M.Sc. LST Speech Science

Psychoacoustics

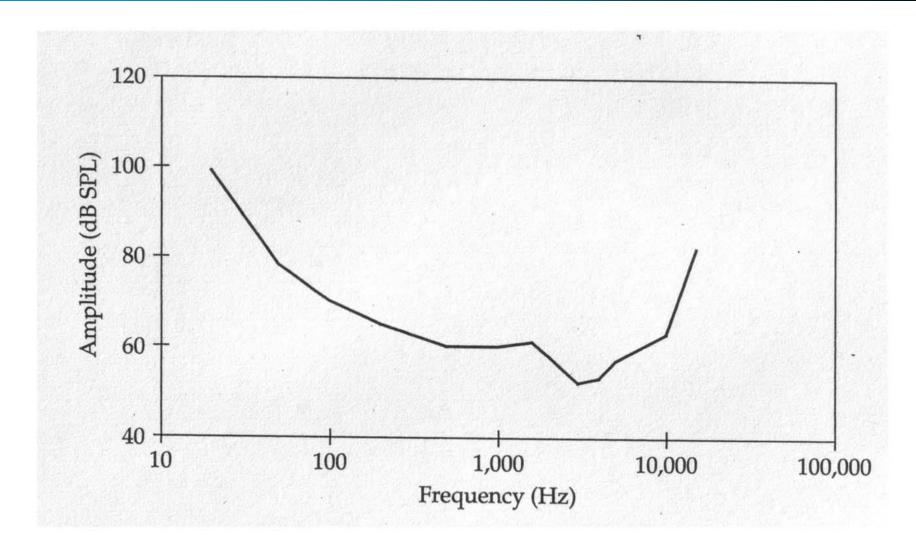
Jan 16, 2025

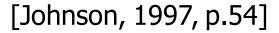
Bernd Möbius & Valentin Kany

Language Science and Technology Saarland University

Overview

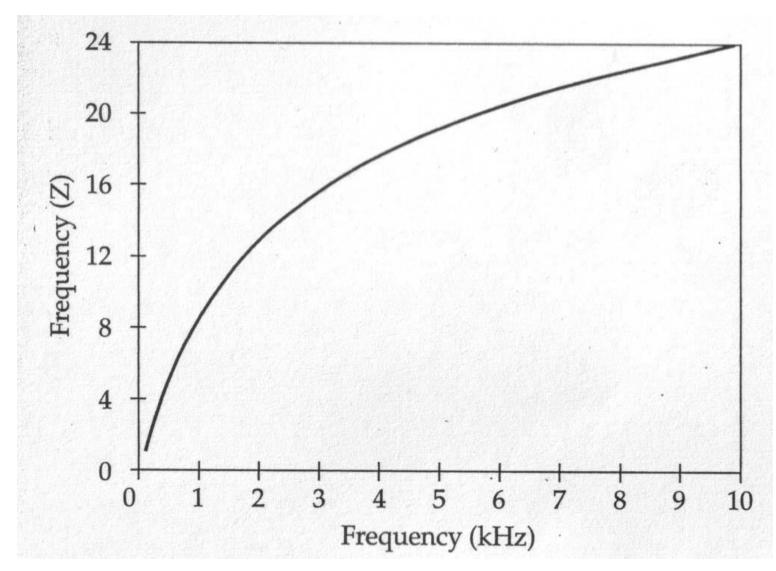
- Anatomy and physiology of the auditory system
- Speech perception
 - auditory perception
 - psychoacoustics
 - auditory-perceptual phonetics

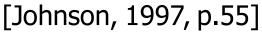



Perception of loudness

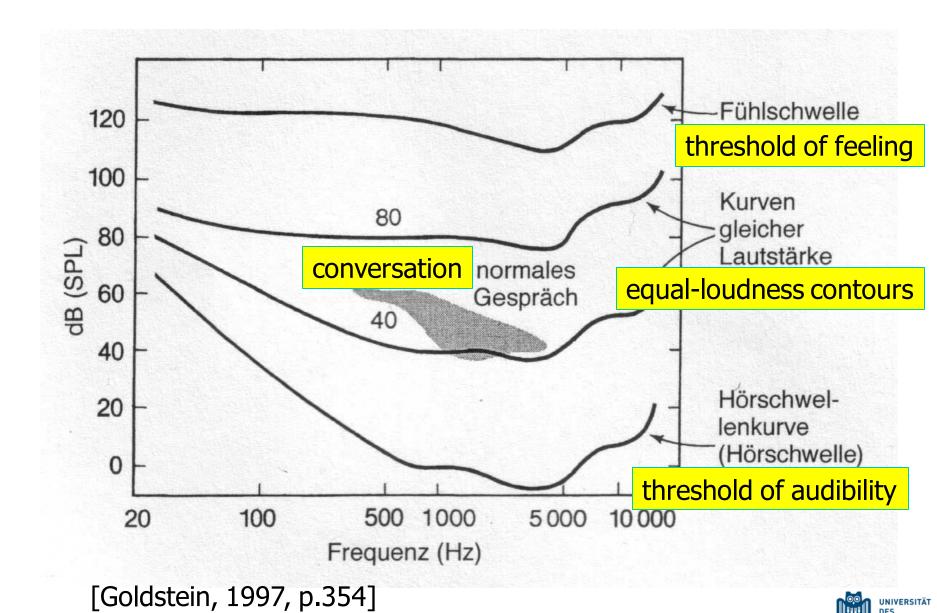
- Loudness: perceptual correlate of acoustic sound intensity
 - differences in loudness are perceived on a logarithmic scale (e.g., decibel/[dB]) by the auditory system
 - 0 dB is equivalent to sound pressure level of a reference signal (at perceptual threshold at 1 kHz)
 - doubling of loudness is equivalent to increase by 10 dB
 - perceptual threshold ("just noticeable difference", JND) for pure tones: approx. 1 dB

Equal-loudness contour




Perception of pitch

- Pitch: perceptual correlate of acoustic frequency
 - auditory frequency range: approx. 20 20,000 Hz
 - frequency selectivity: resolution of frequency components of a complex (e.g., speech) signal:
 - optimal below 500 Hz
 - logarithmically decreasing above 500 Hz
 - JND for pure tones:
 - below 1000 Hz: approx. 0.5%
 - at higher frequencies: approx. 5%
 - auditory frequency scale (e.g., Bark [Z]): auditory system is more sensitive to frequency differences in low frequencies than in high frequencies


Auditory frequency scale

Auditory plane and auditory thresholds

Loudness differences

Sound source	Sound pressure [µPa]	SPL [dB]
audibility threshold	20	0
soft whisper	200	20
quiet office	2 000	40
normal conversation	20 000	60
city bus	200 000	80
subway train	2 000 000	100
heavy thunder	20 000 000	120
pain	200 000 000	140

- Sound pressure (Schalldruck), measured in micro-Pascal
 - objective measurement of sound pressure differences
- Sound pressure level (Schalldruckpegel), measured in dB
 - subjective sensation of loudness differences

Perception of duration

- Duration: perceptual correlate of physical property "time"
 - temporal processing and resolution:
 - over which temporal interval can the auditory system integrate information?
 - detection of gaps in otherwise continuous signals
 - JND:
 - duration differences: >20 ms at 500 1500 Hz
 - detection of gaps of 6 8 ms
 - fast spectral changes within <30 ms are not analyzed, but perceptually integrated

Speech perception

- Psychoacoustic properties of auditory system are compliant with requirements of speech perception; e.g.:
 - very good frequency resolution in low-frequency range
 - → fundamental frequency analysis (voicing, intonation)
 - medium frequency resolution in mid-frequency range
 - → formant analysis and tracking (vowels, sonorants)
 - poor frequency resolution in high-frequency range
 - → rough spectral patterns (fricatives)
 - temporal integration supports capturing coarticulation, and good temporal resolution supports recognition of stop releases (but stop bursts are too short for spectral analysis)
- Co-evolution, or adaptation of production system to auditory system?

Speech intelligibility

- Intelligibility of speech depends on many factors, including:
 - frequency band (e.g., telephone 350 3500 Hz)
 - loudness
 - duration of segments of speech and gaps
 - semantic content (top-down processing) and semantic predictability
 - robustness of speech signals
 - gaps <200 ms hardly disturb intelligibility
 - gaps >500 ms destroy intelligibility
 - disturbing noise (signal-to-noise ratio, SNR)

Thanks!

