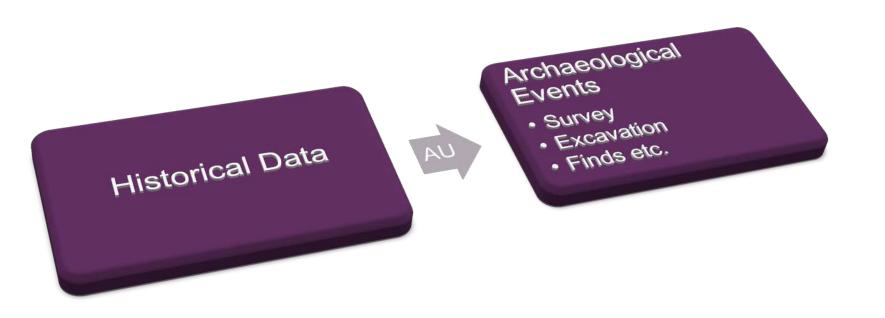


Event Detection Automatic Extraction of Archaeological Events from Text


Wenbin Li littletransformer@gmail.com The Saarbrücken Graduate School of Computer Science

Outline

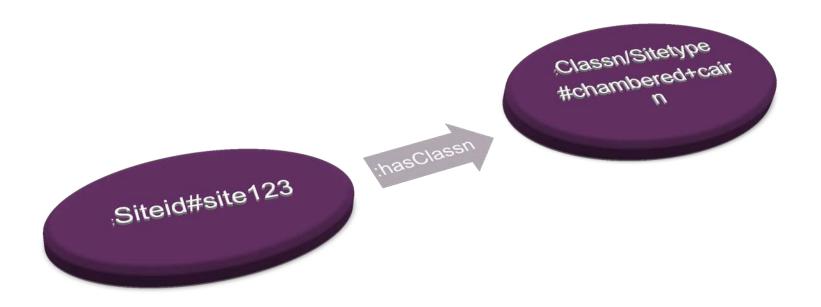
- Overview
- Background
 - Semantic web
 - Natural language processing
- Experiment
 - Settings (data)
 - Procedures
 - Results and evaluation (Remarks)
- Follow-ups

+ Overview (what we do here)

* Background

- Semantic Web
- Natural Language Processing

Semantic Web



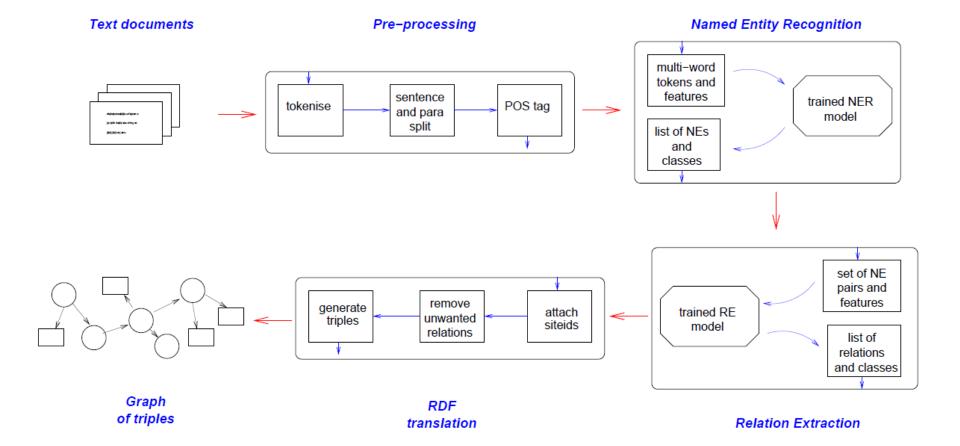
- A group of methods and technologies to allow machines to understand the meaning – or "semantics" – of information on the World Wide Web. (Wikipedia)
- RDF (Resource Description Framework)
 - A family of World Wide Web Consortium (W3C) specifications originally designed as a metadata data(data about data) model. (Wikipedia)
 - RDF triple: subject-predicate-object
 - More information at http://www.w3.org/RDF/

+

Example of RDF triple

Natural Language Processing

- Pre-processing
 - Tokenize
 - POS (Part-Of-Speech) tag
- NER (Name Entity Recognition)
 - Find and categorize the "entities" mentioned in a text
 - Typically include personal names, places, organization names and temporal expressions
- RE (Relationship Extraction)
 - Detect and classify semantic relationship from data


* Experiment

- Data
- Procedures
- Evaluation

+ Data

- From RCAHMS (The Royal Commission on the Ancient and Historical Monuments of Scotland, http://www.rcahms.gov.hk)
- One of Scotland's 6 National Collection
- Recording Scotland's places, from the Neolithic to Now

* Procedure

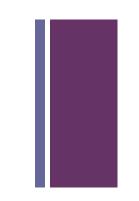
Procedure--NER

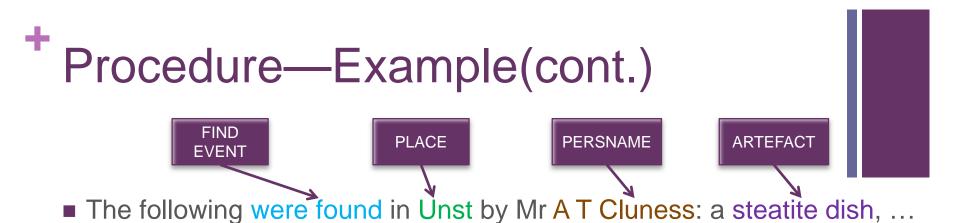
- Supervised learning (training data ← hand-annotated documents)
- Domain specific classes

ORG	PERSNAME	ROLE	SITETYPE	ARTEFACT	PLACE
		\checkmark	V	\checkmark	
SITENAME	ADDRESS	PERIOD	DATE	EVENT	
$\sqrt{}$				\checkmark	

- NE nesting
 - [[[Edinburgh]PLACE University]ORG Library]ORG

* Procedure--RE


- Focus on event relationships
- Attributes of event
 - Agent
 - Role
 - Date
 - Patient
 - place
- Supervised learning (training data ← hand-annotated documents)


Learning process in NER & RE

	Form	Description
1	ne1=	first NE string (concatenated using "_")
2	ne2=	second NE string
3	cls1=	first NE type
4	cls2=	second NE type
5	$wdsep=\pm n$	distance between NEs (+ve or -ve)
6	insent = y or n	both NEs in same sentence?
7	inpara= y or n	both NEs in same paragraph?
8	lastNEwdsame=y or n	normalised last token matches?
9	prevpos1=	POS tag of token preceeding first NE
10	prevpos2=	POS tag of token preceeding second NE
11	1 begsent = y or n	first NE is at beginning of a sentence
12	2begsent=y or n	second NE is at beginning of a sentence
13	1endsent $=y$ or n	first NE is at end of a sentence
14	2endsent $=y$ or n	second NE is at end of a sentence
15	nest=n, 1in2 or 2in1 one NE is nested within the other	
16	neBetw = n	number of NEs between this pair
17	verb=	if insent= y , (first) verb between NEs; else "none"

* Procedure—Example

■ The following were found in Unst by Mr A T Cluness: a steatite dish, ...

Relationship Entity1 Entity2 eventLocation were found unst eventAgent were found a t cluness eventPatient were found steatite_dish 0 a t cluness unst 0 unst steatite dish 0 A_t_cluness steatite dish

* Evaluation

- NER evaluation
- RE evaluation
- NER and RE combination

* Some Results

	Precision %	Recall %	F-score %	Count
ADDRESS	82.40	81.61	82.00	3,458
PLACE	95.00	66.80	78.44	2,503
SITENAME	64.55	61.20	62.83	2,712
DATE	95.12	82.08	88.12	3,519
PERIOD	84.02	45.54	59.07	400
EVENT	94.98	63.66	76.22	3,176
ORG	99.39	89.66	94.27	2,730
PERSNAME	96.71	74.82	84.37	2,318
ROLE	98.00	54.44	70.00	90
SITETYPE	85.24	52.39	64.89	5,668
ARTEFACT	75.83	18.06	29.17	879
Average	88.02	67.75	76. 57	(27,453)

Relation	Prec.	Recall %	F-score %	Found
eventAgent	98.42	98.70	98.56	3,794
eventAgentRole	69.23	30.00	41.86	13
eventDate	98.75	98.68	98.71	3,189
eventPatient	87.77	84.61	86.16	1,553
eventPlace	83.58	72.70	77.76	341
Events Average	87.55	76.94	80.61	(8,890)
Overall Average	83.41	69.27	75.68	(21,932)

Relation	Avg Precision	Avg Recall	Avg F-score
eventAgent	97.46	82.18	88.72
eventAgentRole	0.00	0.00	0.00
eventDate	87.75	71.73	78.64
eventPatient	90.69	42.99	48.46
eventPlace	36.36	17.33	27.62
Events Average	62.45	42.85	48.69
Excluding eventAgentRole	78.07	53.56	60.86
Overall Average	73.35	48.24	57.51

+

Discussion of Results

- Weigh models towards preferring precision over recall
 - (?)when extracting facts from text, it more important to find correct statements than to find all that are available
- The author claims that the good results of eventAgent and eventDate in the pipeline suggests "with more data, the pipeline is capable of delivering very useful data structure without human labor"
 - **(**?)

*Summary

 Practical application of NLP in event extraction in history domain

* Extra: Follow-up Project

Visualization

+ End

■ Thank you!