Speech Science

WiSe 2023

Acoustic Phonetics Nov 23, Nov 30, Dec 7, Dec 14, 2023

Bernd Möbius & Omnia Ibrahim

Language Science and Technology Saarland University

Speech waveforms and spectrograms

"Heute ist schönes Frühlingswetter."

Speech sounds and speech signals

- Basic types of speech signals
 - quasi-periodic signals: sonority
 - vowels
 - sonorants (approximants, glides, nasals, liquids)
 - stochastic signals: frication noise
 - fricatives
 - plosive aspirations
 - transient signals impulse
 - plosive releases
 - mixed excitation voiced frication noise
 - voiced fricatives

Speech sounds and speech signals: vowels

"H<u>eu</u>t<u>e i</u>st sch<u>ö</u>n<u>e</u>s Frühlingswetter."

Speech sounds and speech signals: sonorants

"Heute ist schönes Frühlingswetter."

Speech sounds and speech signals: fricatives

"<u>H</u>eute i<u>s sch</u>öne<u>s F</u>rühling<u>sw</u>etter."

Speech sounds and speech signals: plosives

"Heute is(t) schönes Frühlingswetter."

DES SAARLANDES

Speech sounds...: voiced fricatives

"Heute ist schönes Frühlingswetter."

Speech waveforms and spectrograms

DES SAARLANDES

- Spectral peaks (energy maxima) of the sound spectrum: formants (F1, F2, ..., Fn)
- Formants emerge as a consequence of selective reinforcement of certain frequency ranges, corresponding to **resonance** characteristics of the vocal tract.
- Distinguishing between voice source (*excitation*) and *sound* formation in the vocal tract (acoustic filter) motivates the sourceand-filter model of speech production.
- References:
 - Gunnar Fant (1960): Acoustic theory of speech production
 - Gerold Ungeheuer (1962): Elemente einer akustischen Theorie der Vokalartikulation

Source-filter model of speech production

[https://www.vocalsonstage.com]

Source-filter model of speech production

Source-filter model of speech production

Glottal excitation

Vocal tract frequency response Sound spectrum

Vocal tract as acoustic filter

 Vocal tract geometry, determined by tongue position (and jaw opening and lip protrusion, not shown)

Vocal tract: acoustic tube model

Vibration modes: string

Vibration modes: vocal tract

Longitudinal waves

- Acoustic signals evolve as longitudinal waves in vocal tract
- Physical parameters of acoustic waves
 - sound pressure p : change of air pressure caused by sound event, local deviation from average ambient pressure
 - sound/particle velocity v: particle velocity caused by sound event, oscillation of particle around resting position
 - speed of sound c : speed of sound waves in air (or other material), particle-to-particle interaction, distance of travel per unit of time (e.g. 340 m/s in air)

Sound propagation

Sound pressure waves in vocal tract

[Hess, ms.]

Vocal tract: acoustic tube model

- Perfect reflexion at sound-hard (lossless) walls of tube
 - v = 0 at place of reflexion
- (Lossy) reflexion at sound-soft transition from vocal tract to free acoustic field (i.e. from lips to air)
 - *p* = 0 at place of radiation

Computing formant frequencies

- Resonance frequencies of neutral vocal tract computed as speed of sound divided by wave length: $f_i = c / \lambda_i$
- Frequencies of resonances/formants:

F1 = 340 / (4 * 0.17) = 340 / 0.68 = 500 Hz F2 = 340 / (4/3 * 0.17) = 3 * 340 / (4 * 0.17) = 1500 HzF3 = 340 / (4/5 * 0.17) = 5 * 340 / (4 * 0.17) = 2500 Hz

- Distribution of formant frequencies in neutral vocal tract corresponds to formants of central vowel [Ə]
- Simple tube model, with constant area, is inadequate for computing formants of other vowels (cf. acoustic theory of vowel articulation [Ungeheuer 1962])

Vibration modes: vocal tract (repeated)

Tube model with variable area

[Clark et al., 2007a, p.246]

T. Arai's cylinder-type models

[http://www.splab.net/Vocal_Tract_Model/index-e.htm]

Resonances: standing waves

parameter: v [Johnson, 1997, p.99]

Standing waves: interpretation

- interpretation of the graphical representation of standing waves in idealized vocal tract (neutral configuration, see previous figure):
- first 4 formants displayed (F1 F4)
- in tube model and in vocal tract
- places of maximum sound velocity (sound velocity nodes, V_i)
- places of maximum sound pressure (wave maxima, "antinodes")
- localization of V_i in vocal tract

Dynamic area changes

- resonances of vocal tract with variable area cannot be straightforwardly visualized as in the neutral tube model
 - local area changes affect frequencies of resonances, depending on energy distribution of standing wave in tube along longitudinal axis ("z-axis")
 - e.g., constriction at lip end of tube has same effect as constriction at glottis end: lower resonance frequency
 - acoustic vowel system can be interpreted as representing geometrical changes with respect to neutral tube geometry and resulting changes of resonance frequencies away from neutral values
 - \rightarrow acoustic theory of vowel articulation [Ungeheuer (1962)]

Acoustic theory of vowel articulation

2.3.1 Ausgangspunkt Webster'sche Horngleichung (nach Ungeheuer, 1962)

Wir gehen nun von der Wellengleichung des Schnellenpotentials Φ für die Wellenausbreitung in einem Rohr veränderlichen Querschnittes, der sog. Webster'schen Horngleichung aus

$$\frac{\partial^2 \Phi}{\partial x^2} + \frac{1}{A} \frac{\partial \Phi}{\partial x} \frac{dA}{dx} = \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial x^2}$$
(45)
mit den bekannten Randbedingungen:
$$v(t) = 0 \quad \Rightarrow \quad \frac{\partial \Phi}{\partial x} = 0 \quad [\text{Glottis}, x = 0]$$
(46)
$$p(t) = 0 \quad \Rightarrow \quad q = 0 \quad [\text{Mundöffnung}, x = l]$$
(47)
Mit Hilfe der Trennung der Varizion
$$\Phi(x, t) = \varphi(x) \cdot \psi(t)$$
(48)
können wir (45) schreiben
$$\frac{1}{\varphi} \left[\frac{d^2 \varphi}{dx^2} + \frac{1}{A} \frac{d\varphi}{dx} \frac{dA}{dx} \right] = \frac{1}{c^2 \psi} \frac{d^2 \psi}{dt^2}$$
(49)

Die linke Hälfte hängt nur von x ab, die rechte nur von t. Damit können beide als gleich einer Konstante gesehen werden, die mit $-\Lambda$ bezeichnet sei:

$$\frac{1}{\varphi} \left[\frac{d^2 \varphi}{dx^2} + \frac{1}{A} \frac{d\varphi}{dx} \frac{dA}{dx} \right] = -\Lambda = \frac{1}{c^2 \psi} \frac{d^2 \psi}{dt^2}$$
(50)

Vowels at right & left of bullets are rounded & unrounded.

Vowels (German [Pompino-Marschall, 1995])

Vowels (German [Möbius, 2001])

Vowels (German, F1/F2/F3 [Möbius, 2001])

Vowels (Am. English [Peterson and Barney, 1952])

Vowels (German [Möbius])

- Simple periodic oscillation: pure sine wave
 - cyclically recurring, simple oscillation pattern, determined by
 - fundamental period T₀
 - amplitude A
 - phase Φ
- Fundamental frequency [Hz]: 1 / fundamental period [s]

 $F_0 = 1 / T_0$

- Phase relation
 - two sine waves of same frequency and amplitude, but temporally displaced maxima, minima, and zero crossings

 \rightarrow phase shift (here: angle 90°)

- Frequency differences
 - two sine waves of same amplitude and phase, but different frequency (here: 1 vs. 2 Hz)

- Complex periodic signals
 - cyclically recurring oscillation patterns
 - composed of at least two sine waves
 - fundamental frequency = 1 / complex fundamental period
- Form of resulting complex wave depends on frequency, amplitude and phase relations between component waves

- Complex waveform: 2 components
 - two sine waves (100 Hz, 1000 Hz) with same phase and different amplitude (left)
 - complex wave (right) resulting from addition of the two components

• $F_0 = 100 \text{ Hz}$

Complex waveform (red): 5 components

- five sine waves (100, 200, 300, 400, 500 Hz) with same phase
- only 3 lowest frequency components displayed

Complex waveform (red): 5 components

- five sine waves (100, 200, 300, 400, 500 Hz) with phase shifts
- only 3 lowest frequency components displayed

Power/line spectrum

 Line spectrum (amplitude over frequencies) of the complex waveform composed of five components (see above)

Fourier analysis

 Fourier's theorem: every complex wave can be analytically decomposed into a set of sine waves, each with specific values of frequency, amplitude and phase.

Fourier analysis: power spectrum of 5 component wave

Fourier analysis and power spectrum

- Differences between result of Fourier analysis (Fast Fourier Transform, FFT) and idealized line spectrum:
 - broader peaks rather than lines
 - additional peaks (number of components is a parameter!)
- Reasons for these differences:
 - Fourier analysis assumes infinitely long signal, whereas analysis is performed over a few fundamental periods
 - Fourier analysis assumes periodicity, whereas speech signals are quasi-periodic, changing slowly from one fundamental period to the next, or even stochastic
 - digital (discrete) rather than analog (continuous) signal

Discrete Fourier Transform

- Discrete Fourier analysis (Discrete Fourier Transform, DFT)
 - digital Fourier analysis of complex signals, yielding a spectrum of sine wave components
 - transformation of data from time domain into frequency data
 - resolution parameters
 - sampling rate, e.g. 16000 Hz
 - window size (or frame length), e.g. 512 samples ~ 32 ms (512/16000)

Analysis window

- Windowing: splitting the input signal into temporal segments
 - window functions, e.g. Hamming window, cosine window, ...

Speech signal processing

- Typical parameter values in speech signal processing applications:
 - window length: 25 or 40 ms, 512 or 1024 samples (FFT)
 - window step size: 10 ms
 - resulting in a series of n-dimensional feature vectors, one vector every 10 ms
- Granularity of computed spectrum ca. 31 Hz (16000/512=31.25)
- Trading relation (uncertainty principle)
 - good frequency resolution \leftrightarrow poor time resolution
 - good time resolution \leftrightarrow poor frequency resolution

From spectrum to spectrogram

- Power spectrum:
 - snapshot taken at a specific instant of time in the speech signal
- Spectrogram:
 - narrow band spectrogram (e.g. 31 Hz): good frequency resolution
 - wide band spectrogram (e.g. 300 Hz): good temporal resolution
 - analysis window size/length:
 - short temporal window: good time resolution
 - Iong temporal window: good frequency resolution

Vocal tract vs. lossless tube

- losses in the vocal tract caused by
 - friction between air particles
 - vibration of vocal tract walls
 - viscosity of vocal tract tissue
 - radiation of sound energy into free acoustic field
- lossy vibrations are damped exponentially
- spectral equivalent of damping: bandwidth
 - defined as frequency range comprising 50% of power
 - corresponding to decrease of amplitude by 3 dB (or 0.707*A)
 - sound energy expressed in [dB]
 - sound energy is proportional to square of amplitude
 - 50% of power = energy maximum minus 3 dB
 - 0.5 * power = $\sqrt{0.5}$ * amplitude = 0.707 * amplitude

Resonance response

Speech waveforms and spectrograms

UNIVERSITÄT DES SAARLANDES

Continuous and discrete signals

- continuous (analog) signal
 - represented graphically as a continuous curve
 - amplitude values at all points in time
 - theoretically infinite number of time and amplitude values (arbitrary number of decimal places, e.g. "amplitude of 3.211178... volt at 1.034678 sec.")
- discrete (digital) signal:
 - represented graphically by individual, discrete bars
 - sequence of separate amplitude values
 - Imited number of different time and amplitude values

Continuous and discrete signals

continuous vs. discrete sine wave [Johnson, 1997, p.23]

Analog-to-digital conversion

- A/D conversion step 1: sampling
 - limitation of decimal places along time axis (x-axis)
 - slice-by-slice decomposition of continuous time signal
 - discrete points in time: samples
 - density of samples per time unit (sec.): sampling rate or sampling frequency [Hz]
- A/D conversion step 2: quantization
 - limitation of decimal places along amplitude axis (y-axis)
 - slice-by-slice decomposition of continuous amplitudes
 - discrete amplitude values: amplitude steps
 - density of amplitude values: quantization accuracy [bit]

Sampling

periodicity of sine wave can be represented by (minimally) 2 samples [Johnson, 1997, p.25]

Sampling theorem

- Which sampling rate is required for periodic (sine) waves?
 - 2 samples per fundamental period
 - sampling frequency \geq 2 * fundamental frequency
 - e.g.: 100 Hz sine wave \rightarrow 200 Hz sampling rate
 - known as sampling theorem
- What does this mean for complex (e.g. speech) signals?
 - useful information in speech signal of up to approx. 8 kHz
 - requires 16 kHz sampling rate
 - (cf. audio CDROM: 44.1 kHz)
 - **Nyquist frequency**: 0.5 * sampling frequency
 - highest frequency component of sampled signal

Aliasing effect by undersampling

Undersampling of a sine wave [Johnson, 1997, p.27]

- digital signal has a low-frequency component and fails to represent correctly the high-frequency analog signal; audio demo:
 - in practice: use low-pass filter to remove all frequencies above Nyquist frequency (frequency band limitation)

Quantization

 2 different quantizations (20 vs. 200 steps) of sine wave amplitude [Johnson, 1997, p.29]

UNIVERSITÄT DES SAARLANDES

Quantization noise

difference between continuous and quantized signal [Johnson, 1997, p.31]

audio demo

Quantization steps and accuracy

- How accurately should waveform amplitudes be quantized? Or: How many quantization steps should be used?
 - digital representation by binary digits (bits): 0/1
 - 2 bit = 2^2 = 4 steps, or 3 bit = 2^3 = 8 steps, etc.

• in practice: 16 bit = 2^{16} = 65536 steps, values: -32768 - 32768

- quantization noise is negligible when using 16 bit
- How to report digitization:
 - "The speech signal was quantized with 16 bit accuracy (or bit depth) and a sampling rate (or sampling frequency) of 16 kHz."

Thanks!

