural, but very arrogant. Most ofthem said they had voted for the less natural sample, whi
h soundedmore friendly to them. In fa
t, as 
an be seen in Figure 4.9, the Dire
tand Symboli
 samples of e042 re
eived even a positive CMOS (i.e. bet-ter than the 
opy-synthesised original). This illustrates the fa
t that anatural-sounding synthesis is not always the most a

epted one.



4.2. Results and Dis
ussion 974.2.2. Consisten
yThe mean per
entage of similar ratings a
ross all subje
ts is 61.1%, showingthe di�
ulty of the task. One subje
t a
hieved only 31.7% similar ratings,whereas the most �
onsistent� subje
t had 85.0% similar ratings. 79.2% of allidenti
al pairs were re
ognised (i.e. they were rated with 0), but only 46.7%of the subje
ts re
ognised all four identi
al pairs. The per
entage of similarratings of a subje
t and his or her re
ognition rate of identi
al pairs do not
orrelate signi�
antly (
orrelation 
oe�
ient: 0.233).Consisten
y (1=similar rating, 0=di�erent rating) and absolute COShave a signi�
ant 
orrelation 
oe�
ient of 0.335 [p ≤ 0.01℄ over all stim-uli, i.e. the more extreme the rating, the more 
onsistent (see Figure 4.3).For example, if an item is rated with −3, it is very likely that the se
ondpresentation of the item is rated with a negative s
ore as well.

mean
ons
isten
y

absolute COS0 1 2 30.20.30.4
0.50.60.7
0.80.9

Figure 4.3.: Correlation between absolute COS and 
onsisten
y of ratings.An ANOVA revealed that the mean 
onsisten
y (proportion of similarratings a
ross all (A-B)/(B-A) pairs) is signi�
antly higher for MARY (0.75)than for Dire
t (0.54) and Symboli
 (0.55) [p ≤ 0.005℄. This illustratesthat MARY re
eives more extreme ratings and also suggest that subje
ts arerather unsure about their ratings of Dire
t and Symboli
.
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eptual Evaluation4.2.3. CMOSMain E�e
ts and Intera
tionsThe mean overall CMOS (over both voi
es and all three synthesis methods) is
−1.04. The following signi�
ant CMOS di�eren
es were found (by ANOVAand Tukey HSD):

• synthesis method: Symboli
 (−0.76) ≈ Dire
t (−0.80) > MARY(−1.55) [p < 0.001℄
• synthesis voi
e: female voi
e (−0.93) > male voi
e (−1.15) [p <

0.001℄
• prior experien
e with spee
h synthesis:none/little (−0.98) > regular/expert (−1.11) [p < 0.01℄
• sex of listener: male listener (−0.96) > female listener (−1.11) [p ≤

0.001℄
• diale
tal ba
kground: northern (−0.85) > other (−1.11) [p <

0.001℄Regarding CMOS, signi�
ant intera
tions were found for:
• synthesis voi
e and method [p < 0.001℄
• synthesis voi
e, experien
e, and sex of listener (three-way intera
tion)[p < 0.001℄.All main e�e
ts and intera
tions are des
ribed in detail in the following se
-tions.Synthesis Method Over all subje
ts and both synthesis voi
es, MARYre
eives signi�
antly lower ratings than both Symboli
 and Dire
t (whi
h donot di�er signi�
antly). As shown in Figure 4.4, 24.6% of all MARY stimulire
eive a COS (
omparison opinion s
ore) of −3, in 
ontrast to only 9.3%Dire
t and 8.1% Symboli
 stimuli. 15.4% of all MARY stimuli have a COS
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ussion 99of 0 or better, whereas 38.9% Dire
t and 39.4% Symboli
 stimuli are ratedhaving a similar or better quality than the 
opy-synthesised original.

MARY
⋆ Dire
t
⋄ Symboli

umulated

%
COS-3 -2 -1 0 1 2 30102030

40506070
8090100

⋆

⋆

⋆

⋆

⋆ ⋆ ⋆

⋄
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⋄

⋄
⋄ ⋄ ⋄

Figure 4.4.: COS 
umulative distributions over both synthesis voi
es for thethree synthesis methods MARY, Dire
t, and Symboli
. COS = 0means that the stimulus was rated having the same overall qual-ity as the 
opy-synthesised original, stimuli with a positive COSwere rated having a better quality than the 
opy-synthesisedoriginal.
Synthesis Voi
e If the two synthesis voi
es are analysed separately, thesame signi�
ant di�eren
e is observed for ea
h voi
e: MARY re
eives sig-ni�
antly lower ratings than both Symboli
 and Dire
t (whi
h do not di�ersigni�
antly). In addition, there is an interesting intera
tion between synthe-sis voi
e and method. As shown in Figure 4.5, both synthesis voi
es re
eivethe same low CMOS for MARY (−1.55). For the Dire
t synthesis method,the male voi
e gets a lower CMOS (−0.88) than the female voi
e (−0.72),but this di�eren
e is not signi�
ant. For the Symboli
 method, the CMOSof the male voi
e is signi�
antly lower (−1.00) than the CMOS of the femalevoi
e (0.53) [p ≤ 0.005℄. The additional layer of symboli
 prosody predi
tionseems to be slightly helpful only for the female voi
e.
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⋆ female voi
emale voi
eCMOS
synthesis methodMARY Dire
t Symboli
-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4

⋆

⋆

⋆

Figure 4.5.: Intera
tion between synthesis method and synthesis voi
e.Prior experien
e with spee
h synthesis Subje
ts with regular/expertexperien
e generally give lower ratings than subje
ts with no or little priorexperien
e. This 
an be explained by the fa
t that through their prior expe-rien
e with spee
h synthesis, regular/experts have a 
lear preferen
e of whata TTS system should sound like, and they are able to hear �ner di�eren
es.There is also an interesting intera
tion between synthesis method and priorexperien
e [p < 0.05℄: As shown in Figure 4.6, the CMOS of regular usersand experts is espe
ially low for MARY (−1.71) � more experien
ed TTSusers expe
t the synthesis to sound more natural.Sex of listener Looking at the CMOS of male and female listeners, we�nd that male listeners give signi�
antly higher ratings (−0.96) than femalelisteners (−1.11) (this is true for all synthesis methods). However, there is asigni�
ant intera
tion between synthesis voi
e, experien
e, and sex of listener.As 
an be seen in Figure 4.7, the lowest ratings are given by �naive� femalelisteners (with no or little experien
e with spee
h synthesis) listening to themale voi
e. Naive female listeners and all male listeners prefer the femalevoi
e, whereas expert female listeners prefer the male voi
e. But sin
e thereare only two expert female listeners who listened to the male voi
e, these
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⋆ regular/expertnone/littleCMOS
synthesis methodMARY Dire
t Symboli
-1.8-1.6-1.4-1.2-1.0-0.8-0.6

⋆

⋆ ⋆

Figure 4.6.: Intera
tion between experien
e of the listener and synthesismethod.group results have to be treated with 
aution. In order to de
ide whetherthese intera
tions really re�e
t di�eren
es between groups, or whether theysimply show idiosyn
rasies of the subje
ts who just happen to belong to thosegroups, we need more subje
ts per group.Diale
tal ba
kground Subje
ts with a Northern German ba
kground givesigni�
antly higher ratings than subje
ts with a non-northern ba
kground.As mentioned in Se
tion 4.1.4, the features diale
tal ba
kground and priorexperien
e are not independently distributed among the subje
ts. Therefore,we need further analyses to determine the 
ause of the higher CMOS of theNorthern German subje
ts: Is it higher be
ause they prefer the 
hara
teris-ti
s of their home diale
t in a syntheti
 voi
e, or is it higher be
ause theyare more �naive� subje
ts, who generally give higher ratings? If the diale
talba
kground of a subje
t has an in�uen
e on the ratings, this e�e
t shouldonly o

ur for those stimuli that were not generated with original MARY,be
ause MARY was not trained on any 
orpus and produ
es Standard Ger-man output without any redu
tions. Figure 4.8 shows that this is not the
ase: the subje
ts with a Northern German ba
kground generally give more
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male voi
e⋆ female voi
e

CMOS
listenernaivemale naivefemale expertmale expertfemale-1.3-1.2-1.1-1.0-0.9-0.8-0.7-0.6-0.5-0.4

⋆
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Figure 4.7.: Intera
tions between synthesis voi
e, experien
e, and sex of lis-tener. �Naive� listeners are those with no or little experien
e withspee
h synthesis. �Expert� listeners are regular users or expertsof spee
h synthesis.positive ratings, no matter whi
h synthesis method they are listening to.Therefore, the 
ause of the higher CMOS must be their inexperien
e withspee
h synthesis.
Single Senten
esA possible argument against using ma
hine learning (ML) methods forprosody predi
tion is that even though the overall quality of ML-based syn-thesis systems is better than the quality of rule-based systems, ML-basedsystems show a greater varian
e, i.e. some senten
es of ML-based systemssound ex
ellent, whereas others sound very bad. It 
ould be argued thatrule-based systems might sound worse, but be
ause they do so 
onsistently,the user is not surprised by any sudden quality 
hanges, leading to a highera

eptan
e.
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⋆ othernorthernCMOS
synthesis methodMARY Dire
t Symboli
-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4

⋆

⋆ ⋆

Figure 4.8.: In�uen
e of the subje
ts' diale
tal ba
kground on CMOS.Senten
e Length A
ross all stimuli, COS 
orrelates negatively with sen-ten
e length, i.e. the longer the senten
e, the lower the rating (
orrelation
oe�
ient −0.149, p ≤ 0.01), suggesting that listeners need longer senten
esto make 
onsistent de
isions (
f. Se
tion 4.2.1). The absolute value of the
orrelation 
oe�
ient is signi�
antly lower for MARY (−0.098) than for Di-re
t (−0.174) and Symboli
 (−0.191). This 
ould be explained by the fa
tthat the KCoRS 
onsists mostly of short senten
es, so that both ML-basedmethods perform worse for longer senten
es than for shorter ones, whereasMARY uses the same set of rules for every senten
e.Varian
e Figures 4.9 and 4.10 show the CMOS of ea
h senten
e separatelyfor the female and the male voi
e. For the female voi
e, the varian
e of CMOSis lowest for MARY (MARY: 1.48, Dire
t: 1.81, Symboli
: 1.60). Nonethe-less, the Symboli
 method always re
eives higher ratings than MARY, sug-gesting that the Symboli
 method should be the 
hosen for the female voi
e.For the male voi
e, the ratings of MARY even have the highest varian
eof all three methods (MARY: 1.81, Dire
t: 1.74, Symboli
: 1.68). Comparedto the Dire
t synthesis method, MARY is only better for senten
e 
n015, sothat I would re
ommend using the Dire
t method for the male voi
e.
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synthesis methodMARY⋆ Dire
t⋄ Symboli
CMOS
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Figure 4.9.: CMOS for ea
h senten
e (female voi
e).4.3. Con
lusionsThe per
eptual evaluation showed that all three synthesis methods mostlyre
eive negative s
ores. Even though there are some ex
eptions, one 
angenerally assume the 
opy-synthesised originals as gold standard. It alsoshowed that both ML-based methods (Symboli
 and Dire
t) are superior tothe original rule-based MARY method.Comparing the two ML-based methods, I 
on
lude that the symboli
level of prosody predi
tion 
an be safely skipped without obtaining a signif-i
antly lower CMOS. On the other hand, the in
lusion of symboli
 prosodypredi
tion is not detrimental either. Therefore, the de
ision whether or notto in
lude the symboli
 level 
an be based entirely on the purpose of thesynthesis system. If it is an instru
tional or resear
h tool (su
h as MARY),one should in
lude the symboli
 predi
tion level, if it is just a �bla
k box�for the user, one 
an use the Dire
t predi
tion method. If only one of thevoi
es used in the present study was to be 
hosen, it should be the femalevoi
e de7, whi
h generally re
eived higher ratings.As a general rule, the more experien
ed a TTS user, the higher his
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Figure 4.10.: CMOS for ea
h senten
e (male voi
e).expe
tations regarding naturalness. If we aim for a wider usage of spee
hsynthesis, it is ne
essary to improve it.Finally, for a small follow-up study, the following pro
edure 
ould be 
ar-ried out to �nd out whether 
orpus-based and per
eptual evaluation measures
orrelate: By 
omparing the synthesised stimuli with the original realisations,for ea
h stimulus we 
ould measure
• RMSE and 
orrelation 
oe�
ient of duration values
• RMSE and 
orrelation 
oe�
ient of median F0 values
• a

ura
y of predi
ted segmental 
hanges.These 
orpus-based evaluation measures 
ould then be dire
tly 
omparedwith the per
eptual ratings. The results might also shed light on the questionwhi
h of the three parameters � duration, F0, or postlexi
al phonologi
alpro
esses � is most important.
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Con
lusion and OutlookThe per
eptual evaluation shows that the output of a text-to-spee
h sys-tem 
an be signi�
antly improved by training all models that 
ontribute toprosody predi
tion on the same database, namely the `Kiel Corpus of ReadSpee
h', whi
h was enri
hed with additional features. More importantly, itshows that the error introdu
ed by symboli
 prosody predi
tion per
eptuallyequals the amount of error produ
ed by the dire
t method that does notexploit any symboli
 prosody features.More time and e�ort 
ould be spent introdu
ing other features and try-ing out di�erent ma
hine learning and feature sele
tion methods. However,I doubt whether the resulting models would lead to a per
eptually improvedoutput. I think that the limitations of the KCoRS and MBROLA have beenrea
hed with the presented approa
h.One major drawba
k of the KCoRS is its textual material 
onsistingalmost entirely of isolated senten
es. In order to model prosodi
 propertiesof longer texts, we need a 
orpus of read newspaper texts or radio news. Theavailable spee
h 
orpora in that domain (IMS German Radio News Corpus,S1000P, MULI; 
f. Se
tion 2.3.3) are not 
ompletely labelled with segmentaland prosodi
 information. Therefore, a possible approa
h would be to extendthe annotations of these 
orpora.Instead of using the MBROLA diphone synthesiser, an even morepromising approa
h is to try a di�erent synthesis method, namely non-uniform unit sele
tion, whi
h generally produ
es more natural sounding out-put. The spee
h material in the KCoRS, whi
h is not more than half anhour of spee
h per speaker, is not su�
ient for a reliable non-uniform unitsele
tion spee
h synthesiser (
f. Brin
kmann, 1997). To my knowledge, there
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eptual Evaluationexists no publi
ly available German database with two or more hours oflabelled spee
h per speaker so far. Therefore, it would be worthwhile pro-du
ing su
h a large labelled spee
h 
orpus. With this 
orpus of read spee
h,one 
ould also in
lude breathing pauses o

urring in read spee
h, making thegenerated output sound more natural.Breathing is not the only �noise� in natural spee
h. Campbell (2004)reported that in a large database of daily 
onversational spee
h (the `Ex-pressive Spee
h Pro
essing' 
orpus) grunts and other noises are remarkablyfrequent. Instead of 
lear emotional states (su
h as happiness, sadness, anger,and fear), a great variety of di�erent speaking styles is present, whi
h expressattitudes and interpersonal relationships.I think that the 
hallenge for the next years is to move onward from�reading ma
hines� to truly 
onversational spee
h synthesis, whi
h 
ould beused in a dialogue system or as an aid for vo
ally disabled persons. AsCampbell (2004) argues very 
onvin
ingly, in order to a
hieve this long-termgoal, we will have to move away from text-based synthesis by using a largedatabase of naturally o

urring 
onversational spee
h, whi
h remains to bebuilt for German.
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A. PROLABIn Table A.1, Table A.2, and Table A.3 all PROLAB labels used in theKCoRS are listed and des
ribed. Additionally, the absolute frequen
y ofea
h label is given for the 
omplete KCoRS, speaker kko/k61, and speakerrtd/k62.
A.1. A

ent and alignment labelsabsolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62a

entuation level: una

ented#&0 una

ented 15775 2484 2455#&%0 un
ertain a

entuationlevel 106 4 7a

entuation level: partially a

ented#&1- �at 390 51 65$&1- �at within a word 2 0 0#&%1- �at, un
ertain a

entua-tion level 6 0 2#&1� mid peak 780 164 180$&1� mid peak within a word 6 2 0#&|1� mid peak with upstep 6 1 0#&%1� mid peak, un
ertain a
-
entuation level 8 0 2
ontinued on next page



110 A. PROLABabsolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62#&1�% mid peak, un
ertain align-ment 5 0 0#&1) early peak 167 23 15$&1) early peak within a word 3 0 1#&%1) early peak, un
ertain a
-
entuation level 6 0 0#&1)% early peak, un
ertainalignment 1 0 0#&1( late peak 411 36 73$&1( late peak within a word 7 1 1#&|1( late peak with upstep 4 0 2#&%1( late peak, un
ertain a
-
entuation level 7 2 0#&1(% late peak, un
ertain align-ment 8 0 0#&1℄ early valley 78 11 7$&1℄ early valley within a word 1 0 0#&%1℄ early valley, un
ertain a
-
entuation level 1 0 0#&1℄% early valley, un
ertainalignment 1 0 0#&1[ non-early valley 129 5 36$&1[ non-early valley within aword 2 0 0#&1[% non-early valley, un
ertainalignment 4 1 1$&1[% non-early valley within aword, un
ertain alignment 1 0 0a

entuation level: a

ented#&2- �at 253 37 26#&|2- �at with upstep 3 0 0#&%2- �at, un
ertain a

entua-tion level 4 1 0#&2-% un
ertain �at 1 0 0
ontinued on next page



A.1. A

ent and alignment labels 111absolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62#&2� mid peak 3539 623 453$&2� mid peak within a word 6 0 0#&|2� mid peak with upstep 373 75 67#&%2� mid peak, un
ertain a
-
entuation level 18 1 3#&%|2� mid peak with un
ertainupstep 1 0 1#&|%2� mid peak with upstep, un-
ertain a

entuation level 1 0 0#&2�% mid peak, un
ertain align-ment 65 11 8#&|2�% mid peak with upstep, un-
ertain alignment 2 1 0#&2) early peak 2503 357 357$&2) early peak within a word 2 1 1#&|2) early peak with upstep 25 1 7#&%2) early peak, un
ertain a
-
entuation level 1 0 0#&2)% early peak, un
ertainalignment 44 6 9#&2( late peak 4294 709 724$&2( late peak within a word 9 3 2#&|2( late peak with upstep 302 45 63#&%2( late peak, un
ertain a
-
entuation level 10 1 2#&2(% late peak, un
ertain align-ment 30 3 7#&|2(% late peak with upstep, un-
ertain alignment 2 1 0#&2℄ early valley 857 133 141$&2℄ early valley within a word 4 1 1#&|2℄ early valley with upstep 9 1 0#&%2℄ early valley, un
ertain a
-
entuation level 3 0 2#&2℄% early valley, un
ertainalignment 16 2 2
ontinued on next page



112 A. PROLABabsolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62#&|2℄% early valley with upstep,un
ertain alignment 1 0 0#&2[ non-early valley 606 98 79$&2[ non-early valley within aword 4 2 1#&|2[ non-early valley with up-step 12 2 1#&%2[ non-early valley, un
ertaina

entuation level 3 2 0#&2[% non-early valley, un
ertainalignment 8 1 0a

entuation level: reinfor
ed#&3� mid peak 369 32 105$&3� mid peak within a word 1 0 1#&|3� mid peak with upstep 5 1 2#&3�% mid peak, un
ertain align-ment 2 0 0#&3) early peak 11 0 4#&3( late peak 107 6 20#&|3( late peak with upstep 1 0 0#&3(% late peak, un
ertain align-ment 3 0 2#&3℄ early valley 3 0 1#&3[ non-early valley 3 0 1Table A.1.: PROLAB pit
h a

ent and alignment labels used in the KCoRSwith the absolute frequen
y of o

urren
e for the 
ompleteKCoRS, and the speakers kko/k61 and rtd/k62.



A.2. Intonation 
ontour labels 113A.2. Intonation 
ontour labelsabsolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62
on
atenation and phrase-�nal 
ontours#&, low rise 1428 217 222$&, low rise within a word 1 1 0#&? high rise 257 34 42#&0. level 3810 567 678$&0. level within a word 7 1 2#&%0. un
ertain level 5 0 1#&0; level - minimal rise 1 0 0#&0., level - low rise 1 0 1#&0.? level - high rise 2 0 2#&1. mid fall 5218 874 824$&1. mid fall within a word 30 5 5#&%1. un
ertain mid fall 8 0 0#&1; mid fall - minimal rise 20 0 4#&1., mid fall - low rise 54 8 5#&1.? mid fall - high rise 1 0 0#&2. terminal fall 4335 748 654$&2. terminal fall within a word 8 3 1#&%2. un
ertain terminal fall 13 0 0#&2; terminal fall - minimal rise 284 0 20#&2., terminal fall - low rise 50 4 22#&2.? terminal fall - high rise 6 0 6phrase-initial 
ontours#&HP2 high-falling pre-head 26 3 1#&HP1 high-level pre-head 466 36 49#&HP2% un
ertain high-falling pre-head 2 1 0#&HP1% un
ertain high-level pre-head 1 0 0
ontinued on next page



114 A. PROLABabsolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62#&HP1� upstepped high-level pre-head 1 1 0
Table A.2.: PROLAB intonation 
ontour labels used in the KCoRS with theabsolute frequen
y of o

urren
e for the 
omplete KCoRS, andthe speakers kko/k61 and rtd/k62.A.3. Prosodi
 phrase boundaries, register,and spee
h rate labels absolute frequen
iesPROLAB des
ription KCoRS kko/k61 rtd/k62prosodi
 phrase boundaries#&PGn with reset 6038 908 954#&=PGn without reset 423 56 62#&%PGn un
ertain boundary withreset 20 1 7#&%=PGn un
ertain boundary with-out reset 5 0 0register#&HR high register 28 2 0#&LR low register 21 2 0spee
h rate#&RP in
reased spee
h rate 1 0 0#&RM de
reased spee
h rate 1 0 0Table A.3.: PROLAB prosodi
 phrase boundary, register and spee
h rate la-bels used in the KCoRS with the absolute frequen
y of o

urren
efor the 
omplete KCoRS, and the speakers kko/k61 and rtd/k62.
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B. Synta
ti
 Features
B.1. STTS part-of-spee
h tagsetIn Table B.1 all part-of-spee
h tags of the Stuttgart-Tübingen Tag Set(STTS) are des
ribed. Additionally, the absolute frequen
y of ea
h tag (i.e.number of words with that tag) in the KCoRS is given.POS freq des
ription exampleADJA 176 attributive adje
tive s
hönes [Frühlingswet-ter℄, [den℄ elften[Dezember℄ADJD 144 predi
ative or adverbialadje
tive [es war℄ regneris
h,länger [s
hlafen℄ADV 409 adverb gestern, jetztAPPR 490 preposition or left partof 
ir
umposition in, dur
h, aufAPPRART 75 preposition with arti
le im, am, zumAPPO 0 postposition [ihm℄ zufolgeAPZR 5 right part of 
ir
umpo-sition [von dort℄ ausART 451 arti
le den, einenCARD 97 
ardinal number zehn, siebzehnFM 0 material of a foreignlanguage a big �shITJ 5 interje
tion naja, naKOKOM 5 
omparative 
onjun
-tion wie, als
ontinued on next page
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ti
 Features
ontinued from previous pagePOS freq des
ription exampleKON 108 
oordinating 
onjun
-tion und, oder, aberKOUI 4 subordinating 
onjun
-tion with zu and in�ni-tive ohne [si
h zu s
hämen℄,um [no
h etwas zu er-halten℄KOUS 36 subordinating 
onjun
-tion with a senten
eNE 288 proper noun Berlin, ErnaNN 1019 
ommon noun Ku
hen, Hunger, VaterPDAT 28 attributive demonstra-tive pronoun diese [Drängelei℄PDS 15 substituting demonstra-tive pronoun das [paÿt℄PIAT 16 attributive inde�nitepronoun that 
annnotbe pre
eded by adeterminer keine [S
heu℄, mehrere[Tage℄PIDAT 32 attributive inde�nitepronoun that 
an bepre
eded or followed bya determiner [von℄ beiden [Zügen℄
PIS 29 substituting inde�nitepronoun man, keinerPPER 322 irre�exive personal pro-noun i
h, es, ihrPPOSAT 47 attributive possessivepronoun seine [zweite Chinareise℄PPOSS 0 substituting possessivepronoun meins, deinerPRELAT 0 attributive relative pro-noun [der Mann,℄ dessen[Hund℄PRELS 16 substituting relativepronoun [ein Wanderer,℄ der [ineinen warmen Mantelgehüllt war℄
ontinued on next page



B.1. STTS part-of-spee
h tagset 117
ontinued from previous pagePOS freq des
ription examplePRF 25 re�exive personal pro-noun [Du bewirbst℄ di
hPROAV 10 pronominal adverb dana
h, trotzdem, de-shalb, demgemäÿPTKA 11 parti
le with adje
tiveor adverb am [s
hnellsten℄, zu[regneris
h℄PTKANT 19 answer parti
le ja, nein, dankePTKNEG 33 negation parti
le ni
htPTKVZ 50 separated verbal parti-
le [auf wel
hem Gleisfahren die Züge℄ abPTKZU 5 zu before an in�nitive [ohne si
h℄ zu [s
hämen℄PWAT 18 attributive interroga-tive pronoun wel
he [Züge℄PWAV 47 adverbial interrogativeor relative pronoun wann, wie, wo, wobeiPWS 11 substituting interroga-tive pronoun wer, wasTRUNC 0 �rst (separated) part of
omposition An- [und Abreise℄VAFIN 130 �nite auxiliary ist, habe, hätteVMFIN 152 �nite modal [dann℄ kann [i
h℄, [wir℄wollenVVFIN 380 �nite 
ontent verb [alle℄ eilen, [Zug℄ endet[hier℄VAIMP 1 auxiliary imperative sei [gewarnt℄VVIMP 24 
ontent verb imperative a
hte [auf die Autos℄VAINF 18 auxiliary in�nitive sein, haben, werdenVMINF 1 modal in�nitive [man hatte lesen℄ kön-nenVVINF 146 
ontent verb in�nitive [Mutter konnte länger℄s
hlafenVAPP 4 auxiliary past parti
iple gewordenVMPP 0 modal past parti
iple [er hat es℄ gekonntVVPP 27 
ontent verb past par-ti
iple [wurde℄ erö�net, [hat℄angetreten
ontinued on next page
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ti
 Features
ontinued from previous pagePOS freq des
ription exampleVVIZU 3 
ontent verb in�nitivewith in
orporated zu anzustellen,abzunehmenXY 0 non-word, 
ontainingspe
ial 
hara
ters D2XW3$, 174 
omma ,$. 633 senten
e �nal pun
tua-tion mark . ? ! :$( 8 other pun
tuation mark - �Table B.1.: STTS part-of-spee
h tagset with the absolute frequen
y (i.e.number of tokens) of ea
h part-of-spee
h tag in the KCoRSB.2. Synta
ti
 Chunk Phrasesabsolute frequen
y
ategory d=0 d=1 d=2 d=3 d=4 ΣAP 127 9 4 � � 140AdvP 308 36 10 � � 354NP 992 109 26 2 1 1130PP 374 139 39 2 3 557SUBORD_CLAUSE 49 18 2 1 � 70VG 809 51 19 2 1 882W 135 48 8 � � 191
Σ 2794 410 98 7 5 3324Table B.2.: Frequen
y of SCHUG 
ategories in the textual material of theKCoRS. d gives the level of embedding, i.e. a synta
ti
 phrase(or word) with d=0 is a top-level phrase, whi
h is not embeddedin any other phrase.



B.2. Synta
ti
 Chunk Phrases 119
absolute frequen
y
ategory des
ription d=0 d=1 d=2 d=3 ΣAA superlative phrase with am 3 � � � 3AP adje
tive phrase 27 12 1 2 42AVP adverbial phrase 23 5 3 � 31CAC 
oordinated adpositions � � � � �CAP 
oordinated adje
tive phrase 2 6 1 1 10CAVP 
oordinated adverbial phrase 2 2 � � 4CCP 
oordinated 
omplementiser � � � � �CNP 
oordinated noun phrase 14 15 2 1 32CO 
oordinated di�erent 
ategories 2 � � � 2CPP 
oordinated adpositional phrase 1 � � � 1CVP 
oordinated verb phrase 1 � � � 1CVZ 
oordinated zu-in�nitive � � � � �ISU idiosyn
rati
 unit � � � � �MPN multi-word proper noun 3 � � � 3MTA multi-token adje
tive � � � � �NM multi-token number 1 � � 1 2NP noun phrase 517 41 10 � 568PP adpositional phrase 441 105 20 2 568QL quasi-language � � � � �VZ zu-marked in�nitive 5 � � � 5

Σ 1041 186 37 7 1271Table B.3.: Frequen
y of phrasal 
hunk tags assigned with the 
hunk taggerto the textual material of the KCoRS. d gives the level of em-bedding, i.e. a phrase with d=0 is a top-level phrase, whi
h isnot embedded in any other phrase.
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C. Per
eption ExperimentThe instru
tions for the subje
ts of the per
eption experiment were presentedon s
reen and read as follows:Du nimmst an einem Experiment zur subjektiven Bewertung vonSpra
hsynthesemethoden teil.In diesem Experiment wirst Du paarweise Varianten vonÄuÿerungen hören, die mit vers
hiedenen Spra
hsynthesemethodenerzeugt wurden.Du hörst jeweils eine Variante, gefolgt von einer kurzen Pause und einerzweiten Variante. Bitte höre Dir beide Varianten sorgfältig an undbeurteile die zweite Variante im Verglei
h zur ersten Variantemit Hilfe der folgenden Skala:Die zweite Variante ist, vergli
hen mit der ersten Variante,viel besserbesseretwas besserungefähr glei
hetwas s
hle
hters
hle
hterviel s
hle
hter.Bei der Bewertung geht es um Deinen persönli
hen Gesamteindru
k.Wir werden mit 4 Übungsbeispielen beginnen, damit Du Di
h an dieTestprozedur gewöhnen und die Lautstärke so einstellen kannst, wie sieDir angenehm ist. Na
h den Übungsbeispielen kannst Du eine Pauseeinlegen, um Fragen zum Ablauf des Experiments zu stellen, falls Duirgendwel
he Probleme hast.Das Experiment dauert ungefähr 30 Minuten.Vielen Dank für Deine Teilnahme! :�)Table C.1.: Instru
tions for the subje
ts of the per
eption experiment.
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