OCR Post-Processing

Michal Richter

Noisy channel approach I

- Scanning of the document and OCR introduce errors - noise
- Post - processing step reduce the number of errors

Noisy channel approach II

- Post - processing corrects one sentence at the time.
- OCR output is modified by small amount of editing operations including:
- single character insertion
- single character deletion
- single character substitution
- multiple character substitution ($\mathrm{ab} \rightarrow$ ba)
- word split, word merge

Intuitive describtion

- In post-processing we want to replace the input sequence of characters with another sequence of characters that is graphically similar and form the likeable sentence of the given language
- These two aspect are handled separately

General form of the model

$P(O, S)=P(O \mid S)$ * $\mathrm{P}(\mathrm{S})$
O - output of the OCR system
S - candidate sequence of character
$P(O \mid S)$ - probability, that the sequence S will be recognized as O by OCR - corresponds to optical similarity between O and S - usually denoted as error model
$P(S)$ - probability of S - corresponds to the likeabelness of the sequence S - this quantity should have greater value for well-formed sentences - denoted as language model

Language model - P(S)

- Word based
- Uses lexicon - sequence of characters is identified with the item in the lexicon
- Smoothness of the sentence is ensured by word based n-gram model (usually trigram)
- Problem: High coverage lexicon and huge amount of on-line text needed (for n-gram model estimation)

$$
P\left(w_{1}, \ldots, w_{m}\right)=\prod_{i=1}^{m} P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right) \approx \prod_{i=1}^{m} P\left(w_{i} \mid w_{i-(n-1)}, \ldots, w_{i-1}\right)
$$

Language model - P(S)

- Character based
- Smoothness of the sentence is ensured on the character level
- No need of lexicon, lower amount of training data needed for language model estimation
- Character based language model used
(even 6-gram is possible)

Error model - P ($\mathrm{O} \mid \mathrm{S}$)

- Levenshtein distance
- Number of insertions, deletions and substitutions needed to transform input into the target
- Example: LD between kitten and sitting is 3
kitten \rightarrow sitten \rightarrow sittin \rightarrow sitting
- Modified Levenshtein distance
- Editing operations have different costs according to their probability
- Example: low cost for in $\leftrightarrow \mathrm{m}$, high cost for $w \leftrightarrow R$

Error model - P ($\mathrm{O} \mid \mathrm{S}$)

- Word segmentation
- Can be treated by word segmentation model $P(O, b, a, C)=P(O, b \mid a, C) P(a \mid C) P(C)$
- Another possibility is to avoid special treatment of the space character - word segmentation errors are corrected via insertion/deletion of space character

Search of the correct sentence S

- Viterbi decoding
- Weighted Finite State Transducers
- Language model and error model are represented in the form of finite state transducers
- Make the composition of the automaton representing OCR output with the automaton representing error model and language model
- Find the shortest path in the composed transducer
- blackboard?

Post-correction accuracy measure

- Word error rate metric

$$
W E R(C, O)=\frac{W \operatorname{ordEditDistance}(C, O)}{W \operatorname{ordCount}(C)}
$$

Post-correction accuracy

- (Kolak, Resnik; 2005)
- WER reduction up to 80\%
- African language Igbo
- Character based model
- Miniature size training data - 6727 words!

Post-correction for historical domain

- Insufficient amount of training data (if any)
- Usually absence of high-coverage lexicons
\rightarrow This implies, that the use of word based approach is often impossible

References

Okan Kolak; Philip Resnik. OCR PostProcessing for Low Density Languages. EMNLP-2005.

