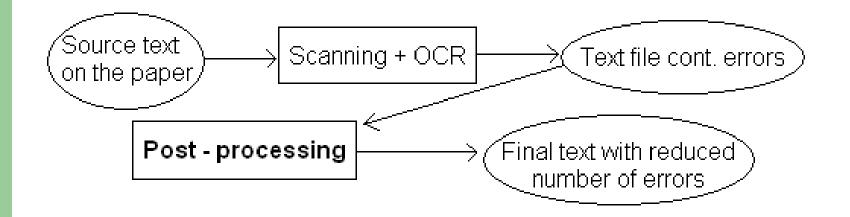
OCR Post-Processing

Michal Richter

Noisy channel approach I

- Scanning of the document and OCR introduce errors – noise
- Post processing step reduce the number of errors



Noisy channel approach II

- Post processing corrects one sentence at the time.
- OCR output is modified by small amount of editing operations including:
 - single character insertion
 - single character deletion
 - single character substitution
 - multiple character substitution ($ab \rightarrow ba$)
 - word split, word merge

Intuitive describtion

- In post-processing we want to replace the input sequence of characters with another sequence of characters that is graphically similar and form the likeable sentence of the given language
- These two aspect are handled separately

General form of the model

P(O, S) = P(O | S) * P(S)

- O output of the OCR system
- S candidate sequence of character
- P(O|S) probability, that the sequence S will be recognized as O by OCR – corresponds to optical similarity between O and S – usually denoted as <u>error model</u>
- P(S) probability of S corresponds to the likeabelness of the sequence S – this quantity should have greater value for well-formed sentences – denoted as <u>language model</u>

Language model – P(S)

Word based

- Uses lexicon sequence of characters is identified with the item in the lexicon
- Smoothness of the sentence is ensured by word based n-gram model (usually trigram)
- Problem: High coverage lexicon and huge amount of on-line text needed (for n-gram model estimation)

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i | w_1, \dots, w_{i-1}) \approx \prod_{i=1}^m P(w_i | w_{i-(n-1)}, \dots, w_{i-1})$$

Language model – P(S)

Character based

- Smoothness of the sentence is ensured on the character level
- No need of lexicon, lower amount of training data needed for language model estimation
- Character based language model used
- (even 6-gram is possible)

Error model – P(O | S)

Levenshtein distance

- Number of insertions, deletions and substitutions needed to transform input into the target
- Example: LD between kitten and sitting is 3 kitten \rightarrow sitten \rightarrow sittin \rightarrow sitting
- Modified Levenshtein distance
 - Editing operations have different costs according to their probability
 - Example: low cost for in \leftrightarrow m, high cost for w \leftrightarrow R

Error model – P(O | S)

- Word segmentation
 - Can be treated by word segmentation model
 - P(O, b, a,C) = P(O, b|a,C)P(a|C)P(C)
 - Another possibility is to avoid special treatment of the space character – word segmentation errors are corrected via insertion/deletion of space character

Search of the correct sentence S

- Viterbi decoding
- Weighted Finite State Transducers
 - Language model and error model are represented in the form of finite state transducers
 - Make the composition of the automaton representing OCR output with the automaton representing error model and language model
 - Find the shortest path in the composed transducer
 - blackboard?

Post-correction accuracy measure

• Word error rate metric

$$WER(C, O) = \frac{WordEditDistance(C, O)}{WordCount(C)}$$

Post-correction accuracy

- (Kolak, Resnik; 2005)
 - WER reduction up to 80%
 - African language Igbo
 - Character based model
 - Miniature size training data 6727 words!

Post-correction for historical domain

- Insufficient amount of training data (if any)
- Usually absence of high-coverage lexicons
- → This implies, that the use of word based approach is often impossible

References

Okan Kolak; Philip Resnik. OCR Post-Processing for Low Density Languages. EMNLP-2005.