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Abstract

Young infants learn words by detecting patterns in the speech
signal and by associating these patterns to stimuli presented by
non-speech modalities (e.g vision). In this paper, we model this
behaviour by designing and testing a computational model of
word discovery. The model is able to build word-like represen-
tations on the basis of multimodal input data. The discovery of
words (and word-like entities) takes place within a communica-
tive loop between two protagonists, a ’carer’ and the ’learner’.
Experiments carried out on three different European languages
(Finnish, Swedish, and Dutch) show that a robust word repre-
sentation can be learned in using about 50 acoustic tokens (ex-
amples) of that word. The model is inspired by the memory
structure that is assumed functional for human speech process-
ing.
Index Terms: language acquisition, unsupervised word detec-
tion, computational modelling

1. Introduction
Healthy young infants perform language acquisition seemingly
without any effort, but the large body of literature on cognition,
language and memory shows that the underlying mechanisms
are complex and far from completely understood (e.g. [9]). Un-
doubtedly, recognizing speech is tantamount to the mapping of
continuous speech signals to discrete concepts, which we are
used to think of as a sequence of word-like units. Infants learn
to discover these units in speech without prior knowledge about
lexical identities and despite the lack of clear word boundary
cues in the signal. In order to do so, two related problems can
be identified.

The first problem to be tackled by a young infant is the
unimodal detection of words (word-like fragments) from utter-
ances with mostly spontaneous connected speech. Newborns
are not completely blank - they possess an auditory system that
has been exposed in the pre-birth period to bandlimited sounds
with the same type of rhythm and variation as speech. It ap-
pears that infants can identify their native language based on
stress patterns very soon after birth. A few months old, they are
able to segment words and distinguish between familiar and un-
familiar words based on stress patterns (whether or not the word
actually means anything to the infant, e.g. [8]). An infant of six
months old can distinguish vowels between the native and non-
native phoneme space ([10]). And within 8 months, infants can
segment words based on the statistical patterns in the observed
phonotactics (e.g. [15], [9]). After 2 minutes of exposure, in-
fants can then use the statistical properties of the co-occurrence
of syllable-sized units to segment novel words.

These studies show that young infants are sensitive to
the (statistical) structure in the speech signal on the level of

phoneme or syllable-sized units. Evidently this does not nec-
essarily imply that phoneme-like units are actually used to rep-
resent words in the internal (mental) lexicon. With respect to
these lexical representations, both an episodic and abstraction-
ist viewpoint are supported by experimental evidence. Episodic
theories of speech perception assume that listeners store multi-
ple entries, in the form of detailed perceptual traces (’episodes’)
([2], [3]). In contrast, experimental data on e.g. perceptual
learning in speech recognition are difficult to explain without
hypothesizing more abstract phonological representations (fea-
tures, phonemes or syllables) (for a discussion see [12]).

The second problem that a young infant is confronted with
is the cross-modal pairing between a word and its potential ref-
erent. Parents, on average, may direct hundreds of utterances an
hour to their children ([5]). That many words generate a poten-
tially large number of ambiguities about possible word-referent
associations. The behaviour of twelve to fourteen-month-old
infants can adequately be modelled by evaluating the statistical
evidence across many word-scene combinations ([17], [4]).

In this paper, we discuss a computational model based on
both unimodal and cross-modal word learning. Its input and ar-
chitecture are as much as possible motivated by cognitive plau-
sibility. In order to simulate the stimuli a child receives from its
environment, the input of the computational model consists of
multimodal data with an ’audio’ and a ’visual’ modality. While
the audio modality is represented by one utterance, the associ-
ated video modality is represented by a symbolic ’tag’. This
tag is an abstract label associated with an object to which the
utterance refers, and serves as a referent (so there is no real
camera). The target word, its position in the utterance, and its
acoustic/phonetic representation are unspecified, and it is up to
the model to (statistically) determine the association between
the word-like speech fragment and the referent.

The architecture and learning paradigm are different from
conventional ASR. Instead, the model has similarities with the
Cross-channel Early Lexical Learning (CELL) model [14]. It
differs from CELL in that it does not assume that infants rep-
resent speech in the form of a lattice of pre-defined phonemes.
While young children show sensitivity to phone-sized patterns
in languages and sensitivity to native sounds after a few months,
the current model does not assume that phones are available for
use in the word detection task, thereby taking into account the
distinction between ’perception units’ and ’representation units’
as discussed above. The model avoids the use of pre-existing
representation for decoding the information in the input. In-
stead, the representations in the model gradually emerge from
the multimodal stimuli that are presented. Actually, the cogni-
tive plausibility of the model is an important consideration for
its design.

In this paper, three experiments will be described. The
first experiment shows that the learner is able to dynamically
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build and adapt internal representations. The second experi-
ment shows how the performance of the learner depends on the
amount of speech data used for initialisation of the representa-
tions, and the amount of speech data used during the update of
its internal representations. The third experiment describes how
abstraction may be the result of grouping representations (based
on structure in the representation space).

2. A computational model of word
discovery

The model of language acquisition and speech communication
that we are developing in the European project ACORNS [1] is
based on four topics, viz. sensory front-end processing, mem-
ory access and organization, information discovery and learn-
ing, and interaction in a realistic environment. The model archi-
tecture (cf. fig. 1) is based on recent psycholinguistic research
in speech and language processing ([7]).
Sensory front-end processing: In the first step, the computa-
tional model converts sensory input signals into an internal rep-
resentation which is used in subsequent sub-modules for learn-
ing new patterns and for recognizing known patterns. The re-
sulting representation includes the Mel-Frequency based cep-
stral coefficients as used in conventional ASR.
Memory organization and access: Cognitive theories of mem-
ory [7] distinguish at least three types of memory: a sensory
store in which all sensory information is captured only for a
very short time (in the order of 2 seconds), a short-term memory
(working memory) and a long-term memory. The model makes
use of these types of memory and stores (fig. 1). Multilayered
representations are formed in which structures at a lower level
map to structures at a higher level (abstraction, see below).
Information discovery and integration: In the experiments
reported in this paper abstraction is based on Non-negative Ma-
trix Factorization (NMF) [11] [6] [18]. NMF is member of a
family of computational approaches that decompose a (large)
matrix V into smaller matrices W · H such that the distance
between V andW ·H is minimised. Each ’episodic’ column of
V corresponds to an utterance and contains occurrence counts
of specific acoustic events (defined via a VQ-codebook). The
matrices W and H contain the information in the original ma-
trix in an abstract form: columns of W model the internally
stored representations, while H is the corresponding activation
matrix [6] [18]. By using NMF, a concept such as ’abstraction’
receives a clear interpretation in terms of algebraic operations.
Interaction and communication: The carer model provides
multimodal stimuli to the learner. Each stimulus consists of an
utterance (infant-directed or adult-directed speech) in combina-
tion with a tag. The acoustic information is combined with the
tag to form a high dimensional sparse representation, which is
input for NMF. In order to simulate a learning environment, the
learner is endowed with the intention to learn words. This is
done by optimizing the appreciation from the carer, which in
turn is interpreted as the optimization of the classification of the
stimuli presented by the carer. To that end,W is used to decode
the utterance (see below).

3. Experiments
3.1. Material

For training and testing, three databases are available (Dutch,
Finnish, Swedish). For each language we have utterances from
2 male and 2 female speakers. In this paper we only report

Figure 1: Global architecture of the ACORNS model.

about the Dutch database (the results on the other databases are
comparable). Each speaker utters 1000 sentences in two speech
modes (adult-directed, ADS, and infant-directed, IDS), making
a total of 2000 utterances per speaker. The set of 1000 sentences
contains 10 repetitions of combinations of the target words (a
combination of nouns and proper names) and 10 carrier phrases.
(The content of the three databases differs in details that are not
relevant for this discussion). The set of target words has primar-
ily been chosen on the basis of Child Development Inventories
to include words that actually occur in real-life interactions. For
each utterance, the databases also contain meta-information in
the form of the ’visual’ tag.

3.2. Procedure

A training run consists of interaction loops between the ’carer’
(modelling an adult) and the ’learner’ (modelling a very young
child). At each interaction, the learner is confronted with a new
(previously unobserved) multimodal stimulus from the carer.
The learner then attempts to understand the audio part in terms
of what it knows (that is, in terms of its internal representations
trained so far). Its abstract reply is processed by the carer, who
then continues the interaction by presenting the next stimulus.
Once a multimodal stimulus has been processed by the learner,
the information provided by this stimulus plays a role in subse-
quent updates of its internal representations and so sharpens or
adapts these representations.

Basically, in the present setting, the NMF decomposition
implies that the ’episodic’ data matrix V is decomposed into
V ≈ W ·H such that the KL-divergence is minimised:

D(V ||W ·H) = −
∑

ij

(Vij log(Vij/(W ·H)ij)) (1)

in which the columns of W represent the representations on a
level that is ’one level’ more abstract than the level of the data in
V . In the present experiment, the columns ofW refer to words
and word-like speech fragments.
During the training, it is up to the learner when and how often
to updateW . Evidently, in the general case the updatedW will
not be radically different from the previous W . Furthermore,
cognitive plausibility of the model is enhanced by stipulating
that W should not be updated on the entire collection of ob-
served stimuli, but rather on the recently observed ones only
(possibly with a forgetting factor that smooths the way forget-
ting operates). In the present learning algorithm, the recency
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Figure 2: (Dutch, speaker-blocked). Multimodal Dutch in-
put data are presented blocked, speaker-by-speaker. The four
speakers (female, male, female, male) start at number of tokens
= 0, 2000, 4000, 6000.

is implemented by using the memory length (ml) with refers to
the number of recently observed stimuli that is used for updat-
ing the internal representations.

3.3. Experiment 1

This experiment aims at showing that the learner is able to dy-
namically build and adapt internal representations via NMF.
The training is based on all 8000 utterances, presented blocked
by speaker, random within speaker-block. In total there are 13
different target words. The result is displayed in figure 2. The
horizontal axis represents the number of utterances (tokens) pre-
sented during training. The vertical axis represents the accuracy
of replied answers. The accuracy is defined as the number of
correct responses (the learners’ reply is correct if it is identical
to the tag provided by the carer), divided by the total number
of replies. To better monitor the ’instantaneous’ accuracy, the
plot shows the average accuracy obtained over the most recent
50 utterances. Each time a new speaker starts (around number
of tokens = 2000, 4000, 6000), a drop in performance can be
seen. This drop is mainly due to the different voice and speech
characteristics of the new speaker which require an adaptation
of the internal representations. The learner is able to catch up
within about 1000 tokens (that is, approx. 70 tokens per word).

3.4. Experiment 2

The second experiment specifically focuses on the learning per-
formance as a function of cognitively relevant parameters: the
number of stimuli (denoted: nsbt) presented before the actual
initialisation of the internal representations take place, and the
memory length (denoted: ml) that indicates how many recent
utterances are used to update the internal representations. The
used database is a subdatabase consisting of 200 utterances by
one female speaker, followed by a random ordering of 1800
utterances from other speakers. Figures 3 and 4 show the per-
formance by varying nsbt and ml. It appears that delaying the
initialisation to 500 utterances yields a slightly better perfor-
mance on short term, but that this advantage tends to vanish in
the end (fig. 3). In contrast, variation of ml (fig. 4) has a drastic
influence on the performance. The results point at the relevance
of the accessibility of recently preceived stimuli for the eventual
performance.

0 500 1000 1500 2000
0

20

40

60

80

100
tag accuracy versus nr of utterances processed

#utterances

ta
g 

ac
cu

ra
cy

nsbt = 5, ml = inf
nsbt = 100
nsbt = 500

Figure 3: Performance as a function of the number of stimuli
presented before training the internal representations. Delaying
the initialisation leads to slightly better performance on short
term.
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Figure 4: Performance for different values (20, 100, and inf)
of the memory length (ml) used in the NMF update. The value
’inf’ means that the entire past is taken into account.

3.5. Experiment 3

The aim of the final experiment is to show how abstraction
may follow as a result of competition between crowded col-
lections of representations on a lower level. For eaxmple, can
speaker-dependent word representations be grouped in such a
way that the common characteristics of these representations
combine into one higher-level word representation? We used
the Dutch database in which the tags have been extended to
contain both the original tag and the identity of the speaker.
This means that the new task of the learner is to find the as-
sociation between a triplet {word, reference, speaker}. After
training, each word now has four different representations (one
for each speaker). We investigated the initialisation and update
of the internal representations in more detail. All representa-
tions are one-to-one with columns inW after each NMF update
step. The metric of the vector space in which these columns
reside is defined by the symmetrised Kullback-Leibler diver-
gence. This means that for any vector pair (v1, v2) the distance
KL(v2, v2) can be used as a dissimilarity measure, resulting
in a KL-distance matrix MKL. A 10-means clustering us-
ingMKL then yields 10 groups (such that each group contains
one or more word-speaker representations). Eventually, these
groups appear to cluster the word representations as shown by
table 1. Since the between-group variance Σb increases while
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Figure 5: The evolution of the between and within group vari-
ance, based onMKL.

group 1 auto1, auto2, auto3, auto4, otto2
group 2 otto1, otto3, otto4
group 3 luier1, luier2, luier3
group 4 mama1, mama2, mama3, mama4, papa4
. . . . . .

group 10 bad1, bad2, bad3

Table 1: Overview of abstract groups of representations defined
after clustering low level (word-speaker) representations. The
indices refer to one of the four Dutch speakers.

the average within-group varianceΣw decreases (fig. 5), groups
statistically emerge from the entire set of representations, which
indicates that NMF is able to group speaker-dependent word
representations towards one single abstract representation. To
enforce abstractions of this type, the entire set of representa-
tions must be sufficiently large to have Σw/Σb falling below a
threshold.

4. Discussion and conclusions
The computational model presented shows that learning rela-
tions between speech fragments and referents can be accom-
plished with a general purpose pattern discovery technique. For
the recognition of 10 words, the performance of the learner is
about 97%, which can be reached after having processed about
30-50 tokens per word. The learner is able to gradually improve
the quality of its internal representations, by minimizing the
Kullback-Leiber divergence between the observed data and the
internal representations. Furthermore, at speaker changes, the
internal representations are adapted to accommodate the new
speaker characteristics (fig. 2).

The performance of the learner depends on the number of
utterances that are used to initialise the internal representations.
This effect is small (fig. 3). However, the effect of the memory
length (the number of recent utterances used for the NMF up-
dates) is substantial (fig. 4). This shows that the way represen-
tations are constructed and updated can be improved by better
selecting those utterances that are critical for the learning, for
example by focussing on those utterances that may help in bet-
ter shaping the class boundaries. Furthermore, NMF is able to
group speaker-dependent word representations to form a more
abstract general-word representation (fig. 5).

One of the research lines that will be pursued in the near
future deals with the effect of corrective feedback on the learn-

ing process. The second research line that will be exploited is
directly related to the cognitive plausibility. This research line
deals with the use of semantically motivated tags. In the current
model, the tags represent high-level references to objects that
the learner receives and processes with 100 percent certainty.
We aim at a model of a learner that receives multimodal in-
put in such a way that the construction and adaptation of new
representations is entirely controlled by the learner’s internal
learning mechanisms.
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