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Abstract

This paper reconsiders the diphone-based word segmentation model of Cairns, Shillcock, Chater,

and Levy (1997) and Hockema (2006), previously thought to be unlearnable. A statistically princi-

pled learning model is developed using Bayes’ theorem and reasonable assumptions about infants’

implicit knowledge. The ability to recover phrase-medial word boundaries is tested using phonetic

corpora derived from spontaneous interactions with children and adults. The (unsupervised and semi-

supervised) learning models are shown to exhibit several crucial properties. First, only a small
amount of language exposure is required to achieve the model’s ceiling performance, equivalent to

between 1 day and 1 month of caregiver input. Second, the models are robust to variation, both in

the free parameter and the input representation. Finally, both the learning and baseline models exhibit

undersegmentation, argued to have significant ramifications for speech processing as a whole.

Keywords: Language acquisition; Word segmentation; Bayesian; Unsupervised learning; Computa-

tional model

1. Introduction

Word learning is fundamental in language development. Aside from communicating lexi-

cal meaning in individual utterances, words play a role in acquiring generalizations at multi-

ple levels of linguistic structure, for example, phonology1 and syntax.2 Therefore, it is

crucially important to understand the factors and processes that shape word learning.

In order to learn a word, the listener must first parse the wordform out as a coherent

whole from the context in which it was uttered—word segmentation. Word segmentation

is a challenging phenomenon to explain, as word boundaries are not reliably marked in

everyday speech with invariant acoustic cues, such as audible pauses (Lehiste, 1960).
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Therefore, listeners must exploit some kind of language-specific knowledge to determine

word boundaries.

In adults, one obvious source for word segmentation is recognition of neighboring

words: The end of one word signals the onset of the next, and vice versa. Indeed, a num-

ber of computational models such as TRACE (McClelland & Elman, 1986) and Shortlist

B (Norris & McQueen, 2008) have explained word segmentation as an epiphenomenon of

word recognition in closed-vocabulary tasks, such as an adult might face in a familiar lis-

tening environment. Word segmentation in adults is facilitated by recognition of specific

words and other ‘‘top-down’’ (syntactic ⁄ semantic and pragmatic ⁄ world) knowledge

(Mattys, White, & Melhorn, 2005), which may even override lexical ⁄ phonological infor-

mation (e.g., Levy, 2008). Thus, ‘‘top-down’’ knowledge plays a vital role in adult word

segmentation.

However, the acquisition facts suggest that word recognition cannot be the only—or

even the most important—mechanism for infant word segmentation. This is evident from

the fact that infants do not command very much top-down knowledge that might support

word segmentation. For example, infants between the ages of 6 and 12 months are

reported to know an average of 40–80 word types (Dale & Fenson, 1996), a tiny fraction

of the words they encounter. During this same developmental period infants exhibit robust

word segmentation, apparently on the basis of low-level cues such as phonotactics and

stress (Aslin, Saffran, & Newport, 1998; Jusczyk, Hohne, & Bauman, 1999; Jusczyk,

Houston, & Newsome, 1999; Mattys & Jusczyk, 2001; Saffran, Aslin, & Newport, 1996).

While word recognition clearly plays some role in infant word segmentation (Bortfeld,

Morgan, Golinkoff, & Rathbun, 2005), word segmentation organizes and supports infant
word recognition and learning (Davis, 2004), rather than being only an epiphenomenon of

word recognition.

These facts call for a phonotactic account of word segmentation acquisition. Phonotactics

refers to tacit knowledge of possible ⁄ likely sound sequences, including words, syllables,

and stress (Albright, 2009; Chomsky & Halle, 1965; Dupoux, Kakehi, Hirose, Pallier, &

Mehler, 1999; Hayes & Wilson, 2008; Jusczyk, Luce, & Charles-Luce, 1994). Although

phonotactics can refer to a broad array of sound structures, the present paper will focus on

segmental sequences and their distribution within and across words. More specifically, this

paper explores Diphone-Based Segmentation (DiBS) as previously studied in Cairns,

Shillcock, Chater, and Levy (1997) and Hockema (2006).

The underlying idea of DiBS is that many diphones are good cues to the presence or

absence of a word boundary. For example, the sequence [pd] occurs in no or almost no Eng-

lish words, so it is a strong cue to the presence of a word boundary between [p] and [d].

Similarly, the sequence [ba] occurs very frequently within English words, but only rarely

across word boundaries, so it is a strong cue to the absence of a word boundary. This idea

can be formalized as calculating, for every diphone [xy] that occurs in the language, the

probability p(# | xy) that a word boundary # falls between [x] and [y].

The DiBS models in previous studies were supervised models, meaning that model

parameters were estimated from phonetic transcriptions of speech in which the pres-

ence ⁄ absence of word boundaries was marked. Since this is precisely what infants are trying
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to discover, supervised models are not appropriate as models of human acquisition, which is

unsupervised. Thus, despite the promising segmentation performance of these models, they

have attracted little follow-up research, apparently because the model parameters were

regarded as unlearnable.

The computational literature shows that when model parameters cannot be directly

inferred, they can often be indirectly inferred using Bayes’ theorem with reasonable prior

assumptions (Manning & Schütze, 1999). The Bayesian approach is especially appropriate

for the study of language acquisition because it forces a principled distinction between

learner assumptions and the data that the child learns from.

Accordingly, a learning DiBS model that uses Bayes’ theorem to estimate parameters is

developed here. The approach builds off acquisition literature documenting children’s use

of phonotactics for word segmentation; specifically DiBS formalizes the finding that chil-

dren exploit diphones to segment words from unfamiliar sequences (Mattys & Jusczyk,

2001). In estimating parameters, the learning model exploits the fact that phrase boundaries

contain distributional information useful for identifying word boundaries (Aslin, Woodward,

LaMendola, & Bever, 1996).

The paper is structured as follows. In the background section, we begin with terminol-

ogy. Next we describe previous computational approaches to word segmentation; then we

consider evidence of phonotactic segmentation in infants. Finally, we argue for phonotactic

segmentation as a prelexical process in a two-stage (prelexical ⁄ lexical) theory of speech

processing. In the DiBS section, we begin with our cognitive assumptions and next

describe the core learning model; two specific instantiations are introduced: Phrasal-DiBS

bootstraps model parameters from the distribution of speech sounds at phrase edges; Lexi-

cal-DiBS estimates them from the infant’s lexicon. Phrasal-DiBS is an unsupervised algo-

rithm, and lexical-DiBS can be characterized as semi-supervised. The remainder of the

paper is devoted to testing the models and discussion of their performance. Simulation 1

uses a phonetic corpus derived from child-directed speech to assess the learning models’

ability to recover phrase-medial word boundaries using the supervised model of Cairns

et al. (1997) as a baseline. Simulation 2 assesses the models’ robustness to variation in the

parameter p(#), the learner’s estimate of the global probability of a phrase-internal word

boundary. Finally, Simulation 3 assesses robustness to pronunciation variation using a cor-

pus of spontaneous adult speech that represents the phonetic outcome of conversational

reduction processes.

2. Background

Word segmentation has been the focus of intensive cross-disciplinary research in recent

years, with important contributions from infant experiments (e.g., Saffran et al., 1996;

Mattys & Jusczyk, 2001), corpus studies of caregiver speech (e.g., van de Weijer, 1998),

computational models (Christiansen, Allen, & Seidenberg, 1998; Fleck, 2008; Goldwater,

2006; Swingley, 2005), or combinations of these methods (Aslin et al., 1996; Brent &

Siskind, 2001). Rapid further progress depends on integrating the insights from these
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multiple strands of research. In this section, we begin by defining terminology. Next we

describe several classes of computational models implementing a variety of theoretical

approaches to the acquisition of word segmentation. Then we review evidence of phono-

tactic segmentation in infants and argue that existing approaches fail to accommodate it.

Finally we argue that phonotactic segmentation is a prelexical process.

2.1. Terminology

2.1.1. Units of speech perception
The phonetic categories that infants perceive will be referred to as phones. ‘‘Phone’’ is

used in preference to ‘‘phoneme’’ or ‘‘allophone’’ because these terms imply to some read-

ers that infants learn the full system of contextual variation and lexical contrast relating cog-

nitive units (phonemes) with their phonetic realization (allophones). For example, alveolar

taps, aspirated stops, voiceless unaspirated stops, and unreleased stops are all allophones of

the same phoneme ⁄ t ⁄ . It is nontrivial to learn these relations (Peperkamp, Le Calvez, Nadal,

& Dupoux, 2006), and there is no unambiguous evidence that prelexical infants have done

so (Pierrehumbert, 2002); hence, the more neutral term ‘‘phone.’’

2.1.2. Undersegmentation and oversegmentation errors
An undersegmentation error occurs when there is an underlying word boundary in the

input, but the model fails to identify it. An oversegmentation error occurs when there is not

an underlying word boundary, but the model identifies one. These terms are used because

they refer directly to the perceptual outcome for the infant3: In the former case the infant

will perceive an unanalyzed whole that underlyingly consists of multiple words; in the latter

case the infant will improperly split up a single word into subparts.

2.2. Computational models of segmentation acquisition

Computational models can be regarded as specific instantiations of broader theories,

making more specific and sometimes more easily testable predictions than the theories they

embody. A variety of modeling frameworks have been proposed for the acquisition of word

segmentation, including phonotactic models, connectionist models, and models which treat

word segmentation and word learning as a joint-optimization problem. These models differ

not only in their internal structure, and in what information they bring to bear, but also in

the task they are solving; some are designed to acquire a lexicon as well as segment

speech.

2.2.1. Diphone and higher n-phone models
Cairns et al. (1997) used the London-Lund corpus of spoken conversation to test a

diphone model. For each diphone [xy] in the language, they collected the frequency ƒ#(xy)

with which [xy] spans a word boundary, and the frequency ƒ�#(xy) with which [xy] occurs

word-internally. Then the probability of a word boundary between [x] and [y] is p(# |

xy) = ƒ#(xy) ⁄ (ƒ#(xy)+ƒ�#(xy)).4 By positing a boundary whenever this probability exceeded
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an optimal threshold, the model found 75% of the true word boundaries in the corpus, with

only 5% of nonboundaries misidentified as word boundaries. The high level of performance

was later explained by Hockema’s (2006) finding that English diphones contain a great deal

of positional information because most occur within a word, or across word boundaries, but

not both.

Cairns et al. (1997) did not regard the diphone model as a suitable model for acquisition,

because calculating the model parameters depends on knowing the relative frequency with

which word boundaries span different diphones. Observing this information would require

knowing when a word boundary has occurred and when it has not, which is precisely the

segmentation problem infants are trying to solve. Swingley (2005) followed up with a word-

learning model using a related statistic that is observable to infants. Although this model

achieved promising results on word learning, it also made a number of ad hoc assumptions

that may not be cognitively plausible (for discussion see Goldwater, 2006).

Other studies have revisited the assumption that diphone models are unlearnable. The

key insight is that phrase boundaries are always word boundaries (Aslin et al., 1996).

Thus, while infants may not observe which diphones span a word boundary phrase-

medially, they can observe which phones are likely to occur phrase-initially and -finally.

Xanthos (2004) exploited this idea by defining ‘‘utterance-boundary typicality’’ as the

ratio of the expected probability of a diphone across phrase boundaries to the observed

probability within a phrase. This method crucially assumes independence of phonological

units across word boundaries. Going a step further, Fleck (2008) used Bayes’ theorem

to derive word-boundary probabilities with the further, counterintuitive, assumption of

phonological independence within words. Statistical dependencies in this model are repre-

sented using all n-phones, n £ 5, that occur more than five times in the corpus, so the

model is more powerful than a diphone model and requires correspondingly stronger

assumptions about infants’ cognitive abilities. Fleck’s model also includes a lexical

process that repairs morphologically driven segmentation errors, for example, boundaries

between stems and suffixes.

To anticipate briefly, the present study includes elements from several of these studies. It

shares the core diphone model from Cairns et al. (1997) and Hockema (2006). From Aslin

et al. (1996) and Xanthos (2004) it draws the idea of using utterance boundary distributions
to estimate word boundary distributions, although it goes beyond these works in offering a

principled probabilistic formulation. And in common with Fleck (2008), this work uses

Bayes’ theorem to bootstrap model parameters, although it is a leaner model, because it uses

only diphones and does not also attempt to learn words.

2.2.2. Connectionist models
A number of researchers have proposed connectionist models of word segmentation, gen-

erally using the Simple Recurrent Network first defined in Elman (1990). Work in this line

has illustrated a number of important theoretical points, such as learnability of segmentation

from distributional information (Aslin et al., 1996) and the additional leverage gained by

combining multiple cues (Christiansen et al., 1998). These results do not directly bear

on the nature of the representations or computations that humans bring to bear in word
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segmentation, in part because of the well-known difficulty of interpreting connection

weights and hidden unit activations (Elman, 1990)—typically it is unclear how the network

solved the problem.

2.2.3. Joint-optimization approaches
Some have formulated word segmentation and word learning as joint-optimization prob-

lems, in which related problems can be solved jointly by defining a single optimal solution

(e.g., Blanchard & Heinz, 2008; Brent & Cartwright, 1996; Goldwater, Griffiths, & Johnson,

2009). As shown in Goldwater (2006), extant approaches have a natural Bayesian formula-

tion in which ‘‘solutions’’ are segmentations of the input, and the optimum is defined as the

solution with maximum a posteriori probability, calculated from a prior on the segmenta-

tion-induced lexicon.

To illustrate the core ideas, consider two minimally different orthographic segmen-

tations5 of the sentence The dog chased the cat. Each segmentation induces a lexicon,

operationalized as a list of word types and associated frequencies (Table 1).

Crucially, the induced lexicons differ in the number of words and their frequencies. It is

these differences which cause joint-optimization models to prefer one solution over another.

For example, ‘‘minimum description length’’ prefers solution (1a) to (1b) because it uses

fewer words to explain the observed corpus (Brent & Cartwright, 1996). The ‘‘Chinese

Restaurant Process’’ prior of Goldwater (2006) would also prefer (1a) to (1b), because it

exhibits a Zipfian frequency distribution in which a few words occur repeatedly (in this case,

the) and many elements occur only rarely (Baayen, 2001).

While some joint-optimization models adopt an ideal-observer approach, in which the

goal is to draw inferences about the cognitive properties of the learner from the optimal

solution (e.g., Goldwater, 2006), other models claim to model human cognitive processes

(Brent, 1999; Blanchard & Heinz, 2008). The current generation of such models assumes a

one-to-one relationship between input segmentation and the learner’s lexicon, so positing a

word boundary automatically entails incrementing the frequency in the lexicon of the words

Table 1

Segmentation in joint-optimization models

Segmentation

(a) t h e # d o g # c h a s e d # t h e # c a t

(b) t h e d # o g # c h a s e d # t h e # c a t

Induced lexicon

(a) (b)

Word Frequency Word Frequency

the 2 thed 1

dog 1 og 1

chased 1 chased 1

cat 1 the 1

cat 1
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on either side. These models bear on the crucial assumption of this paper that word segmen-

tation is in part a prelexical process, because they instantiate the alternative hypothesis that

word segmentation, word recognition, and word learning are part of the same act and are

driven by word frequency distributions.

2.3. Motivation for a phonotactic approach

While the joint-optimization approach is highly illuminating, we argue that current-

generation models do not solve the segmentation task in the same way that infants do. Two

issues motivate a phonotactic approach: infants’ use of phonotactic generalizations in

segmentation and the complexity of word learning.

2.3.1. Phonotactic generalizations
A number of studies provide clear evidence that infants make use of phonotactic general-

izations (not just lexical knowledge) for word segmentation. As early as 7.5 months of age,

English-learning infants treat stressed syllables as word onsets, incorrectly segmenting

TARis as a word from the sequence ...guiTAR is... (Jusczyk, Houston, et al., 1999)—

a strategy that is highly appropriate for English owing to the fact that most English content

words are stress-initial (Cutler & Carter, 1987). By 8 months of age, infants exhibit some

familiarity with the segmental phonotactics of their language and use it for word segmenta-

tion (Friederici & Wessels, 1993; Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk,

1993; Jusczyk et al., 1994; Saffran et al., 1996).

Mattys and colleagues demonstrated that infants exploit diphone phonotactics specifically

for word segmentation. Recall that many diphones are contextually restricted, occurring

either within a word (e.g., [ba]), or across word boundaries (e.g., [pd]), but not both

(Hockema, 2006). Mattys, Jusczyk, Luce, and Morgan (1999) exposed infants to CVC.

CVC nonwords, finding that both stress and the medial C.C cluster affected infants’ prefer-

ences. Then, Mattys and Jusczyk (2001) showed that infants use this diphone cue to segment

novel words from an unfamiliar, phrase-medial context.

With the exception of Blanchard and Heinz (2008), current-generation joint-optimization

models do not predict segmentation on the basis of phonotactic generalizations (stress,

diphone occurrence). Blanchard and Heinz (2008) show that including a phonotactic model

yields significantly better performance; however, even this model exhibits word learning

from a single exposure, argued below to be cognitively implausible.

2.3.2. Word learning
In current-generation joint-optimization models, positing a word boundary entails incre-

menting the frequency of the wordforms on either side. If the wordforms are not already

present in the lexicon, they are added. This amounts to the assumption that words are always

learned from a single presentation. While learning a word from one exposure is clearly pos-

sible, even for adults it is not the norm; even after seven presentations adults fail to learn

about 20% of novel CVC words (Storkel, Armbruster, & Hogan, 2006), and a number of

additional studies suggest that segmenting a word is not sufficient to cause word learning in
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infants (Brent & Siskind, 2001; Davis, 2004; Graf Estes, Evans, Alibali, & Saffran, 2007;

Swingley, 2005).

Moreover, word learning in infants is apparently subject to many other factors besides

word segmentation. Lexical neighbors facilitate word learning in adults and 3- to

4-year-olds (Storkel et al., 2006; Storkel & Maekawa, 2005). Caregiver ⁄ infant joint atten-

tion also facilitates word learning (Tomasello, Mannle, Kruger, 1986; Tomasello & Farrar,

1986). A comprehensive theory of word learning should include these factors, but they are

apparently independent of word segmentation. Thus, while it is fair to ask how a word seg-

mentation model can facilitate word learning, segmentation models should not bear the full

explanatory burden for word learning. In short, segmentation makes word forms available to

be learned, but word learning is a separate process.

2.4. Segmentation in the cognitive architecture

More precisely, we argue that phonotactic segmentation is a prelexical process (whereas

word learning is necessarily a lexical process). For this claim to make sense, it is necessary

to accept that there is a distinction between prelexical and lexical processing. This section

reviews evidence for a two-stage (prelexical ⁄ lexical) account of speech processing (Luce &

Pisoni, 1998; McClelland & Elman, 1986). The general principle underlying this distinction

is that prelexical processing assigns structure to speech in some way that facilitates lexical

access.

The most convincing evidence for a two-stage processing account comes from dissocia-

ble effects of phonotactic probability and lexical neighborhood density across a wide range

of tasks. The phonotactic probability of a wordform is estimated compositionally from the

probabilities of its subparts (e.g., p([bat]) = p([b])p([a]|[b])p([t]|[a])). Lexical neighborhood

density refers to the number of phonological neighbors of a word (i.e., differing by one pho-

neme). Bailey and Hahn (2001) and Albright (2009) find unique effects of phonotactics and

lexical neighborhood in explaining word acceptability judgements. Luce and Large (2001)

found a facilitory effect of phonotactic probability, but an inhibitory effect of lexical neigh-

borhood density on reaction time in a same-different task. While lexical neighbors affect

categorization of phonetically ambiguous tokens (Ganong, 1980), experiments on perceptual

adaptation (Cutler, McQueen, Butterfield, & Norris, 2008) and phonetic categorization of

ambiguous stimuli (Massaro & Cohen, 1983; Moreton, 1997) show there are also non-

lexical (phonotactic) effects. Thorn and Frankish (2005) found a facilitory effect of

phonotactic probability on nonword recall when neighborhood density was controlled, and a

facilitory effect of neighborhood density when phonotactic probability is controlled. Storkel

et al. (2006) found a facilitory effect of neighborhood density and an inhibitory effect of

phonotactic probability on word learning in adults. These findings can be straightforwardly

explained by a theory with distinct sublexical and lexical levels of representation, but they

are harder to accommodate under a single-stage approach, such as joint-optimization models

appear to take.

That phonotactic word segmentation is attested for novel words in novel contexts (Mattys

& Jusczyk, 2001) provides prima facie evidence it must be a prelexical mechanism. By
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prelexical, we mean the segmentation mechanism has no access to specific lexical forms;

instead, it feeds a downstream lexical processor (Fig. 1).

One implication is that segmentation is a distinct cognitive process from word learning.

As a corollary, we attribute to the downstream lexical processor factors in word learning

such as lexical neighborhood density and caregiver ⁄ infant joint attention, which exceed the

scope of this paper.

3. DiBS

We now present a phonotactic model that learns diphone-based segmentation (DiBS), as

described in Cairns et al. (1997) and Hockema (2006). We begin by reviewing our assump-

tions about the task and what infants bring to it. We follow other computational studies in

assuming that speech input is represented as a sequence of phones and the listener’s goal is
to recover phrase-medial word boundaries. In DiBS, the listener recovers word boundaries

based on the identity of the surrounding diphone. The core of the model: Given a sequence

[xy], estimates the probability that a word boundary falls in the middle p(# | xy). In the fol-

lowing section, we outline our assumptions as to what is observable to infants, and the

assumptions they must make to estimate model probabilities from these observables.

3.1. Assumptions

We assume the infant knows or can observe the following:

• phonetic categories;

• phonological independence across word boundaries;

• phrase-edge distributions;

• the context-free diphone distribution;

• the context-free probability of a phrase-medial word boundary;

• the lexical frequency distribution.

These assumptions are justified as follows.

the 145000
kitty 20000
went 122500
to 89000
park 8000

prosodic/
phonetic
encoding

lexical 
access

hIzmamwalks
InT park

his mom 
walks in
the park

Fig. 1. Cognitive architecture of speech perception.
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3.1.1. Phonetic categories
Infant speech perception begins to exhibit hallmark effects of phonetic categorization by

9 months of age.

Phonetic categorization in adults is evident from high sensitivity to meaningful acous-

tic ⁄ phonetic variation, and low sensitivity to meaningless acoustic ⁄ phonetic variation.

For example, the speech sounds [l] and [r] represent distinct sound categories in English,

as evident by minimal pairs such as leak ⁄ reek and lay ⁄ ray; the same sounds do not sig-

nal a lexical contrast in Japanese, because they represent alternate pronunciations of a

single sound category. Thus, Japanese listeners exhibit poor discrimination of the [l] ⁄ [r]
contrast, whereas English listeners exhibit excellent discrimination (Miyawaki et al.,

1975). Adult speech perception is exquisitely tuned to the phonological system of the

native language.

The effect of language exposure on phonetic categorization generally becomes apparent

between 7 and 11 months of age.6 Prior to 6 or 7 months of age, infants exhibit similar dis-

crimination regardless of language background (Kuhl et al., 2006; Trehub, 1976; Tsao, Liu,

& Kuhl, 2006; Werker & Tees, 1984). Between 7 and 11 months, discrimination of mean-

ingless contrasts decreases (Werker & Tees, 1984), and discrimination of meaningful con-

trasts improves (Kuhl et al., 2006; Tsao et al., 2006). Thus, infants appear to acquire native

language phonetic categories around 9 months of age.

3.1.2. Phonological independence
Phonological independence across word boundaries means that phonological material

at the end of one word exhibits no statistical dependencies with phonological material at

the beginning of the next word. While this assumption is not strictly true, it is reas-

onable to make in the initial stages of acquisition, in the absence of contradictory

evidence.

3.1.3. Phrase-edge distributions
We assume that infants know the frequency distribution of phones in the phrase-initial

and phrase-final position. This assumption is motivated by the fact that infants are sensitive

to phrase boundaries in phonological and syntactic parsing (Christophe, Gout, Peperkamp,

& Morgan, 2003; Soderstrom, Kemler-Nelson, & Jusczyk, 2005), and the generalization

that they are sensitive to the relative frequency of phonotactic sequences (Jusczyk et al.,

1994). Because this study is limited by the coding conventions of the corpora employed,

only utterance edges are treated as exemplifying phrase boundaries. The availability of

such boundaries to the infant is indisputable. Indeed the works just cited suggest that

weaker boundaries, such as utterance-medial intonation phrase boundaries, may also be

available to the infant due to pausing and other suprasegmental cues. Including these

boundaries would increase the success of the model by increasing the effective sample size

for training, and by explicitly providing some boundaries in the test set that our model must

estimate (e.g., those word boundaries that coincide with intonational phrase boundaries).

Thus, using utterance edge statistics to estimate phrase edge statistics is a very conservative

choice.
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3.1.4. Context-free diphone distribution
We assume that infants track the context-free distribution of diphones in their input.

This assumption, which is shared in some form by all existing models of phonotactic word

segmentation, is motivated by evidence that infants attend to local statistical relationships in

their input (Mattys & Jusczyk, 2001; Saffran et al., 1996).

3.1.5. Context-free probability of a phrase-medial word boundary
The context-free probability of a word boundary is a free parameter of the model.

Because this value is determined by average word length and words ⁄ utterance, we assume

infants can obtain a reasonable estimate of it. For example, average word length is lower-

bounded by the cross-linguistic generalization that content words are minimally bimoraic, a

prosodic requirement typically instantiated as CVC or CVCV. Even allowing for the fact

that some of the function words are shorter, this implies that the overall probability of a

word boundary must be less than about 1 ⁄ 3. Because the assumption that infants can

estimate this parameter with adequate reliability is somewhat speculative, Simulation 2

investigates the model’s robustness to variation in this parameter.

3.1.6. Lexical frequency distribution
Finally, we assume infants know the relative frequency of the word forms they have

learned. This assumption is motivated by the massive body of evidence documenting fre-

quency effects in adults (for a review see Jurafsky, 2003) and findings of frequency sensitiv-

ity in closely related levels of representation in infants (Anderson et al., 2003; Jusczyk

et al., 1994; Mintz, 2003; Peterson-Hicks, 2006).

3.2. Baseline-DiBS

Diphone-Based Segmentation models necessarily exhibit imperfect segmentation. For

every token of a diphone type they make the same decision (boundary ⁄ no boundary),

whereas at least some diphones occur both word-internally and across word boundaries

(e.g., [rn]: Ernie, garner but bar none, more numbers). Since a DiBS model must make

the same decision in both cases, it will either make errors on the word-internal items, or

on the word-spanning items. We define the baseline model as the statistically optimal one,

that is, making the smallest possible number of errors—exactly the model described in

Cairns et al. (1997) and Hockema (2006). We use this statistically optimal model as the

baseline because it establishes the highest level of segmentation performance that can be
achieved by any DiBS model. Thus, we refer to the baseline model’s segmentation as

‘‘ceiling,’’ meaning not perfect segmentation, but the best segmentation achievable by

DiBS.

3.3. Learning

The core goal of the learner is to derive an estimate of the DiBS statistics p(# | xy) from

observable information. Recall that p(# | xy) represents the probability of the presence of a
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word boundary in the middle of a sequence, given that the constituent phones of the

sequence were [x] and [y].

3.3.1. Bayes’ rule
The first step is to apply Bayes’ rule, rewriting this conditional probability in terms of the

reverse conditional probability:

pð#jxyÞ ¼ pðxyj#Þ � pð#Þ=pðxyÞ ð1Þ

where p(xy) is the context-free probability of the diphone [xy] and p(#) is the context-free

probability of a word boundary. Note that these two terms are known by assumption, so the

infant now need only worry about estimating p(xy | #).

3.3.2. Phonological independence
The next step is to apply the assumption of phonological independence so as to factor

p(xy | #). This represents the joint probability of a word-final [x] followed by a word-initial

[y]. Under the assumption of phonological independence, the probability of a word-initial

[y] does not depend on the word-final phone of the preceding word. Thus, the joint probabil-

ity is simply the product of the each event’s probability:

pðxyj#Þ � pðx #Þ � pð#! yÞ ð2Þ

where p(x ‹ #) represents the probability of observing a word-final [x], p(# fi y)

represents the probability of observing a word-initial [y], and � indicates approximation.

The problem of estimating p(xy | #) has been reduced to the problem of estimating the

distribution of phones at word edges.

3.3.3. Phrasal-DiBS
The word-edge distribution itself is not observable to infants until after they have begun

to solve the segmentation problem. However, infants can get a first-pass approximation by

capitalizing on the fact that phrase boundaries are always word boundaries (Aslin et al.,

1996), using the phrase-edge distribution as a proxy:

pðx #Þ � pðx %Þ
pð# ! yÞ � pð%! yÞ

ð3Þ

where p(x ‹ %) and p(% fi y) represent the probability of observing [x] phrase-finally

and [y] phrase-initially, respectively. The entire model can be written:

pphrasalð#jxyÞ ¼ pðx %Þ � pð#Þ � pð%! yÞ=pðxyÞ ð4Þ

This first-pass approach is suitable for the very earliest stages of segmentation, when the

infant must bootstrap from almost nothing. Recall that utterance boundaries are used here as

a conservative proxy for phrase boundaries, due to limitations imposed by the transcripts in

the corpora.
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3.3.4. Lexical-DiBS
After infants have begun to acquire a lexicon, they have a much better source of data to

estimate the distribution of phones at word-edges—namely from the words they know. As

discussed in the introduction, by the time infants evince phonotactic segmentation in labora-

tory studies (about 9 months), they are reported to know an average of 40 words, including

familiar names (Dale & Fenson, 1996) and other words which presumably co-occur with

them (Bortfeld et al., 2005). However these words are learned, once they are learned, they

can be leveraged for phonotactic word segmentation. By estimating edge statistics from

known words, infants may avoid errors caused in Phrasal-DiBS by distributional atypicali-

ties at phrase edges.7

To use this data, the infant must estimate the probability with which each phone ends ⁄
begins a word in running speech. The most accurate method is to use the token probability,

that is, weighting word-initial and -final phones according to lexical frequency. (For exam-

ple, the sound [ 0o] has a low type frequency but is highly frequent in running speech, because

it occurs in a small number of highly frequent words such as the, this and that. Infants need

to estimate the token probability in order to make use of this important segmentation cue.)

These probabilities can be estimated as follows:

pKðx #Þ � ðRx2Kðx ¼¼ ½. . . x�Þ � fðxÞÞ=ðRx2KfðxÞÞ
pKð# yÞ � ðRx2Kðx ¼¼ ½y . . .�Þ � fðxÞÞ=ðRx2KfðxÞÞ

ð5Þ

where K is the listener’s lexicon. In these equations, the numerator represents the expected

token frequency of words that end ⁄ begin with [x] ⁄ [y] and the denominator represents the

total observed token frequency. The notation (x==[...x]) is an indicator variable whose

value is 1 if word x ends in [x], and 0 otherwise; (x==[y...]) similarly indicates whether x
begins with [y]. The full model is given below:

plexicalð#jxyÞ ¼ pKðx #Þ � pð#Þ � pKðy! #Þ=pðxyÞ ð6Þ

The following section discusses Lexical-DiBS in the context of learning theory.

3.3.5. Gradient of supervision
Language acquisition is generally acknowledged to be ‘‘unsupervised.’’ In the context of

word segmentation, this means that the language input does not include the hidden structure

(phrase-medial word boundaries) that the model is supposed to identify at test. While the

distinction between unsupervised and supervised models may seem clear, it is not always

clear how to apply this distinction to ‘‘bootstrapping’’ models, in which some preexisting

knowledge is leveraged to solve a different problem. Baseline-DiBS is fully supervised.

Phrasal-DiBS is unsupervised because it leverages information that is obviously available in

the input. Lexical-DiBS lies somewhere in between.

Lexical-DiBS estimates its parameters from the infant’s developing lexicon. It is not

unsupervised, because it depends on information (a set of words in the lexicon) whose

acquisition has not been modeled here. It is not fully supervised, because the phonological
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sequences used in training do not have the word boundaries indicated. In Lexical-DiBS, a

number of diphones are identified as boundary-spanning through a nontrivial inductive leap,

assuming phonological independence across word boundaries, and estimating word edge

distributions from the aggregate statistical properties of the lexicon.

Semi-supervised learning is of interest as a model of human acquisition because

infants clearly know some words and learn more during the developmental period mod-

eled here (Bortfeld et al., 2005; Dale & Fenson, 1996). A small early lexicon might be

acquired by learning words that have occurred in isolation, through successful applica-

tion of the segmentation algorithm presented here, or through some other mechanism we

have not modeled, such as noticing repeatedly recurring phoneme sequences. Although a

full treatment of these factors exceeds the scope of this paper, Lexical-DiBS will reveal

how segmentation can improve if generalizations about the form of words in the lexicon
are fed back to the word segmentation task as soon as such generalizations become

possible.

3.3.6. Summary
The core DiBS statistics can be estimated from phrase-edge distributions, and ⁄ or word-

edge distributions in the listener’s lexicon. This section has articulated a learning model

for DiBS using Bayes’ theorem and the assumption of phonological independence across

word boundaries. Two instantiations were proposed: Phrasal-DiBS estimates model param-

eters from phrase-edge distributions, and Lexical-DiBS estimates them from word-edge

distributions. In Simulation 1, the developmental trajectory of these learning models is

assessed.

4. Simulation 1

The goal of Simulation 1 is to measure performance of the learning models against the

supervised baseline model. Thus, the baseline model should replicate the main findings of

Cairns et al. (1997). However, because the focus of the present study is learnability, the

methodology differs. The training data are divided into units that represent a ‘‘day’’ worth

of caregiver input. In accord with contemporary corpus linguistic standards, the model is

only tested on unseen data, never on data it has already been trained on. The training and

testing data for Simulation 1 are drawn from the CHILDES database (MacWhinney, 2000)

of spontaneous interactions between children and caregivers.

4.1. Input

4.1.1. Corpus
The CHILDES database consists of transcriptions of spontaneous interactions between

children and caregivers. It contains many subcorpora, collected by a variety of researchers

over the past several decades. Ecological validity was the primary motivation for selecting

this corpus—it was important to obtain input close to what infants actually hear.
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We drew samples from the entire English portion of the database, as very few of the

CHILDES corpora target children under 1;5. The motivation for this was to get more data:

Acquisition of word segmentation apparently takes several months, so a large data set is

required to accurately model the amount and extent of language input that infants hear. Our

CHILDES sample contains 1.5 million words; the Bernstein-Ratner corpus used in several

other studies of word segmentation acquisition (e.g., Brent & Cartwright, 1996; Goldwater,

2006) contains about 33,000 words, representing about a day of input to a typical child. By

sampling from the entire CHILDES corpus, we sacrifice some ecological validity

(by including child-directed rather than only infant-directed speech), but we obtain a larger

sample more representative of an infant’s total language exposure.

4.1.2. Sample
For each target child in the database, a derived corpus was assembled of speech input to

the child. Each derived file contained all utterances in the original file except those spoken

by the child herself. A sample of ‘‘days’’ was drawn from this derived corpus, as follows.

Based on van de Weijer’s (1998) diary study as well as an ecological study of adult pro-

duction (Mehl, Vazire, Ramirez-Esparza, Slatcher, & Pennebaker, 2007), a ‘‘day’’ of input

was defined as 25,000 words. (This value is used here as a standardized unit for modeling

purposes; it is intended to approximate what a typical English-learning infant hears in a

day, but it is not intended as a claim that all infants hear exactly this amount of input.) Files

were selected at random from the derived corpus and concatenated to obtain 60 ‘‘days’’ of

input, each containing approximately 25,000 words. Properties of the corpus and training

and test sets for Simulation 1 are given in Table 2, along with comparable figures for Sim-

ulation 3.

4.1.3. Phonetic mapping
A phonetic representation was created by mapping spaces to word boundaries and map-

ping each orthographic word to a phonetic pronunciation using the CELEX pronouncing

dictionary (Baayen, Piepenbrock, & Gulikers, 1995) with the graphemic DISC transcription

system. Words not listed in the dictionary were simply omitted from the phonetic transcrip-

tion, for example, ‘‘You want Baba?’’ would be transcribed as [ju wQnt], omitting the

unrecognized word ‘‘Baba.’’ (About 8.75% of tokens were omitted, including untranscribed

tokens ‘‘xxx,’’ nonspeech vocalizations like ‘‘um’’ and ‘‘hm,’’ nonstandardly transcribed

Table 2

Corpus properties

Simulation Type Corpus Words Phrases Phones p(#)

1 Train – 750,111 170,709 2,226,561 .2818

1 Test – 750,125 171,232 2,224,873 .2819

3 Train Canonical 150,030 25,914 479,741 .2735

3 Train Reduced 149,998 25,907 442,135 .2981

3 Test Canonical 16,058 2,490 51,555 .2765

3 Test Reduced 16,051 2,488 47,516 .3012
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speech routines like ‘‘thank+you’’ and ‘‘all+right,’’ unlisted proper names like ‘‘Ross,’’

and phonetically spelled variants like ‘‘goin’’ and ‘‘doin.’’) Note that the CHILDES stan-

dard is to put each sequence of connected speech on its own line, without punctuation or

phrase boundaries; thus, an individual ‘‘phrase’’ corresponds to something more like an

utterance in this corpus.

4.1.4. Training and test sets
The training set consisted of the first 30 ‘‘days’’ of input. This length of time is used

because the acquisition literature suggests the onset of phonotactic word segmentation

occurs shortly after the acquisition of language-specific phonetic categories (cf. Werker &

Tees, 1984; Tsao et al., 2006; Kuhl et al., 2006 with Jusczyk, Hohne, et al., 1999; Jusczyk,

Houston, et al., 1999; Mattys & Jusczyk, 2001). Thus, a learning model based on categorical

phonotactics must be trainable input on the scale of weeks. The test set consisted of the

remaining 30 ‘‘days.’’

4.2. Models

4.2.1. Phrasal-DiBS
The Phrasal-DiBS model parameters were estimated according to the phrase-edge distri-

butions in the learner’s input.

4.2.2. Lexical-DiBS
Lexical-DiBS is based on the learner’s lexical knowledge rather than the raw input. In

order to properly compare Lexical-DiBS with Phrasal-DiBS, it is necessary to know which

words an infant will learn, given what the infant has heard. Unfortunately, no sufficiently

predictive theory of word learning exists. As a crude proxy, we use a frequency threshold

model: Wordforms are added to the lexicon incrementally as soon as they have occurred n
times in the input.

Three frequency thresholds were used: 10, 100, and 1,000. The threshold 10 is used as a

lower bound, because it almost certainly overestimates an infant’s lexicon size (even

14-month-olds do not learn every word they hear 10 times, e.g., Booth & Waxman, 2003).

Similarly, the threshold of 1,000 is used as an upper bound, because only a few words like

dada and mama are actually uttered more than 1,000 times in a typical month of infant

input, and all 9-month-olds learn these high-frequency words (Dale & Fenson, 1996). The

threshold of 100 is a reasonable compromise between these upper and lower bounds. (NB:

Frequency in the learner’s lexicon was calculated by subtracting the threshold from the true

input frequency.)

4.2.3. Baseline-DiBS
The Baseline-DiBS model parameters were estimated according to the within-word and

across-word diphone counts in the training corpus.

In all cases, if the model encountered a previously unseen diphone in the test set, for

example, one not expected given the training data, the diphone was treated as signalling a
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word boundary. In the context of our analysis, this will cause an oversegmentation error

whenever the diphone was actually word-internal.

4.3. Method

Each model was exposed cumulatively to the ‘‘days’’ of the training set. After each

‘‘day’’ of training, the model was tested on the entire test set.

4.3.1. Hard decisions: Maximum likelihood decision threshold
Formally speaking, a DiBS model estimates the probability of a word boundary given

the surrounding diphone, symbolized p(# | xy). Being probabilistic, DiBS does not assign

hard decisions as to the presence or absence of a word boundary, but rather a probability.

However, the ‘‘correct answer’’ is not probabilistic: The speaker intended a particular

sequence of words, and the word boundaries are underlyingly there, or not. Thus, for evalu-

ation purposes, the probabilistic output of DiBS models is mapped to hard decisions using

the maximum likelihood decision threshold h = 0.5: If p(# | xy) > .5, a word boundary is

identified, otherwise not. (The value 0.5 is called the maximum likelihood threshold

because it results in the minimum number of total errors; that is, it is the threshold with

maximum likelihood of yielding a correct decision.) This process is repeated for every di-

phone in a phrase, as exemplified in Fig. 2.

By scoring in this way, we do not intend to claim that phonotactic segmentation in

humans consists of hard decisions, as probabilities are a rich source of information which

are likely to be useful in lexical access; hard decisions are used here for simple comparison

with other studies.

4.3.2. Segmentation measures
For plotting, the dependent measure used is errors ⁄ word, distinguishing both underseg-

mentation and oversegmentation errors. For example, an oversegmentation error rate of

1 ⁄ 10 means that the listener will incorrectly split up 1 word out of every 10 tokens he or she

hears. These measures strike us as highly informative because they indicate the error rate

relative to the perceptual object the listener is attempting to identify: the word. In contrast,

hearing that boundary precision is 89% does not make it clear how many word tokens the

listener will oversegment.

To facilitate comparison with other published studies, we also report boundary precision
and recall, token precision and recall, and lexical precision and recall. Boundary precision

   orthographic    top      |     dog ta p(# | [ta]) = .01 < .5: no boundary
  /------\     /------\  ap p(# | [ap]) = .02 < .5: no boundary

   phonetic t   a   p   d  a   g   pd p(# | [pd]) = .99 > .5:  boundary!
 \_/ \_/  \_/ \_/ \_/    da p(# | [da]) = .01 < .5: no boundary

   p(# | xy)  .01 .02 .99 .01 .01  ag p(# | [ag]) = .01 < .5: no boundary
   hard decision t a   p | d   a   g

Fig. 2. Segmentation in DiBS.
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is the probability of a word boundary given that the model posited one; boundary recall is

the probability that the model posits a word boundary given that one occurred. Token preci-

sion is the probability that a form is a word token given that the model segmented it (posited

boundaries on both sides); token recall is the probability that the model segmented a form,

given that it occurred. Lexical precision and recall are analogous, except that wordform

types are counted rather than tokens.

Note that because DiBS is intended as a prelexical model, its task is not to identify words

per se, but to presegment the speech stream in whatever manner offers maximal support to

the downstream lexical process. Since DiBS is intended to get the learner ‘‘off the ground’’

in feeding word learning, it is eminently appropriate to assess it in terms of token precision ⁄
recall. However, as repeatedly noted above, DiBS is not intended to account for word learn-

ing on its own, so it is not appropriate to compare its lexical precision ⁄ recall against more

complex models that include a lexical module. Type recall is not comparable for another

reason: The test set here is about 200 times larger than in comparison studies, so there are a

significantly greater number of types.

4.4. Results

Fig. 3 illustrates the undersegmentation and oversegmentation error rates as a function of

language exposure.

To facilitate discussion and comparison, the other measures of performance from this

Simulation and Simulation 3 are reported in Table 3, as well as reported values from other

published studies.

In addition, a small sample of the output (first line of the last test file) is given below in

Table 4.

4.4.1. Confidence intervals
Because the undersegmentation and oversegmentation error rates represent probabilities,

confidence intervals can be determined by assuming they are Bernoulli-distributed. The

half-width of the 95% confidence interval for a Bernoulli distribution is no larger than

.98 ⁄ �n, where n is the sample size (Lohr, 1999). As the test set contained 750,111 words,

the error rates are accurate to ±0.1%.

4.5. Discussion

4.5.1. Rapid learning
The phrasal and baseline models reach near-ceiling performance within the first

‘‘day’’ of training, as evident from the nearly flat trajectory of these models in Fig. 3.

That is, while these models do exhibit modest changes in error rates, these changes are

small relative to the overall error rate. Only the lexical model continues to exhibit sub-

stantial gains with increasing language exposure, and the trajectory of the lexical-10

model suggests that these gains will asymptote eventually as well. For the phrasal and

baseline models, most of what can be learned from the training data is learned within

136 R. Daland, J. B. Pierrehumbert ⁄ Cognitive Science 35 (2011)



the first day for these models; for the lexical model, much of what can be learned is

learned within a month.

The rapidity with which the models learn is especially important because it demonstrates

that diphone-based segmentation is learnable not only in principle, but also in practice. The

amount of language exposure required is well within a reasonable timescale of what infants

actually hear.
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Fig. 3. Undersegmentation and oversegmentation error rates of baseline and learning models. The x-axes repre-

sent the number of ‘‘days’’ of language exposure (approximately 25,000 words ⁄ ‘‘day’’). The y-axes represents

the probability per word of making an undersegmentation error (dashed ⁄ empty) or oversegmentation error (hea-

vy ⁄ filled). Panels indicate the baseline model (top), phrasal model (middle), and lexical model (bottom). In the

lexical panel, the ‘‘upper bound’’ (frequency threshold of 10) is shown with squares; the ‘‘lower bound’’

(frequency threshold of 1,000) is shown with triangles.
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These results may help to explain a puzzle of the acquisition literature: why the onset of

phonotactic segmentation coincides with or shortly follows the acquisition of phonetic cate-

gories. The DiBS model crucially assumes that infants possess a categorical representation

of speech; however, as long as such a categorical representation is available, only a minus-

cule amount of language exposure is required to estimate the relevant phonotactic segmenta-

tion statistics. Thus, DiBS predicts that phonotactic segmentation should become evident

shortly after infants begin to exhibit language-specific phonetic categorization—precisely

what occurs. While rapid trainability is presumably not specific to DiBS, to our knowledge

Table 3

Segmentation performance of DiBS and other models

Paper Corpus Tokens BP BR BF TP TR TF LP LR LF Notes

Ba BR87 33k – – – 67.2 68.2 67.7 – – –

Br BR87 33k 80.3 84.3 82.3 67 69.4 68.2 53.6 51.3 52.4 rep ⁄ GGJ

F BR87 33k 94.6 73.7 82.9 – – 70.7 – – 36.6

G BR87 33k 89.2 82.7 85.8 – – 72.5 – – 56.2 rep ⁄ F
GGJ BR87 33k 90.3 80.8 85.2 75.2 69.6 72.3 63.5 55.2 59.1 bigram

GGJ BR87 33k 92.4 62.2 74.3 61.9 47.6 53.8 57 57.5 57.2 p(#) = .05, a = 20

JG BR87 33k – – – – – 88 – – – see JG

V BR87 33k 81.7 82.5 82.1 68.1 68.6 68.3 54.5 57 55.7 bigram, rep ⁄ GGJ

V BR87 33k 80.6 84.8 82.6 67.7 70.2 68.9 52.9 51.3 52 unigram, rep ⁄ GGJ

S Korman 42k – – – – – – 75 – –

D CHILD 750k 88.3 82.1 85.1 73.7 69.6 71.6 14.6 53.6 23.0 base

D CHILD 750k 87.4 48.9 62.7 53.4 35.2 42.5 5.6 50.8 10.1 phrasal

D CHILD 750k 82.8 39.0 53.1 44.8 26.5 33.3 4.5 47.3 8.2 lexical-100

F Buck 32k 89.7 82.2 85.8 – – 72.3 – – 37.4

F Buck 32k 71 64.1 67.4 – – 44.1 – – 28.6 reduced

G Buck 32k 74.6 94.8 83.5 – – 68.1 – – 26.7 rep ⁄ F
G Buck 32k 49.6 95 65.1 – – 35.4 – – 12.8 reduced, rep ⁄ F
D Buck 150k 87.4 76.7 81.7 66.4 59.6 62.8 30.7 53.7 39.1 base

D Buck 150k 82.5 68.6 74.9 56.5 48.4 52.2 34.7 45.8 39.5 base, reduced

D Buck 150k 80.5 47.6 59.8 44.1 28.8 34.9 16.5 37.2 22.8 phrasal

D Buck 150k 76.0 44.1 55.8 39.1 25.2 30.7 21.1 29.4 24.6 phrasal, reduced

F Switch 34k 90 75.5 82.1 – – 66.3 – – 33.7 orthographic

F Switch 34k 91.3 80.5 85.5 – – 72 – – 37.4

G Switch 34k 73.9 93.5 82.6 – – 65.8 – – 27.8 rep ⁄ F
G Switch 34k 73.1 92.4 81.6 – – 63.6 – – 28.4 ortho, rep ⁄ F
F Arab 30k 88.1 68.5 77.1 – – 56.6 – – 40.4

G Arab 30k 47.5 97.4 63.8 – – 32.6 – – 9.5 rep ⁄ F
F Spanish 37k 89.3 48.5 62.9 – – 38.7 – – 16.6

G Spanish 37k 69.2 92.8 79.3 – – 57.9 – – 17 rep ⁄ F
S Weijer 25k – – – – – – 75 – –

Note. Column header: B ⁄ T ⁄ L indicates boundary ⁄ token ⁄ lexical; P ⁄ R ⁄ F indicates precision ⁄ recall ⁄ F-score
(e.g., BR = boundary recall).

Paper key: Ba = Batchelder (2002), Br = Brent (1999), D = DiBS, F = Fleck (2008), G = Goldwater (2006),

GGJ = Goldwater et al. (2009), JG = Johnson and Goldwater (2009), S = Swingley (2005), V = Venkataraman

(2001); ‘‘rep ⁄ X’’ indicates the results are reported in paper X.
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we are the first to draw attention to this explanation of why phonotactic segmentation

emerges shortly after phonetic categorization.

4.5.2. Undersegmentation
While the baseline and learning models varied considerably in the undersegmentation

error rate, they consistently exhibited a low oversegmentation error rate from the beginning

of training. In every case, the oversegmentation error rate was below 10%, meaning less

than 1 oversegmentation error per 10 words. In fact, the learning models make fewer over-

segmentation errors than the baseline model (the baseline model exhibits overall higher

accuracy because the undersegmentation error rate is much lower).

This overall pattern, in which some undersegmentation errors are made, but very few

oversegmentation errors are made, can be characterized as an overall pattern of under-

segmentation. These results show that undersegmentation is the predicted perceptual

outcome for all DiBS models considered. We will return to this point in the general

discussion.

In summary, Simulation 1 demonstrated three key findings. First, parameters of the

Cairns et al. (1997) diphone model can be estimated to some accuracy from information that

is plausibly attributable to infants. Second, only a small amount of language exposure is

required to make these estimates. Phrasal-DiBS reaches its asymptote with less input than

an infant might receive in a typical day; Lexical-DiBS continues to improve with increasing

language exposure. Its asymptotic performance is similar to Phrasal-DiBS, indicating that a

small lexicon does not supply greatly more information than was already present at utter-

ance boundaries. However, the lex-1000 model already achieves better performance than

Phrasal-DiBS within a month, an indication that exploiting the phone statistics of high-

frequency words can improve segmentation performance. Finally, all models exhibit under-

segmentation, characterized by an error rate of less than 1 oversegmentation error per 10

words.

Of the assumptions required for the learning model to work, the one which is perhaps the

most speculative is the assumption that infants know or can learn the context-free probabil-

ity of a word boundary p(#). Thus, it is natural to wonder how sensitive the model is to this

assumption. In Simulation 2, we investigate the consequences of an error in the infant’s esti-

mate of p(#) by varying this parameter over a reasonable range and assessing the model’s

performance. The model would not be robust if even small errors in the estimate of p(#)

cause dramatic qualitative shifts in the predicted segmentation pattern. Conversely, the

Table 4

Sample output of learning models

ortho ‘‘If you want to eat something give you a cookie but take these’’

correct If ju wQnt tu it sVmTIN gIv ju 1 kUkI bVt t1k D5z

base If ju wQnt tu itsVmTINgIv ju 1kUkI bVt t1k D5z

phrasal If ju wQnttuitsVmTINgIv ju 1kUkIbVtt1k D5z

lex-10 IfjuwQnt tuitsVmTIN gIvju1kUkI bVt t1kD5z

Note. Spaces indicate true ⁄ posited word boundaries.
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model is robust if small errors in the estimate of p(#) cause at most small changes in the seg-

mentation pattern.

The ‘‘reasonable’’ range for p(#) that infants might consider is constrained by the relation

between the phrase-medial word boundary probability and average word length. For exam-

ple, if phrases contain an average of four words, and words contain an average of four

phones, there will be three phrase-medial word boundaries per 16 phones. Average word

length has natural upper and lower bounds, which correspondingly bound p(#). As discussed

above, consideration of the Minimal Prosodic Word (McCarthy & Prince, 1986 ⁄ 1996) gen-

erates an upper bound on p(#) of �.33. A reasonable upper bound is the longest word that

infants are observed to learn (perhaps owing to memory ⁄ coding limitations); for English,

this is 6–8 phones (8: breakfast, 7: toothbrush, telephone, 6: grandma, peekaboo, stroller,

cheerios, outside; Dale & Fenson, 1996), so p(#) > 1 ⁄ 8 � .125. Thus, infants might reason-

ably consider the range for the context-free probability of a word boundary to be between

1 ⁄ 8 and 1 ⁄ 3. Simulation 2 assesses DiBS’ robustness to estimation errors for p(#).

5. Simulation 2

5.1. Input

The stimuli consisted of the training and test sets of Simulation 1.

5.2. Models

The Phrasal-DiBS and Lexical-DiBS models of Simulation 1 were used.

5.3. Method

Instead of varying language exposure, the free parameter p(#) was varied in equal steps

of .02 from .16 to .40, corresponding to a range of average word lengths from about 2.5 to

about 6 phones. Results are reported from the final ‘‘day,’’ that is, after exposure to the

entire training set.

5.4. Results

The results are shown in Fig. 4, which plots under- and oversegmentation error rates as a

function of p(#). In addition, a sensitivity analysis is presented in Table 5.

Table 5 reports the undersegmentation and oversegmentation error rates with the correct

value for p(#) (columns UE and OE), and beside these columns it reports the range of values

for p(#) that will result in a 5% absolute change to the undersegmentation ⁄ oversegmentation

error rate. For example, the entries in the far right column indicate that even when the

learner estimates p(#) to be as low ⁄ high as .16 ⁄ .4, the absolute undersegmentation ⁄ overseg-

mentation rate does not decrease ⁄ increase by more than 5%.
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5.5. Discussion

The results of Simulation 2 suggests the learning model is robust to estimation errors.

The oversegmentation error rate is particularly robust—varying p(#) yields significant

changes in the undersegmentation rate, but over a wide range, the oversegmentation rate

stays small (near or under 10%).

The phonetic corpus in Simulations 1 and 2 used a canonical, invariant pronunciation

for each word. Since pronunciation variation is a general fact of speech (Johnson, 2004;
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Fig. 4. Undersegmentation and oversegmentation error rates as a function of the probability of a phrase-medial

word boundary. The x-axes represent p(#) and the y-axes represent undersegmentation and oversegmentation

error rates, as in Fig. 3.
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Mitterer, Yoneyama, & Ernestus, 2008), it is natural to wonder about the ecological validity

of these results. The goal of Simulation 3 is to address this question by testing DiBS on a

corpus of spontaneous adult speech containing natural pronunciation variation.

The Buckeye corpus (Pitt et al., 2007) consists of interviews with lifetime residents of

Columbus, Ohio. The corpus is invaluable for the present purposes because it contains two

transcriptions—a ‘‘canonical’’ transcript with the citation pronunciation of each word, and

a ‘‘reduced’’ transcript representing much of the pronunciation variation present in the talk-

ers’ speech. Before discussing the details of the experiment, it is worth considering what

effects pronunciation variation may have on word segmentation.

While conversational speech is likely to be overall more challenging, it is conceivable

that certain reduction processes may actually facilitate segmentation. For example, conver-

sational speech is likely to cause more place assimilation word-internally than across word

boundaries p(Stanford fi Sta[m]ford) > p(can ford fi ca[m] ford). This should

strengthen the place cue: Heterorganic (different-place) clusters become more reliably asso-

ciated with a word boundary, and homorganic clusters with no word boundary. Indeed, one

appeal of phonotactic segmentation is that it might ameliorate the vulnerability of word

recognition processes to pronunciation variability. Conversely, reduction processes might

destroy segmentation cues, for example, by deleting phones in the crucial boundary-

indicating contexts.

It is difficult to predict the impact of these differences on word segmentation from verbal

argumentation alone. The goal of Simulation 3 is to determine the models’ predictions for

conversational speech by running it on the Buckeye corpus.

6. Simulation 3: Robustness to conversational reduction

6.1. Input

6.1.1. Corpus
The Buckeye corpus (Pitt et al., 2007) contains high-quality recordings from 40 age- and

gender-stratified lifelong residents of Columbus, OH. Speech was collected in an interview

format; speakers were asked their opinions about a variety of local issues such as sports and

politics. The speakers were recorded and their speech was orthographically transcribed. An

automatic speech recognition program was used to generate forced alignments between the

orthographic transcript and a phonetic transcript using canonical dictionary pronunciations.

Table 5

Sensitivity analysis of Simulation 2 results

Model UE )5% < DUE < +5% OE )5% < DOE < +5%

phrasal 39.49 .22 < p(#) < .34 5.41 .16 £ p(#) £ .40

lex-10 50.25 .20 < p(#) £ .40 8.47 .16 £ p(#) £ .40

lex-100 47.05 .18 < p(#) £ .40 6.24 .16 £ p(#) £ .40

lex-1000 37.64 .20 < p(#) < .34 4.4 .16 £ p(#) £ .40
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The research team inspected and made adjustments to this ‘‘canonical’’ transcript so as to

represent conversational reduction processes, including foot-medial flapping, vowel nasali-

zation, and segment deletion. Thus, the Buckeye corpus includes two alternate phonetic

transcriptions of the same speech, a ‘‘canonical’’ transcript, and the ‘‘reduced’’ transcript.

6.1.2. Division into ‘‘days’’
Each transcript was divided into ‘‘days’’ consisting of 25,000 words, as in Simulation 1.

Owing to the relatively small size of the corpus, there was only enough transcribed material

for 7 ‘‘days.’’

6.1.3. Training and test sets
The first 6 days were used as the training set; the remaining (partial) day made up the test

set.

6.2. Models

The Baseline-DiBS and Phrasal-DiBS models were used, as in Simulation 1.

The Lexical-DiBS model was not included because of the theoretically problematic status

of distinct pronunciation variants of the same word: Are distinct pronunciation variants to

be counted as distinct words, equivalent to assuming that infants are unable to recognize

them as variants of the same word? An additional concern pertains to the frequency thresh-

old that defines which words are in the model’s lexicon. Supposing that distinct pronuncia-

tion variants are counted as distinct wordforms, the ‘‘same’’ threshold has a different

meaning for the ‘‘reduced’’ transcript. This is because multiple variants of the same word

imply a lower frequency for each one; thus, the same frequency threshold will yield a smal-

ler lexicon on the ‘‘reduced’’ transcript. Rather than take a position on these questions here,

we defer them to future research.

6.3. Method

The method was identical to Simulation 1, except that the ‘‘canonical’’ and ‘‘reduced’’

versions of the Buckeye corpus were used. Thus, two versions of each model were

trained—one was trained on one part of the ‘‘canonical’’ transcript and tested on the

remainder; the other was trained on one part of the ‘‘reduced’’ transcript (and tested on

the remainder). Note that these are different transcriptions of the same speech; the only

difference between the transcripts is the extent to which they represent phonetic variation of

that speech. Because the central point of interest is the effect of conversational reduction

(not the developmental trajectory), performance is shown only at the end of training.

6.4. Results

The undersegmentation and oversegmentation error rates after exposure to the training

set are shown in Fig. 5.
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6.5. Discussion

6.5.1. Register
The results of the baseline and phrasal models on the ‘‘canonical’’ transcript are in

broad agreement with the baseline results from Simulation 1, as evident by comparing

Fig. 3 with Fig. 5. The primary difference between the ‘‘canonical’’ Buckeye tran-

script and the child speech is that the Buckeye transcript represents adult-adult

conversation.

The qualitative similarity in performance is especially striking in view of the fact

that the transcription system differs somewhat between Simulations 1 and 3. Simulation

1 uses the CELEX transcription system, whereas Simulation 3 uses a custom version

of the DARPA transcription standard in automatic speech recognition research. While

there is considerable overlap in the phone inventories of these two transcription sys-

tems, they nonetheless differ in a number of important ways. For example, the CELEX

transcription system represents British pronunciation, whereas the Buckeye transcript

represents American (Midwestern) pronunciation; one notable difference between these

dialects is the phonetic realization of ⁄ r ⁄ . The fact that a consistent performance profile

appears in spite of these transcription differences is strong evidence for the robustness

of DiBS, as it is exactly the kind of robustness that characterizes human speech pro-

cessing.
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Fig. 5. Undersegmentation and oversegmentation error rates on ‘‘canonical’’ (dark gray bars) and ‘‘reduced’’

transcripts (light gray bars).
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6.5.2. Pronunciation variation
Comparison between the ‘‘canonical’’ and ‘‘reduced’’ results suggest that pronunciation

variation causes only a mild decrement in word segmentation. Consistent with previous

experiments, the oversegmentation error rate remains close to 10% in both transcripts

(although it goes as high 12% on the ‘‘reduced’’ transcript, representing one oversegmen-

tation error per eight words). Again consistent with previous experiments, the undersegmen-

tation error rate is more variable. Thus, both the ‘‘canonical’’ and ‘‘reduced’’ transcripts

exhibit the undersegmentation error pattern found in Simulation 1.

An additional consideration is that pronunciation variability in the Buckeye corpus may

present a worst-case scenario for infants. For all languages that have been investigated

instrumentally, caregivers use a special speech style when interacting with infants known as

‘‘infant-directed speech,’’ characterized by exaggerated pitch excursions and vowel

formants (Kuhl et al., 1997). This hyperarticulatory speech style serves to enhance meaning-

ful phonetic contrasts and contains fewer instances of conversational reductions such as seg-

mental deletion. The input that infants get is often much cleaner than the ‘‘reduced’’

transcript of the Buckeye corpus.

In summary, the results of Simulation 3 suggest that the qualitative segmentation perfor-

mance of DiBS is somewhat robust to pronunciation variation. This constancy of perceptual

learning outcomes in the face of variability in the input is a hallmark of human speech per-

ception, and thus an important property to exhibit for a cognitively plausible model of word

segmentation. Simulation 3 shows that DiBS exhibits the kind of perceptual robustness that

human segmentation does.

7. General discussion

7.1. Summary of key findings

The major theoretical contribution of this paper is a learning model of diphone-based seg-

mentation (DiBS) as discussed in Cairns et al. (1997) and Hockema (2006). Using Bayes’

theorem and the assumption of phonological independence across word boundaries, infants

can estimate DiBS model parameters from the distribution of speech sounds at the edges of

observable lexico-prosodic domains, either phrases (Phrasal-DiBS) or the emerging lexicon

(Lexical-DiBS). Empirical assessment of the learning models demonstrates three properties

that are crucial from a learning perspective: rapid training, robustness, and undersegmen-

tation.

7.1.1. Rapid training
Diphone-Based Segmentation models require a minuscule amount of training data. As

shown in Simulation 1, the Phrasal-DiBS model achieves asymptotic performance with less

language input than a typical infant receives in a single day. The Lexical-DiBS model may

exceed Phrasal-DiBS within a few weeks and continues to improve with additional language

exposure. These results indicate a clear prediction that infants will command good
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phonotactic segmentation shortly after they meet the model’s assumption, in particular,

command of native-language phonetic categories. In other words, the learning model here

can explain why phonotactic segmentation is evident shortly after the emergence of native-

language phonetic categories.

7.1.2. Robustness
Also crucial from a learning perspective is robustness. Simulation 2 demonstrates a con-

sistent performance profile in the face of considerable variation to the free parameter p(#)

that represents context-free probability of a word boundary. Simulation 3 demonstrates the

same consistent performance profile in the face of considerable pronunciation variation in

the input. This consistency of perceptual outcomes in the face of multiple sources of

variation is a hallmark of language acquisition generally, and a necessary characteristic of

language models.

7.1.3. Undersegmentation
All DiBS models exhibited a consistent pattern of undersegmentation, that is, an error

rate of less than 1 oversegmentation error per 10 words (1 ⁄ 8 with conversational reduction).

Thus, when the sublexical system identifies a word boundary, the word boundary can gener-

ally be trusted. Since this pattern occurred in both the baseline and learning models, this

work illustrates a clear prediction of DiBS: The sublexical ⁄ phonotactic segmentation mech-

anism should undersegment throughout the lifespan. The implications of this prediction are

considered below for language acquisition and theories of lexical access.

7.2. Implications of undersegmentation

7.2.1. Undersegmentation efficiently pares the hypothesis space
Explicit computational models of lexical access (e.g., Baayen, Schreuder, & Sproat,

2000; Norris & McQueen, 2008) are generally subject to the problem that longer phrases

take longer to process. A substantial processing benefit can be gained by analyzing the input

into smaller subparts, even if lexical search in humans is a massively parallel operation.

Recall that undersegmentation means sublexically identified word boundaries can generally

be trusted. The consequence for lexical access is that many analyses which cross-cut each

other at trustable word boundaries can be pared, and errors that occur on one side of the

boundary cannot propagate to the other (Pierrehumbert, 2001). Trustable word boundaries

will pare away lexical searches which do not correctly match the input, and in a way which

can only favor the correct analysis. This reduces the overall level of lexical competition,

yielding a faster overall lexical access process.

7.2.2. Word learning
There is a further computational ⁄ cognitive benefit of undersegmentation, under standard

assumptions about lexical access: If lexical access is left-to-right and recursive, then lexical

access failure becomes a nearly unambiguous signal for the occurrence of a novel word.

Here, ‘‘left-to-right’’ means that lexical searches are initiated earlier for phonological input
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that is experienced earlier. ‘‘Recursive’’ means that unexplained residues of phonological

material trigger additional lexical searches; for example, if the system receives kiss him as

an input and identifies kiss as the initial word of this sequence, it immediately initiates a lex-

ical search for matches to the remaining, unexplained him. These assumptions are standard

in models of word recognition (cf. Baayen et al., 2000; McClelland & Elman, 1986; Norris

& McQueen, 2008). It follows from them that input is steadily decomposed into recogniz-

able lexical chunks. As argued above, undersegmentation speeds this process by reducing

the scope of lexical searches, but it does not interfere with it. Thus, lexical access failure is

predicted to occur only if a stretch of phonological material cannot be matched; that is, if

the listener lacks a corresponding lexical entry, because the word is novel.

7.2.3. Syntactic acquisition
Recent work suggests that learners may benefit from undersegmented input in early

stages of acquisition. For example, learners make fewer errors on irregulars when they are

learned in natural phrasal contexts, for example, on your feet ⁄ *foots (Arnon & Clark, 2009),

apparently because they learn the phrase as an unanalyzed whole. This same effect may

explain why children acquire grammatical gender more readily than second-language learn-

ers (Arnon & Ramscar, 2009). The apparent dovetail between this work and syntactic acqui-

sition raises the possibility of exciting synergies and merits further research.

7.3. Rapid trainability

One important question that has so far gone unaddressed is why the learning models

train up so rapidly. We suspect the answer lies in the fact that diphones exhibit a Zipfian

(power-law) distribution: A few diphones occur many times, whereas many diphones

occur only a few times. This fact is illustrated in Fig. 6, which shows a scatterplot of the

frequency distribution of word-internal and word-spanning diphones from the training set

of Simulation 1.

The x-axis represents frequency and the y-axis represents diphone types. As standard for

power-law distributions, a log-log scale is used. Thus, a point with the coordinates (log10 f,
log10 n) indicates that there are n diphone types whose frequency is f (frequencies which do

not occur are not plotted). For visual clarity, the word-internal and word-spanning diphones

are slightly offset from one another vertically; in addition, the counts are jittered to make

the density visually apparent.

Note the large clouds on the bottom right of the graph, representing a small number (low

y) of very high-frequency (large x) diphones: A few diphones which occur many times,

accounting for the bulk of the observed events. Similarly, the points in the extreme upper

left portion of the graph represent many diphones (large y) occurring just once or a few

times each (low x). Known as data sparsity, this condition implies the distribution is unsta-

ble because many rare events are undersampled (Baayen, 2001). While data sparsity is gen-

erally a problem in language models (Manning & Schütze, 1999), the Zipfian distribution is

advantageous in the present case, because it guarantees infants receive the most exposure to

precisely the diphones that are most important for word segmentation.
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Finally, the overlapping distribution between word-internal and word-spanning diphones

indicates that word-internal and word-spanning diphones cannot be distinguished on the

basis of frequency alone. Rather, the infant must infer whether a diphone is word-internal or

word-spanning based on phonotactics.

7.4. Toward future work

The results of the present study, while promising, are also limited in scope. The present

study considered word segmentation using a limited phonotactic domain, and in a single lan-

guage. It is therefore natural to wonder to what extent these results are specific to diphones

and ⁄ or English. Understanding this issue provides an entry to the more scientifically impor-

tant question: Which aspects of DiBS can fruitfully be generalized?

7.4.1. Function ⁄ content word distinction
The present study has not carefully addressed the distinction between function and con-

tent words owing to lack of space. Inspection of the models’ output leads us to speculate that

the model is especially good at finding boundaries after content words, and comparatively

poor at finding the boundary in a function-content sequence. Framed in terms of the Pro-

sodic Hierarchy (Nespor & Vogel, 1986; Selkirk, 1984), it would appear that DiBS is better

suited for segmenting Prosodic Words than orthographic words as prosodically weak
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Fig. 6. Zipfian distribution of diphones in the test set. The x-axis represents frequency, and the y-axis represents
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shown. Nonoccurring frequencies are not plotted.
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function words are often incorporated with an adjacent content word into a single Prosodic

Word. We are testing this hypothesis in follow-up work.

7.4.2. Rapid learning of diphones should generalize
English is relatively unusual among languages for its complex phonotactics, permitting

up to three-consonant clusters in onsets (e.g., strict) and up to four consonants in codas

(e.g., sixths). Presumably English allows more diphones than most other languages, and it

should therefore take longer to learn. Since English does not take very long, other languages

should not either.

7.4.3. Comparative utility of diphones and other cues
English phonotactics exhibits strong contextual constraints on the occurrence of phones.

As a result, a considerable amount of positional information is encoded by diphones in

English. The high level of segmentation achieved by DiBS stems from the fact that it

utilizes this information efficiently. However, diphones do not exhaust the information that

is known to be used by English-learning infants in segmenting the speech stream. In an

experiment in which diphone statistics were unavailable and phrase boundaries were

obscured by ramping the amplitude of stimulus onsets and offsets, Saffran et al. (1996)

demonstrated that 8-month-old infants could use transition statistics defined over a two-

syllable window to segment a speech stream. A variety of studies (Jusczyk, Houston, et al.,

1999; Thiessen & Saffran, 2003) also show that metrical foot structure supports

segmentation of the speech stream from 9 months onward.

Anticipating a future model of word segmentation that includes all applicable factors, we

observe that the core ideas of DiBS may be of wider utility in modeling other structural

domains as well. For example, while the phonotactic possibilities of English are rich enough

that unattested syllable types are easily constructed (e.g., zimp), Japanese has a closed

syllabic inventory that is not much larger than the number of phones in English (Itô &

Mester, 1995). This means that the core equations of DiBS could be applied to Japanese

syllables rather than phones.

The utility of diphones, in comparison to other phonological units, may prove to be dif-

ferent in different languages. The utility of diphones is likely to be less in languages that

have predominately CV (consonant-vowel syllables) than in English. In contrast, the utility

of f0 (fundamental frequency) cues might be greater in some other languages than in

English. Whereas prosodic words in English have no tonal marking at their boundaries,

prosodic words in French exhibit word-final pitch accent. Supposing that infants categorize

f0 events in the same general manner as segmental phonetic events, it is possible to collect

DiBS-like statistics on syllable-adjacent f0 events rather than segmentally adjacent

diphones. The statistics of these events promise to be a good cue for word segmentation

in French.

The present study has outlined a learning model for the diphone-based segmentation

model discussed in Cairns et al. (1997) and Hockema (2006). The learning model was

shown to illustrate three key features: rapid learnability, robustness to free parameter

error and conversational reduction processes, and an undersegmentation error profile.
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It was argued that undersegmentation offers clear cognitive benefits over alternative error

patterns allowing high rates of both undersegmentation and oversegmentation. Underseg-

mentation efficiently pares the hypothesis space for lexical access by supplying the lexicon

with only trustable word boundaries. Thus, a lexical access failure becomes a reliable

indicator for the occurrence of a new word—an obvious benefit for word learning. Finally,

undersegmentation offers the potential to explain certain puzzles of syntactic acquisition.

While the present study has focused on diphones and English specifically, it is to be hoped

that the overall approach may generalize to other languages and structural domains.

Notes

1. Albright & Hayes (2003); Beckman, Munson, & Edwards (2007); Edwards, Fox, &

Rogers (2002); Hayes & Wilson (2008); Munson (2001).

2. Akhtar & Tomasello (1997); Gathercole, Sebastian, & Soto (1999); Lieven, Pine, &

Baldwin (1997); Rubino & Pine (1998); Tomasello (2004); Tomasello & Brooks

(1998).

3. These error types are referred to in various ways across different disciplines. An

oversegmentation error might be referred to as a false positive in machine learning, or

as a Type I error in the social sciences; an undersegmentation error might be called

a miss or false negative in machine learning, or a Type II error in the social sciences.

4. Cairns et al. (1997) used the odds ratio, which contains the same information as proba-

bility. Probability is used here for formal unity with the rest of the paper.

5. The sentence is represented orthographically for ease of reading. Of course the actual

input is speech sounds rather than English letters.

6. This generalization is not absolute. Important questions have been raised owing to an

exception (Zulu clicks—Best, McRoberts, & Sithole, 1988); a case in which the shift

is evident earlier (<6 months—Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992);

a case in which it is evident later (>11 months—Polka, Colantonio, & Sundara, 2001),

and a frequency-driven asymmetry (Anderson, Morgan, & White, 2003). These stud-

ies do not fundamentally challenge the claim that infants have a categorical represen-

tation of speech by 9 months.

7. Function words will generally be more likely at one or both phrase edges for syntactic

and pragmatic reasons. For example, the determiners a and the are likely to begin

English sentences because of its default SVO order.

Acknowledgments

We wish to acknowledge support from Northwestern University in the form of a disserta-

tion year fellowship, and from the James S. McDonnell foundation for grant no. 21002061

to the second author. We also wish to thank Matt Goldrick, Jessica Maye, and an anon-

ymous reviewer for helpful comments.

150 R. Daland, J. B. Pierrehumbert ⁄ Cognitive Science 35 (2011)



References

Akhtar, N., & Tomasello, M. (1997). Young children’s productivity with word order and verb morphology.

Developmental Psychology, 33, 952–965.

Albright, A. (2009). Feature-based generalization as a source of gradient acceptability. Phonology, 26,

9–41.

Albright, A., & Hayes, B. (2003). Rules vs. analogy in English past tenses: A computational ⁄ experimental study.

Cognition, 90, 119–161.

Anderson, J., Morgan, J., & White, K. (2003). A statistical basis for speech sound discrimination. Language and
Speech, 46, 155–182.

Arnon, I., & Clark, V. E. (2009). Words in frames: Why on your feet is better than feet. Presented at the 83rd

Annual Meeting of the Linguistic Society of America, San Francisco, CA.

Arnon, I., & Ramscar, M. (2009). How order-of-acquisition shapes learning: The case of grammatical gender.

Presented at the 33rd Boston University Conference on Language Development, Boston, MA.

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by

8-month-old infants. Psychological Science, 9, 321–324.

Aslin, R. N., Woodward, J., LaMendola, N., & Bever, T. G. (1996). Models of word segmentation in fluent

maternal speech to infants. In J. L. Morgan & K. Demuth (Eds.), Signal to syntax: Bootstrapping from speech
to grammar in early acquisition (pp. 117–134). Mahwah, NJ: Erlbaum.

Baayen, R. H. (2001). Word frequency distributions. Dordrecht, The Netherlands: Kluwer.

Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (Release 2). Philadelphia,

PA: Linguistic Data Consortium.

Baayen, R. H., Schreuder, R., & Sproat, R. (2000). Morphology in the mental lexicon: A computational model

for visual word recognition. In F. Van Eynde & D. Gibbon (Eds.), Lexicon development for speech and
language processing (pp. 267–293). Dordrecht, The Netherlands: Kluwer.

Bailey, T. M., & Hahn, U. (2001). Determinants of wordlikeness: Phonotactics or lexical neighborhoods?

Journal of Memory and Language, 44, 568–591.

Batchelder, E. O. (2002). Bootstrapping the lexicon: A computational model of infant speech segmentation.

Cognition, 83, 167–206.

Beckman, M. E., Munson, B., & Edwards, J. (2007). Vocabulary growth and developmental expansion of types

of phonological knowledge. In J. Cole & J. I. Hualde (Eds.), Laboratory Phonology 9 (pp. 241–264). Berlin:

Mouton de Gruyter.

Best, C. T., McRoberts, G. W., & Sithole, N. M. (1988). Examination of perceptual reorganization for nonnative

speech contrasts: Zulu click discrimination by English-speaking adults and infants. Journal of Experimental
Psychology: Human Perception and Performance, 14, 345–360.

Blanchard, D., & Heinz, J. (2008). Improving word segmentation by simultaneously learning phonotactics. In

A. Clark & K. Toutanova (Eds.), Proceedings of the Conference on Natural Language Learning (CoNLL)
(pp. 65–72). Stroudsberg, PA: Association for Computational Linguistics.

Booth, A. E., & Waxman, S. R. (2003). Mapping words to the world in infancy: Infants’ expectations for count

nouns and adjectives. Journal of Cognition and Development, 4, 357–381.

Bortfeld, H., Morgan, J., Golinkoff, R., & Rathbun, K. (2005). Mommy and me: Familiar names help launch

babies into speech stream segmentation. Psychological Science, 16, 298–304.

Brent, M. (1999). An efficient, probabilistically sound algorithm for segmentation and word discovery. Machine
Learning, 34, 71–105.

Brent, M., & Cartwright, T. (1996). Distributional regularity and phonotactic constraints are useful for segmenta-

tion. Cognition, 61, 93–125.

Brent, M. R., & Siskind, J. M. (2001). The role of exposure to isolated words in early vocabulary development.

Cognition, 81, B33–B44.

Cairns, P., Shillcock, R. C., Chater, N., & Levy, J. (1997). Bootstrapping word boundaries: A bottom-up

corpus-based approach to speech segmentation. Cognitive Psychology, 33, 111–153.

R. Daland, J. B. Pierrehumbert ⁄ Cognitive Science 35 (2011) 151



Chomsky, N., & Halle, M. (1965). Some controversial questions in phonological theory. Journal of Linguistics,

1, 97–138.

Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998). Learning to segment speech using multiple cues:

A connectionist model. Language and Cognitive Processes, 13, 221–268.

Christophe, A., Gout, A., Peperkamp, S., & Morgan, J. L. (2003). Discovering words in the continuous speech

stream: The role of prosody. Journal of Phonetics, 31, 585–598.

Cutler, A., & Carter, D. M. (1987). The predominance of strong initial syllables in the English vocabulary. Com-
puter Speech and Language, 2, 133–142.

Cutler, A., McQueen, J. M., Butterfield, S., & Norris, D. (2008). Prelexically-driven perceptual retuning of pho-

neme boundaries. In Proceedings of Interspeech 2008 (p. 2056). Brisbane, Australia: 9th Annual Conference

of the International Speech Communication Association.

Dale, P. S., & Fenson, L. (1996). Lexical development norms for young children. Behavior Research Methods,
Instruments, & Computers, 28, 125–127.

Davis, M. H. (2004). Connectionist modelling of lexical segmentation and vocabulary acquisition. In P. Quinlan

(Ed.), Connectionist models of development: Developmental processes in real and artificial neural networks
(pp. 151–187). Hove, UK: Psychology Press.

Dupoux, E., Kakehi, K., Hirose, Y., Pallier, C., & Mehler, J. (1999). Epenthetic vowels in Japanese:

A perceptual illusion? Journal of Experimental Psychology: Human Perception and Performance, 25,

1568–1578.

Edwards, J., Fox, R. A., & Rogers, C. (2002). Final consonant discrimination in children: Effects of phonological

disorder, vocabulary size, and articulatory accuracy. Journal of Speech, Language, and Hearing Research,

45, 231–242.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.

Fleck, M. M. (2008). Lexicalized phonotactic word segmentation. In Proceedings of the 46th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies (pp. 130–138). Madison, WI:

Omnipress.

Friederici, A. D., & Wessels, J. M. I. (1993). Phonotactic knowledge of word boundaries and its use in infant

speech-perception. Perception & Psychophysics, 54, 287–295.

Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of Experimental Psychol-
ogy: Human Perception and Performance, 6, 110–125.

Gathercole, V. C. M., Sebastian, E., & Soto, P. (1999). The early acquisition of Spanish verbal morphology:

Across-the-board or piecemeal knowledge? International Journal of Bilingualism, 3, 138–182.

Goldwater, S. (2006). Nonparametric Bayesian models of lexical acquisition. Unpublished dissertation, Brown

University.

Goldwater, S., Griffiths, T. L., & Johnson, M. (2009). A Bayesian framework for word segmentation: Exploring

the effects of context. Cognition, 112, 21–54.

Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly

segmented words? Statistical segmentation and word learning. Psychological Science, 18, 254–260.

Hayes, B., & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic learning. Linguistic
Inquiry, 39, 379–440.

Hockema, S. A. (2006). Finding words in speech: An investigation of American English. Language Learning
and Development, 2, 119–146.
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