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Speech waveforms and spectrograms
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"Heute ist schönes Frühlingswetter."



Speech sounds and speech signals

▪ Basic types of speech signals

▪ quasi-periodic signals: sonority

▪ vowels

▪ sonorants (approximants, glides, nasals, liquids)

▪ stochastic signals: frication noise

▪ fricatives

▪ plosive aspirations

▪ transient signals – impulse

▪ plosive releases

▪ mixed excitation – voiced frication noise

▪ voiced fricatives



Speech sounds and speech signals: vowels

"Heute ist schönes Frühlingswetter."



Speech sounds and speech signals: sonorants

"Heute ist schönes Frühlingswetter."



Speech sounds and speech signals: fricatives

"Heute is schönes Frühlingswetter."



Speech sounds and speech signals: plosives

"Heute is(t) schönes Frühlingswetter."

t?



Speech sounds...: voiced fricatives

"Heute ist schönes Frühlingswetter."

voiced?



Speech waveforms and spectrograms
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Formants

▪ Spectral peaks (energy maxima) of the sound spectrum:             
formants (F1, F2, ..., Fn)

▪ Formants emerge as a consequence of selective reinforcement of 
certain frequency ranges, corresponding to resonance characteristics 
of the vocal tract.

▪ Distinguishing between voice source (excitation) and sound 
formation in the vocal tract (acoustic filter) motivates the source-
and-filter model of speech production.

▪ References:

▪ Gunnar Fant (1960): Acoustic theory of speech production

▪ Gerold Ungeheuer (1962): Elemente einer akustischen Theorie der 
Vokalartikulation



Source-filter model of speech production

[https://www.vocalsonstage.com]



Source-filter model of speech production



Source-filter model of speech production

Glottal excitation Vocal tract frequency response Sound spectrum



Vocal tract as acoustic filter

▪ Vocal tract geometry, determined by tongue position 
(and jaw opening and lip protrusion, not shown)



Vocal tract: acoustic tube model

[Clark et al., 2007a, p.241]



Vibration modes: string



Vibration modes: vocal tract

glottis lips



Longitudinal waves

▪ Acoustic signals evolve as longitudinal waves in vocal tract

▪ Physical parameters of acoustic waves

▪ sound pressure p : change of air pressure caused by sound event,      

local deviation from average ambient pressure

▪ sound/particle velocity v : particle velocity caused by sound event, 

oscillation of particle around resting position

▪ speed of sound c : speed of sound waves in air (or other material), 

particle-to-particle interaction, distance of travel per unit of time 

(e.g. 340 m/s in air)



Sound propagation



Sound pressure waves in vocal tract

[Hess, ms.]

p=0

v=0



Vocal tract: acoustic tube model

▪ Perfect reflexion at sound-hard (lossless) walls of tube

▪ v = 0 at place of reflexion

▪ (Lossy) reflexion at sound-soft transition from vocal tract to free 

acoustic field (i.e. from lips to air)

▪ p = 0 at place of radiation



Computing formant frequencies

▪ Resonance frequencies of neutral vocal tract computed as speed of 

sound divided by wave length: f i = c / λ i

▪ Frequencies of resonances/formants:

F1 = 340 / (4 * 0.17) = 340 / 0.68 =   500 Hz

F2 = 340 / (4/3 * 0.17) = 3 * 340 / (4 * 0.17) = 1500 Hz

F3 = 340 / (4/5 * 0.17) = 5 * 340 / (4 * 0.17) = 2500 Hz

▪ Distribution of formant frequencies in neutral vocal tract corresponds 

to formants of central vowel [ǝ]

▪ Simple tube model, with constant area, is inadequate for computing 

formants of other vowels (cf. acoustic theory of vowel articulation 

[Ungeheuer 1962])



Vibration modes: vocal tract (repeated)

glottis lips



Tube model with variable area

[Clark et al., 2007a, p.246]



T. Arai’s cylinder-type models

[http://www.splab.net/Vocal_Tract_Model/index-e.htm]

http://www.splab.net/Vocal_Tract_Model/index-e.htm


Resonances: standing waves

parameter: v [Johnson, 1997, p.99]



Standing waves: interpretation

▪ interpretation of the graphical representation of standing waves in 

idealized vocal tract (neutral configuration, see previous figure):

▪ first 4 formants displayed (F1 – F4)

▪ in tube model and in vocal tract

▪ places of maximum sound velocity (sound velocity nodes, V )

▪ places of maximum sound pressure (wave maxima, "antinodes")

▪ localization of V in vocal tract



Dynamic area changes

▪ resonances of vocal tract with variable area cannot be 

straightforwardly visualized as in the neutral tube model

▪ local area changes affect frequencies of resonances, depending on 

energy distribution of standing wave in tube along longitudinal axis 

("z-axis")

▪ e.g., constriction at lip end of tube has same effect as constriction 

at glottis end: lower resonance frequency

▪ acoustic vowel system can be interpreted as representing 

geometrical changes with respect to neutral tube geometry and 

resulting changes of resonance frequencies away from neutral 

values

→ acoustic theory of vowel articulation [Ungeheuer (1962)]



Acoustic theory of vowel articulation



Vowels (IPA)

F2

F1



Vowels (German [Pompino-Marschall, 1995])



Vowels (German [Möbius, 2001])



Vowels (German, F1/F2/F3 [Möbius, 2001])



Vowels (Am. English [Peterson and Barney, 1952])



Vowels (German [Möbius])



Simple waveforms



Simple waveforms

▪ Simple periodic oscillation: pure sine wave

▪ cyclically recurring, simple oscillation pattern, determined by

▪ fundamental period T0

▪ amplitude A

▪ phase 

▪ Fundamental frequency [Hz]:  1 / fundamental period [s]

F0 = 1 / T0



Simple waveforms

▪ Phase relation

▪ two sine waves of same frequency and amplitude, but temporally 
displaced maxima, minima, and zero crossings

   → phase shift (here: angle 90º)



Simple waveforms

▪ Frequency differences

▪ two sine waves of same amplitude and phase, but different 
frequency (here: 1 vs. 2 Hz)



Complex waveforms

▪ Complex periodic signals

▪ cyclically recurring oscillation patterns

▪ composed of at least two sine waves

▪ fundamental frequency = 1 / complex fundamental period

▪ Form of resulting complex wave depends on frequency, amplitude and 
phase relations between component waves



Complex waveforms

▪ Complex waveform: 2 components

▪ two sine waves (100 Hz, 1000 Hz) with same phase and different 
amplitude (left)

▪ complex wave (right) resulting from addition of the two 
components

▪ F0 = 100 Hz



Complex waveforms

▪ Complex waveform (red): 5 components

▪ five sine waves (100, 200, 300, 400, 500 Hz) with same phase

▪ only 3 lowest frequency components displayed



Complex waveforms

▪ Complex waveform (red): 5 components

▪ five sine waves (100, 200, 300, 400, 500 Hz) with phase shifts

▪ only 3 lowest frequency components displayed



Power/line spectrum

▪ Line spectrum (amplitude over frequencies) of the complex waveform 
composed of five components (see above)



Fourier analysis

Fourier analysis: power spectrum of 5 component wave

▪ Fourier's theorem: every complex wave can be analytically 
decomposed into a set of sine waves, each with specific values of 
frequency, amplitude and phase.



Fourier analysis and power spectrum

▪ Differences between result of Fourier analysis (Fast Fourier Transform, 
FFT) and idealized line spectrum:

▪ broader peaks rather than lines

▪ additional peaks (number of components is a parameter!)

▪ Reasons for these differences:

▪ Fourier analysis assumes infinitely long signal, whereas analysis is 
performed over a few fundamental periods

▪ Fourier analysis assumes periodicity, whereas speech signals are 
quasi-periodic, changing slowly from one fundamental period to the 
next, or even stochastic

▪ digital (discrete) rather than analog (continuous) signal



Discrete Fourier Transform

▪ Discrete Fourier analysis (Discrete Fourier Transform, DFT)

▪ digital Fourier analysis of complex signals, yielding a spectrum of 
sine wave components

▪ transformation of data from time domain into frequency data

▪ resolution parameters

▪ sampling rate, e.g. 16000 Hz

▪ window size (or frame length), e.g. 512 samples ~ 32 ms 
(512/16000)



Analysis window

▪ Windowing: splitting the input signal into temporal segments

▪ window functions, e.g. Hamming window, cosine window, ...



Speech signal processing

▪ Typical parameter values in speech signal processing applications:

▪ window length: 25 or 40 ms, 512 or 1024 samples (FFT)

▪ window step size: 10 ms

▪ resulting in a series of n-dimensional feature vectors, one vector 
every 10 ms

▪ Granularity of computed spectrum ca. 31 Hz (16000/512=31.25)

▪ Trading relation (uncertainty principle)

▪ good frequency resolution  poor time resolution

▪ good time resolution  poor frequency resolution



From spectrum to spectrogram

▪ Power spectrum:

▪ snapshot taken at a specific instant of time in the speech signal

▪ Spectrogram:

▪ narrow band spectrogram (e.g. 31 Hz): good frequency resolution

▪ wide band spectrogram (e.g. 300 Hz): good temporal resolution

▪ analysis window size/length:

▪ short temporal window: good time resolution

▪ long temporal window: good frequency resolution



Vocal tract vs. lossless tube

▪ losses in the vocal tract caused by

▪ friction between air particles

▪ vibration of vocal tract walls

▪ viscosity of vocal tract tissue

▪ radiation of sound energy into free acoustic field

▪ lossy vibrations are damped exponentially

▪ spectral equivalent of damping: bandwidth

▪ defined as frequency range comprising 50% of power

▪ corresponding to decrease of amplitude by 3 dB (or 0.707*A)

▪ sound energy expressed in [dB]

▪ sound energy is proportional to square of amplitude

▪ 50% of power = energy maximum minus 3 dB

▪ 0.5 * power = 0.5 * amplitude = 0.707 * amplitude



Resonance response

Formant parameters:
   (center) frequency, 
   (peak) amplitude, 
   bandwidth



Speech waveforms and spectrograms

B1=bandwidth(F1)

B2=bandwidth(F2)

B3=bandwidth(F3)



Continuous and discrete signals

▪ continuous (analog) signal

▪ represented graphically as a continuous curve

▪ amplitude values at all points in time

▪ theoretically infinite number of time and amplitude values   
(arbitrary number of decimal places, e.g. "amplitude of 3.211178... 
volt at 1.034678 sec.")

▪ discrete (digital) signal:

▪ represented graphically by individual, discrete bars

▪ sequence of separate amplitude values

▪ limited number of different time and amplitude values



Continuous and discrete signals

continuous vs. discrete sine wave [Johnson, 1997, p.23]



Analog-to-digital conversion

▪ A/D conversion – step 1: sampling

▪ limitation of decimal places along time axis (x-axis)

▪ slice-by-slice decomposition of continuous time signal

▪ discrete points in time: samples

▪ density of samples per time unit (sec.): sampling rate or 
sampling frequency [Hz]

▪ A/D conversion – step 2: quantization

▪ limitation of decimal places along amplitude axis (y-axis)

▪ slice-by-slice decomposition of continuous amplitudes

▪ discrete amplitude values: amplitude steps

▪ density of amplitude values: quantization accuracy [bit]



Sampling

periodicity of sine wave can be represented by (minimally) 2 samples
[Johnson, 1997, p.25]



Sampling theorem

▪ Which sampling rate is required for periodic (sine) waves?

▪ 2 samples per fundamental period

▪ sampling frequency  2 * fundamental frequency

▪ e.g.: 100 Hz sine wave → 200 Hz sampling rate

▪ known as sampling theorem

▪ What does this mean for complex (e.g. speech) signals?

▪ useful information in speech signal of up to approx. 8 kHz

▪ requires 16 kHz sampling rate 

▪ (cf. audio CDROM: 44.1 kHz)

▪ Nyquist frequency: 0.5 * sampling frequency

▪ highest frequency component of sampled signal



Aliasing effect by undersampling

Undersampling of a sine wave [Johnson, 1997, p.27]

▪ digital signal has a low-frequency component and fails to represent  
correctly the high-frequency analog signal; audio demo:

▪ in practice: use low-pass filter to remove all frequencies above     
Nyquist frequency (frequency band limitation)



Quantization

▪ 2 different quantizations (20 vs. 200 steps) of sine wave amplitude 
[Johnson, 1997, p.29]



Quantization noise

▪ difference between continuous and quantized signal [Johnson, 1997, p.31]

▪ audio demo

https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html


Quantization steps and accuracy

▪ How accurately should waveform amplitudes be quantized? Or:       
How many quantization steps should be used?

▪ digital representation by binary digits (bits): 0/1

▪ 2 bit = 22 = 4 steps, or 3 bit = 23 = 8 steps, etc.

▪ in practice: 16 bit = 216 = 65536 steps, values: -32768 - 32768

▪ quantization noise is negligible when using 16 bit

▪ How to report digitization:

▪ "The speech signal was quantized with 16 bit accuracy (or bit 
depth) and a sampling rate (or sampling frequency) of 16 kHz."



Thanks!
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