Polarity Information for RTE

based on Nairn et al. (2006)

presented by Teresa Herrmann
Hauptseminar „Linguistic Inference and Textual Entailment“
Prof. Dr. Manfred Pinkal
Overview

- Logical Textual Inference
- Polarity
- Verbal constructions
 - Factive constructions
 - Implicative constructions
- Implication signatures
- Textual Inference Approach
 - Polarity propagation algorithm
- Examples in RTE-2 data
Logical textual inference

- recognize whether given text can be strictly or plausibly inferred from, or is contradicted by, another piece of text

- based on
 - linguistic knowledge
 - assumptions about language use
 - knowledge about the world
 - any combination thereof
Polarity

A grammatical category that distinguishes affirmative and negative.

Examples

<table>
<thead>
<tr>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ed opened the door.</td>
<td>Ed didn’t open the door.</td>
</tr>
<tr>
<td>Ed managed to open the door.</td>
<td>Ed forgot to open the door.</td>
</tr>
</tbody>
</table>
Different semantic behaviours

- Verbal constructions of the same verb may have different semantic behaviours

- Factive constructions
 - forget/remember/know/...that...
 - presuppose rather than entail that complement sentence is true
Different semantic behaviours

- implicative constructions
 - forget/remember/know/...to...
 - have entailments
 - some carry presuppositions
 - difficult to pin down

<table>
<thead>
<tr>
<th>Ed didn’t manage/dare/bother/happen to open the door.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entailment:</td>
</tr>
<tr>
<td>Presuppositions:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Purpose of paper

- build partial computational semantics for implicative constructions
 - ignoring presupposition
- handling of simple factive constructions
- interaction between implicative and factive verbs
- in context of AQUAINT project
AQUAINT

- PASCAL-like experiment on local textual inference
- more nuanced task
 - Entailment
 - true
 - false
 - unknown
 - neither Hypothesis nor negated Hypothesis can be inferred
Types of implicative verbs

Entailment either positive or negative depending on polarity of environment.

- **two-way implicatives**
 - yield entailment in both affirmative and negative environments
 - forget to
 - negative entailment in affirmative environment
 - positive entailment in negative environment

- **one-way implicatives**
 - yield entailment only in one of the environments
 - force to, attempt to
Challenges

- no database for this type of semantic information
 - compilation of table of „implication signatures“
- embedded structures of factives and implicatives
 - polarity of environment of embedding predicates determined relatively to the chain of predicates
 - recursive computation of relative polarity

Ed didn’t manage to remember to open the door.
Implication Signatures

- **identification of natural implications of verbs**
 - decreasing frequency verbs in BNC
- **by hand**
- **classification of 400 complement-taking verbs**
 - infinitival complements
 - that-complements
 - 1/3 of them carried implication
Types of implication

- entailment
 - positive
 - negative

- presupposition
 - factive
 - counterfactive
Implication Signature Table

<table>
<thead>
<tr>
<th>Category</th>
<th>Word in subcat frame</th>
<th>Relative Polarity</th>
<th>Entailment</th>
<th>Presupposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-way implicatives</td>
<td>manage to</td>
<td>(+) positive</td>
<td>(-) negative</td>
<td>(+) positive</td>
</tr>
<tr>
<td></td>
<td>forget to</td>
<td>(-) negative</td>
<td>(+) positive</td>
<td>(-) negative</td>
</tr>
<tr>
<td>One-way implicatives</td>
<td>force to</td>
<td>(+) positive</td>
<td>none</td>
<td>(-) negative</td>
</tr>
<tr>
<td></td>
<td>refuse to</td>
<td>(-) negative</td>
<td>none</td>
<td>(+) positive</td>
</tr>
<tr>
<td>One-way -implicatives</td>
<td>attempt to</td>
<td>none</td>
<td>(-) negative</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>hesitate to</td>
<td>none</td>
<td>(+) positive</td>
<td>none</td>
</tr>
<tr>
<td>Factuals</td>
<td>forget that</td>
<td>(+) positive</td>
<td>(+) positive</td>
<td>(+) positive</td>
</tr>
<tr>
<td>Counterfactuals</td>
<td>pretend that</td>
<td>(-) negative</td>
<td>(-) negative</td>
<td>(-) negative</td>
</tr>
<tr>
<td>Neutral</td>
<td>want to</td>
<td>none</td>
<td>Presupposition</td>
<td>Entailment/Presupposition</td>
</tr>
</tbody>
</table>

Entailment

<table>
<thead>
<tr>
<th>Relative Polarity</th>
<th>(-) negative</th>
<th>(+) positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>(-) negative</td>
<td>(+) positive</td>
</tr>
</tbody>
</table>

Presupposition

<table>
<thead>
<tr>
<th>Relative Polarity</th>
<th>(-) negative</th>
<th>(+) positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>(-) negative</td>
<td>(+) positive</td>
</tr>
</tbody>
</table>
Textual inference approach

- Parsing of text
- Transformation into normalized representation (skolemization & canonicalization)
- Representation: verbal predication corresponds to constructed concept
 - Mapping of verbal predicate to concept in background ontology
 - Role restrictions: based on arguments and modifiers
 - Concept named according to the normalized verbal predicate
- \(\Rightarrow \) Input to entailment and contradiction detection
Textual Inference Approach

entailment and contradiction detection (ECD)

- structural matching
- inference-based techniques
- operation on packed representations
 - ambiguities encoded
 - no need for disambiguation
Implication Projection

- Solution to interaction of multiple embedded clauses
- Entailment of complement-taking construction
 - Dependent on the polarity of its context
 - Context polarity is not determined locally
 - B dependent on embedding structure of contexts
 - Neutralization possible
 - Ed refused not to attempt to leave.
 - B negative entailment of not attempt is neutralized by the negative polarity of refuse
- Polarity of context depends on the sequence of potential polarity switches stretching back to the top context
Implication Projection

- each complement-taking verb
 - performs operations on its parent context’s polarity
 - polarity switching
 - polarity perserving
 - polarity setting according to signature table entry of the verb

- polarity = relative
 - if the polarity switching sequence starts below top level context, final polarity may be different
 - polarity of a context = polarity relative to ancestor context

- polarity = recursive
 - top level polarity of most interest
 - polarities of lower levels needed to compute top level polarity
Implication Projection Algorithm

- every context C
 - relative polarity towards set of ancestor contexts $p(C)$
 - positive $(+)_C$
 - negative $(-)_C$
 - positive towards itself

- computation of polarity sets $(+)_C$ and $(-)_C$
 - parent’s sets $(+)_p(C)$ and $(-)_p(C)$
 - with reference to the verb $V_{p(C),C}$
 - the verb’s signature $\text{sig}_e(V_{p(C),C})$
Relative polarity computation

\[\ominus C = \{C\} \cup \begin{cases}
\oplus_p(C) & \text{if } \text{sig}^+(V_p(C),C) = + \\
\ominus_p(C) & \text{if } \text{sig}^-(V_p(C),C) = + \\
\emptyset & \text{otherwise}
\end{cases} \]

\[\Theta C = \begin{cases}
\oplus_p(C) & \text{if } \text{sig}^+(V_p(C),C) = - \\
\ominus_p(C) & \text{if } \text{sig}^-(V_p(C),C) = - \\
\emptyset & \text{otherwise}
\end{cases} \]
Ed did not forget to force Dave to leave.

\[n \text{ Dave leave } \begin{cases} \dagger & + \\ - \text{ force Dave to leave } \dagger & + \\ \beta \text{ forget to force Dave to leave } \dagger & - \\ - \text{ not forget to force Dave to leave } \dagger & + \end{cases} \]
Propagation of Polarities
Instantiation of contexts

relative context polarities serve for
 - extraction of information about instantiability and uninstantiability of contexts

instantiables
 - head event skolem of a context + role fillers should be made instantiable
 ∃ in the context it arises
 ∀ in all contexts relative to which its originating context has positive polarity

uninstantiables
 - in all contexts relative to which its originating context has negative polarity

\[
\text{instantiables}(C) =_{def} \{ \text{head}(C') \mid C' \in \bigoplus C' \} \\
\text{uninstantiables}(C) =_{def} \{ \text{head}(C') \mid C' \in \bigotimes C' \}
\]
Author commitment

truth/falsity in top level context
- reveals author commitment towards utterance
- composition of
 - truth of complement clause
 - instantiability of head predicate skolem + head predicate skolem denotes event description
 † instantiation of event description
 - falsity of complement clause
 - uninstantiability ‡ non-instantiation

Author commitment ~ truth of utterance
Polarity in RTE-2 data

<table>
<thead>
<tr>
<th></th>
<th>Neutral</th>
<th>Factive</th>
<th>Counterfactive</th>
<th>Implicative</th>
<th>Negation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>IR</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>QA</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>SUM</td>
<td>14</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>7</td>
<td>0</td>
<td>14</td>
<td>2</td>
<td>51</td>
</tr>
</tbody>
</table>

- 400 positive entailment pairs
 - only expressions that are important for entailment value
Polarity in RTE-2 data

--518-YES-SUM--

[U.S. planned job cuts] [dropped] by 15 percent [in January] and below the 100,000 level for the first time since August 2004, a report said on Tuesday. #

[U.S. planned job cuts] [fell] [in January]. ##

- said - neutral
- typical text-hypothesis combination in RTE
 - T - report/claim
 - H - content of report/claim presented as fact
Polarity in RTE-2 data

Mr. Fitzgerald *revealed* he was one of several top officials who *told* Mr. Libby in June 2003 that [Valerie Plame], wife of the former ambassador Joseph Wilson, *worked* [for the CIA]. #

[Valerie Plame] [worked] [for the CIA]. ##

- 2 predicates
 - revealed - factive
 - told - neutral

 use of propagation algorithm to compute polarity
Polarity in RTE-2 data

- has been able - implicative
- entailment based on
 - conversational implicatures
 - common-sense interpretation of to be able to
Polarity in RTE-2 data

For sailors, [the lighthouse of Alexandria] ensured a safe return to the Great Harbor; for architects, it was the tallest building on Earth; and for scientists, it was the mysterious mirror that fascinated them most: its reflection could be seen more than 50 km (35 miles) off-shore. For all these reasons, [[the lighthouse] [was considered] [one of the Seven Wonders of the world]]. #

[The lighthouse of Alexandria] [was] [one of the seven wonders of the world]. ##

n was considered - neutral
Polarity in RTE-2 data

For example, Nelson Mandela [was considered] a "terrorist" by the US government during "apartheid" South Africa. Did the US "corporament" support "apartheid" South Africa? #

Nelson Mandela is a terrorist. ###

- same context: positive polarity
 - but: entailment does not hold
- questions:
 - differences?
 - other factors involved?
 - error?
Conclusions

- polarity actually occurs
 - in natural texts
 - in RTE data (yet infrequently)

- method to compute polarity values for
 - simple structures
 - factive
 - implicational
 - embedded structures

- first systematic implementation of textual inferences based on
 - polarity
 - interaction of implicative verbs and factive verbs
 - author commitment to truth or falsity of complement clause
References

K. Garoufi (to be published): Towards a better understanding of Textual Entailment.