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Abstract

Prelinguistic infants must find a way to isolate meaningful chunks from the continuous streams of

speech that they hear. BootLex, a new model which uses distributional cues to build a lexicon,

demonstrates how much can be accomplished using this single source of information. This concep-

tually simple probabilistic algorithm achieves significant segmentation results on various kinds of

language corpora – English, Japanese, and Spanish; child- and adult-directed speech, and written

texts; and several variations in coding structure – and reveals which statistical characteristics of the

input have an influence on segmentation performance. BootLex is then compared, quantitatively and

qualitatively, with three other groups of computational models of the same infant segmentation

process, paying particular attention to functional characteristics of the models and their similarity

to human cognition. Commonalities and contrasts among the models are discussed, as well as their

implications both for theories of the cognitive problem of segmentation itself, and for the general

enterprise of computational cognitive modeling. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the infant’s early tasks is to break up continuous streams of speech into more

manageable chunks that can be attached to meaning. The problem can be represented

schematically:

themaninthemoon (what the child hears)

the man in the moon (a successful segmentation)

them anin them oon (an unsuccessful segmentation)

A successful segmentation – one which locates “words” – is a logically necessary prepara-
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tion for the more complex language learning which follows. Since each language has

different words, and different regularities for word formation, successful segmentation

cannot be due to innate knowledge.1

That the child succeeds in discovering words early and often is clear. According to

Mandel, Jusczyk, and Pisoni (1995), infants as young as 4.5 months can distinguish their

own names, said in isolation, from other names which are similar in stress pattern (e.g.

Joshua vs. Agatha, Brandon vs. Kevin) and prefer them, as shown by significantly longer

looking times. At 6 months English-learning children understand “mommy” and “daddy”

to refer to their own parents (Tincoff & Jusczyk, 1999). Although there is wide individual

variation,2 by 1 year 4 months of age most children have a comprehension vocabulary of at

least 50 words (Harris & Chasin, 1999).

This first word comprehension, or “the child’s dawning appreciation of some of the

conventional meaning units of the adult language” (Vihman, 1996, p. 122), is one result of

a successful chunking or segmentation process. Various sources of information that the

infant might use for word segmentation have been proposed, and behavioral experiments

with infants have tested the availability and effectiveness of prosodic information like

pauses, stress, and intonational contours,3 phonetic cues to word boundaries,4 phonotac-

tics,5 and the distribution of sounds in the speech stream,6 as well as tests of two or more of

these strategies working in combination.7 Research in this area has expanded lately to the

point where space does not permit a proper review here; for comprehensive surveys, see

Jusczyk (1997, 1999) and Aslin, Jusczyk, and Pisoni (1998).

In this paper, I will focus on just one of these sources of information – the distribution of
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1 The term “word segmentation” is also used in the literature to refer to processes used by adults in under-

standing spoken language, but it is important not to conflate the two contexts. The infant has no words at all to

begin with, while the adult can take advantage of a rich mental lexicon.
2 Illustrative ranges are found in Waxman (1999), where 36 infants aged 12.7–14.5 months (average 13.5) were

surveyed, finding production vocabularies of 0–112 words (average 16) and comprehension of 5–327 (average

112).
3 Prosody: research showing the sensitivity of infants to prosodic features of language and/or evidence that babies

use such features for segmentation includes: Christophe, Dupoux, Bertoncini, & Mehler, 1994; DeCasper & Fifer,

1980; Echols, Crowhurst, & Childers, 1997; Gerken, Jusczyk, & Mandel, 1994; Hayashi, Tamekawa, Deguchi, &

Kiritani, 1996; Hirsh-Pasek et al., 1987; Hohne & Jusczyk, 1994; Johnson & Jusczyk, 2001; Jusczyk, 1998b;

Jusczyk, Cutler, & Redanz, 1993; Jusczyk et al., 1992; Mattys, Jusczyk, Luce, & Morgan, 1999; Mehler et al., 1988.
4 Allophones, including coarticulation cues: Johnson & Jusczyk, 2001; Jusczyk, Hohne, & Bauman, 1999;

Mattys & Jusczyk, 2001a.
5 Phonotactics refers to “the specific sequences of sounds that occur in a language” (Crystal, 1987, p. 427).

Permissible sound sequences in English vary by their position within syllables, words, and morphemes, and

across their boundaries: /gd/ is okay word-finally (begged) and across a word, morpheme, and/or syllable

boundary (big deal), but not word-initially (*gdum). Research on the use of phonotactics in early word segmenta-

tion includes: Friederici & Wessels, 1993; Jusczyk, Friederici, Wessels, Svenkerud, & Jusczyk, 1993; Mattys &

Jusczyk, 2001b; Mattys, Jusczyk, Luce, & Morgan, 1999.
6 Distribution: Aslin, Saffran, & Newport, 1998; Goodsitt, Morgan, & Kuhl, 1993; Johnson & Jusczyk, 2001;

Saffran, Aslin, & Newport, 1996a,b; Saffran, Johnson, Aslin, & Newport, 1999.
7 Combination: Jusczyk, Houston, & Newsome, 1999; Mattys, Jusczyk, Luce, & Morgan, 1999; Morgan, 1996;

Morgan & Saffran, 1995.



segmental information,8 or the relative frequency of sounds and sound clusters, and their

tendencies to co-occur with each other and with utterance boundaries. Distributional

information comes from observing the frequency of events in the environment, a skill

available to even the tiniest infant, and indeed to most non-human animals; for reviews of

research on the cognitive effects of frequency, see Hasher and Zacks (1984), Alloy and

Tabachnik (1984), and Kelly and Martin (1994). In experiments specific to language

stimuli, 8-month-old infants successfully segmented an artificial speech stream based

solely on distributional information – frequency and order (Saffran, Aslin, & Newport,

1996a,b) – and the same stimuli drew similar responses from tamarin monkeys (Hauser,

Newport, & Aslin, 2001). The infant experiment has been replicated with naturally spoken

syllables (Johnson & Jusczyk, 2001).

Here we will be concerned not with the behavioral data, but rather with computational

models of the use of distributional cues to segment words. In particular, this paper

describes BootLex, a model of early word segmentation which uses the distribution of

segments and pauses to discover word boundaries in several language corpora from three

different languages. Second, several previously reported computer models of the same

cognitive process are reviewed and compared to BootLex, not only in terms of the usual

quantitative measures of effectiveness, but also by contrasting their more global functional

characteristics. I hope to show that comparison of models of this small but critical cogni-

tive process can highlight aspects of the problem – both cognitive and computational – that

might otherwise be overlooked.

Section 2 of the paper describes how speech segmentation is modeled by computers, and

how the performance of such models has been evaluated quantitatively, and then previews

the qualitative characteristics that we will contrast in the several models. Section 3

presents the BootLex algorithm in detail. Section 4 discusses three groups of other compu-

ter models, and compares them with BootLex and with each other. Section 5 compares the

cognitive plausibility of these models, and considers some broader implications.

2. Distributional models of infant speech segmentation

A number of computational models of the use of statistical cues for infant speech

segmentation have been presented recently. These computer models, including BootLex,

are inductive, or self-organizing, algorithms. With the significant exception of the cate-

gories implicit in the coded input, they have no linguistic knowledge to begin with. That is,

there is no lexicon of known words or knowledge of applicable rules or regularities, such

as phonotactics. They can only try to discover any structure implicit in the linear associa-

tion of their elementary codes. Such models thus presuppose that there is structure to be

discovered: in particular, that each utterance can be resolved into a series of “words” – a

non-overlapping sequence of small chunks, which chunks recur across utterances in some-

what varying orders. The problem, then, is to find those recurring chunks. All of the

models discussed here cast the problem in similar ways:
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8 The term “segment” is potentially confusing in the context of speech segmentation. While “segmentation”

refers to any partitioning or chunking process, whatever the degree of granularity, “segment(s), segmental” refers

to a minimal unit in phonetic/phonological theory, a phone such as [t] or a phoneme such as /e/.



X Model inputs and outputs. The models take as input a computer-readable text, gener-

ally a transcription of spoken language. Word boundaries are removed from the text before

input, but utterance boundaries are usually retained, as these are assumed to be salient in

the speech stream as pauses, and thus available to infants. Since each utterance boundary is

also a word boundary, a subset of the true word boundaries is thus represented. The input

text is read by a computer program, which selects and records certain characteristics, and

then uses these to decide where in the text to place “word” boundaries. All the models

generate a word-spaced version of the input text, and some also produce a lexicon of words

“learned” during the segmentation process.
X Language representation. While speech is acoustically a continuum of sound,

language is composed of a series of abstract categorical units. Transforming actual speech

sounds (analog wave forms) into such categorical units is still beyond the ability of

machines unless considerable linguistic knowledge is supplied, such as a list of possible

words. Since our models are intended to discover words, some non-lexical way of repre-

senting language – the analog of the speech that the child hears – is necessary. Thus, there

seems no way to do this without using some set of codes. All of the models we discuss here

used some phonemic (segmental) notation system, such as:

Phonemic symbols: lUk D*z 6 b7 wIT hIz h&t
Orthography: look there’s a boy with his hat

The three connectionist models to be discussed used binary features derived from

phonemes instead of the phonemes themselves.9

In addition to segmental units and utterance boundaries, other information sources have

been modeled with varying degrees of success, including word stress (Christiansen, Allen,

& Seidenberg, 1998) and phonotactic regularities (Brent & Cartwright, 1996). In this

paper, I compare models in terms of their performance using distributional information,

specifically the interrelationships of speech segments and utterance boundaries, so I omit

models which are not concerned with distributional cues.10

X Corpus preparation. In addition to encoding, input texts are standardized in other

ways. Punctuation and numerals are removed, capital letters (in orthographic corpora) are

made lower-case, and sometimes further efforts toward uniformity are made, such as
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9 Several reasons were cited for using component features instead of discrete phonemes. One, because their

designers believed that subsegmental (featural) representations were more “cognitive” or “psychologically

realistic” than phones or phonemes: “An account of speech segmentation based on an input composed of

phonological features may be both more parsimonious and more psychologically realistic” (Cairns, Shillcock,

Chater, & Levy, 1997, p. 130). For another, to facilitate generalization: “Our strategy was to code the input as a

set of articulatory features… This was done to allow the model to learn not just which specific phoneme ended an

utterance, but also to generalize this end-of-utterance information to other phonemes in English that shared one or

more features with this phoneme.” (Aslin, Woodward, LaMendola, & Bever, 1996, p. 126f).
10 Using only phonemic or orthographic units ignores two other subphonemic aspects of the sound stream.

Phonetic regularities, such as allophones and coarticulation effects, are omitted, introducing a conservative bias,

since these would provide even more information and statistical structure if they were included. Secondly,

idiosyncratic differences in pronunciation from speaker to speaker are not represented. These do not conform

to any pattern, so that the listener must abstract away from such differences when identifying words, and the child

also has to be able to ignore them in order to find “words” successfully.



removing non-words like um and huh. Since it is often claimed that speech is more

“natural” than written texts, it is ironic that model preparation proceeds to remove or

transform much of the naturalness, such as variation in pronunciation, prosody, and even

vocabulary. However, modelers fear that such variation in language, which is otherwise

desirable to capture, might overwhelm the computer’s weak skills, so they try to strike a

balance between unnaturally controlled transcripts and the chaos of lifelike language.

2.1. Comparing speech segmentation models

A major goal of this paper is a close comparison of various models, including BootLex,

both qualitatively and quantitatively. In this section I outline some of the ways that the

models can differ in function, and also describe the quantitative measures which will be

used. Table 1 serves as a reference during this and the later discussions of functional

differences.
X Build lexicon? All the models produce word-segmented utterances, but there are two

types of knowledge, or competence, that underlie this production. Some models build a

lexicon as they go along, and use it as a knowledge store to recognize previously learned

words when segmenting utterances. A second group of models does not create a lexicon,

but learns the characteristics typical of word boundaries and then uses that knowledge to

segment utterances on the basis of phonotactic regularities. For these non-lexical models,

words are a side-effect of the segmenting process rather than a primary output.
X Cluster or divide? Another difference between the models is their learning strategy.

While all the models use co-occurrence frequencies as measures of cohesion, some focus

on the points of lowest cohesion and place a word boundary there, while others look for

points of high cohesion and aggregate at those points to form clusters. The “divide”

strategy starts with a full utterance as the default “word” and gradually breaks it into

smaller and smaller pieces by inserting more word boundaries, while the “cluster” strategy

begins with minimal “words” which gradually get bigger and bigger.
X Cumulative? Most of the models “learn” by gradually accumulating knowledge in

small increments, receiving inputs in small amounts one after another and adjusting the

state of knowledge after each input. Shifts in the nature of the input cause corresponding

changes in the state of learned knowledge. The size of the inputs and the granularity of

learning increments can differ from model to model.
X Feedback from outputs? All these models “learn” from the inputs, but some also learn

from their own outputs by a feedback process. The first prerequisite for such a system is

that it learn incrementally, as discussed above. Secondly, the system must receive inputs
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Table 1

Summary of functional characteristics (as discussed in the text)

Model Build lexicon? Cluster or divide? Cumulate? Feedback from outputs? Constraints?

BootLex Lexicon Cluster Cumulate Feedback Optlen value

Networks No Divide Cumulate No Threshold value

MDL Lexicon Cluster No No Compute-intensive

MBDP Lexicon Divide Cumulate Feedback External parameters



and produce outputs in an overlapping and continuous series.11 (The overlapped inputs and

outputs do not necessarily relate to each other one-to-one, but rather may be two continu-

ing streams with a diffuse relationship across a delay in time.) Some systems which meet

these two criteria are arranged so that the output of the system feeds back to affect the state

of the system’s learned knowledge.
X Constraints? While these computer models are self-organizing algorithms, each of

them is externally controlled to some extent. It is important to note what external informa-

tion sources are used (aside from the utterance inputs, and knowledge of the representa-

tional codes) to constrain the incremental process or limit the possibility space.
X Quantitative success. The foregoing characteristics are qualitative, which are impor-

tant criteria for a cognitive computer model. However, it is also true that one criterion of a

successful cognitive strategy is its effectiveness as reflected in quantitative measures. For

quantitative measures of success, the common practice is to compare the word boundaries

created by the model with the word boundaries in the original text (the “standard”).12 In

particular, two measures from information retrieval are widely used: recall (the proportion

of correct items which were identified) and precision (the proportion of identified items

which were correct). Usually, running words (tokens) are the items evaluated as a measure

of segmentation effectiveness, but sometimes “cuts” (word divisions inserted) are used.

For those models which create a lexicon, this list of word types hypothesized can be

evaluated relative to the list of word types in the original text. Such measures, called

“lexical recall and precision”, give equal weight to all words regardless of their frequency.

3. The BootLex algorithm

Olivier (1968) was the first to create a working probabilistic segmentation routine. His

algorithm was a deceptively simple exercise in self-organization, using only letter co-

occurrence frequencies to segment utterances into words, and the BootLex model is a new

implementation based on his idea.13 Because Olivier’s algorithm had an unfortunate

tendency to create longer and longer “words” as it proceeded, BootLex incorporates a

mechanism to constrain word length, as well as other modifications (Batchelder, 1997).

BootLex can be best understood as two complementary and concurrent processes:

language input is used to create a lexicon, and each input utterance is parsed using the

lexicon in its current state. Technically, BootLex is a word grammar: “a stochastic

grammar whose language is finite; it is thus equivalent to a finite dictionary of strings,

each with an associated probability” (Olivier, 1968, p. 30). This dictionary, called the

lexicon, contains a list of pairs – a character string (“word”) and its current frequency
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11 In other contexts, the terms “continuous” and “incremental” have been construed as opposites, where “incre-

ment” means an abrupt, non-continuous change. Here we use these terms in a synonymous sense, where incre-

ments are successive changes that are small enough to produce an effect of continuity.
12 It has often been suggested (e.g. Plunkett, 1993) that young children consider some clumps of words as single

lexical items (thank you, happy birthday), so an evaluation metric which credits such segmented items might be

closer to the child’s reality. Batchelder (1997) introduces a novel scheme that incorporates these elements, but

since the present paper focuses on comparison of several models, we discuss only widely used metrics.
13 After describing BootLex, I will discuss in more detail the differences between it and Olivier’s routine, as well

as some other probabilistic algorithms, in Section 3.5.



value. Parsing is the process of exhaustively segmenting an utterance into non-overlap-

ping words. A possible segmentation, or parse, of a given utterance is created by selecting

a set of “words” from the current lexicon and arranging them end to end in such a way that

the utterance is completely replicated with no gaps and no overlapping. There may be

many such possible sets and arrangements for that utterance, given the current lexicon’s

word candidates. Each possible segmentation is assigned a score according to the current

word frequencies, and the highest-scoring one is selected as the final version.

The following two sections explain these procedures in more detail; the third section

gives quantitative results; and the fourth section gives a qualitative assessment using the

five characteristics described above.

3.1. Building the lexicon

As the input is seen and parsed, an iterative process records information about it in the

lexicon:

(a) Initialization: The starting lexicon contains the set of basic symbols (the “alphabet”

of letters or other graphemes), each one as its own lexical entry with a frequency of 1. The

input is presented as a series of “utterances” (lines) of varying lengths.14

(b) Cycle 1: Using this initial lexicon, the first utterance is parsed into “word” tokens of

one symbol each.

(c) For each word token in the utterance just parsed, the matching word type in the

lexicon has its frequency incremented by one.

(d) Before beginning the next utterance, the lexicon is augmented by adding to it

potential new words, consisting of contiguous pairs of words in the utterance just parsed.

Each such pair that is not already in the lexicon is added, with an initial frequency of 1 (if

the pair is already in the lexicon, its frequency there is not altered). The lexicon as updated

(frequencies incremented and new entries added) is now ready for the next utterance.

(e) Cycle 2: The second utterance is parsed into words, using only those words which

are found in the current lexicon, and a score for each possible parse is calculated based on

its likelihood in light of experience to date, using the frequency counts recorded in the

lexicon. (The parsing procedure is discussed in more detail below.) The word tokens

which make up the highest-scoring parse are used to update the frequency counts in the

lexicon (step (c) above) and to make new lexical entries (step (d)).

(f) Cycles 3 to N: Repeat step (e) to the end of the text, each time using the lexicon as

just modified.

The effect of this procedure is described by Olivier:

…if a section included the string ‘abcdefgh’ parsed as four words ‘a bc de fgh’ the

three new words ‘abc’, ‘bcde’, and ‘defgh’ would be added to the dictionary… A

principal advantage of this system for adding words to the dictionary is that it swells

the dictionary with large numbers of words rather quickly. (Olivier, 1968, p. 67)
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14 To simplify the computer programming, some finite number of characters per line is built into the software. In

the experiments described here, a limit of 150 characters allowed all lines in the corpora being used.



Consequently, a large part of the lexicon at any time will consist of such pairs which have

been added as potential words, but have not (yet) actually been used in a parse.15

The operation of BootLex is briefly illustrated in Table 2, using a miniature corpus

consisting of just four “utterances” repeated four times, each with its parsed version and

lexicon output. This tiny corpus has been constructed with short words and lots of repeti-

tion so that the effect of the algorithm will be quickly apparent. On the left is shown the

utterance as it is parsed based on the lexicon from the preceding cycle. On the right are the

new word candidates added to the lexicon as the result of this parse, by combining

contiguous pairs of parsed words. Those word candidates which subsequently are used

as words in at least one parse are underscored in the table; those not underscored are those

“potential words” which are never used in this example.

The parsing process begins in cycle 1 by producing only single letters as “words”. Then

(cycle 2) it finds some letter pairs that have been entered in the lexicon, and those are

preferred over single letters in the parse of the second utterance. As will be explained

below, the basic algorithm will tend to create longer and longer units, a process which is

constrained only by the length of an utterance, since word pairs cannot occur across an

utterance boundary. In this miniature corpus, where every utterance is repeated, eventually

each utterance will become a single lexical item. In natural language the length of words is
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Table 2

BootLex builds the lexicon while parsing a toy corpus line by linea

Cycle Utterance as parsed New lexical items added to lexicon this cycle

0 – a b c d e f g h i j k l m n o p q r s t u v w x y z

1 a b i g p e t a c u t e d o g ab bi ig gp pe et ta ac cu ut te ed do og

2 t h e pe t t h ed og th he epe pet tt th hed edog

3 a d og a pet ad dog oga apet

4 t he bi g dog t he cu te pet the hebi big bdog dogt the hecu cute tepet

5 a big pet a cute dog abig bigpet peta acute cutedog

6 the pet the dog thepet petthe thedog

7 a dog apet adog dogapet

8 the big dog the cute pet thebig bigdog dogthe thecute cutepet

9 abig peta cutedog abigpeta petacutedog

10 thepet thedog thepetthedog

11 a dogapet adogapet

12 thebig dogthe cutepet thebigdogthe dogthecutepet

13 abig petacutedog abigpetacutedog

14 thepetthedog –

15 adogapet –

16 thebig dogthecutepet thebigdogthecutepet

a Lexical items which later appear as words in at least one parse are underscored.

15 BootLex tallies the occurrences of a subset of the sound patterns that it observes, using the “word pair”

scheme to select just which patterns it records. While we do not imagine that the child’s processing would be so

mechanical, we feel that children must similarly observe and record the frequency of sound patterns in their

environment.



not so unlimited, so we modified the basic algorithm to constrain its tendency to produce

unnaturally long words, as described in the following section.

3.2. The parsing procedure

In BootLex, each possible parse is scored by taking the probability for each word in the

parse – that is, for each word token in the parse, the probability of its word type in the

lexicon, which in turn is its frequency count divided by the sum of all such counts in the

lexicon (maximum-likelihood estimate, or MLE). Then all these probabilities are multi-

plied together to produce a combined probability which represents the probability of that

parse, and the probabilities of the various possible parses can be directly compared with

one another.

As described in the previous section, the lexicon is modified after each utterance is

parsed, so that each succeeding utterance is parsed with respect to a slightly different

lexicon. This iterative process – parse decisions leading to changes in the lexicon, which in

turn lead to new parse decisions, etc. – is a “training” or learning process. In BootLex,

parsed words are used to create word pairs which are entered in the lexicon as candidates

for future words, with the result that the candidate word types tend to increase in length. In

addition, MLE scoring always favors a longer unit over two shorter ones, simply because

of the mathematics of fractional products. Since probabilities are fractional (less than

unity), two multiplied together will generally be less than the probability of the combined

string, so “the estimated frequency of a word is much larger than the product of the

estimated frequencies of its parts” (Olivier, 1968, p. 59). This relationship is illustrated

in Table 3, where ofthe as one word scores higher than of the as two words.

Each occurrence of a word in a successful parse increases its frequency count by one.

Thus, as longer and longer words become eligible for parsing, they tend to be selected over

shorter words, which raises their frequency and further increases their likelihood of future

selection. As the algorithm proceeds through a text, unless it is constrained, the parsed

words tend to get longer. A typical unconstrained run tends to underdivide the text,

creating words which are on average longer than those in the standard.

To correct this, BootLex uses an external constraint – the optimum-length parameter
– which serves as a target for the average word token length. By referring to this value,

each parse is evaluated not solely by maximum likelihood, but also by how closely the

average word length of the parsed utterance approaches the optlen. Parses with overly

long words have their “goodness” rating lowered slightly. Thus, the final score of each
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Table 3

Example of parse detail calculations by maximum-likelihood estimation (MLE), taken from a corpus with 74,951

total tokens

Word Number of occurrences Parse likelihood (MLE)

of 1839 times 1839 4 74951 ¼ 0:0245

the 3184 times 3184 4 74951 ¼ 0:0424

of 1 the (2 words) (product) 0:0245 £ 0:0424 ¼ 0:0010

ofthe (1 word) 393 times 393 4 74951 ¼ 0:0052



parse will be a combination of its raw probability and its relative nearness to the optlen

target. Though optlen is not a rigid threshold, but rather the focus of a graded scale of

adjustments, its cumulative effect over a large number of parsing decisions is to control

fairly well the number of words produced by the algorithm and their average length (Fig.

1).16 The question of cognitive parallels for an external constraint like optlen will be

discussed below. For the moment, consider it as a way of exacting the maximum effec-

tiveness from the algorithm on a given corpus. In general, setting optlen equal to the

average word length (in characters) of the standard version of the text will produce a

number of parsed words roughly equal to the number of word tokens in the standard, which

gives the maximally accurate results when scored relative to that standard.

The effect of the optlen parameter is illustrated in Table 4, which shows the effect on the

same miniature corpus from Table 2 of an optlen equal to its average standard word token

length of 2.7 characters. Since the optimum-length criterion penalizes those parses which

have an average word length greater than the optlen value, parses which use shorter words

tend to win the competition and word length does not grow in an unconstrained fashion

over the learning process. Fig. 2 charts the effect of optlen on a more realistic corpus,

comparing segmentation results using various optlen values on a corpus of transcribed

English speech. It can be seen here that, while the average-length value (1.0) produced the

best performance, any value for optlen gave better results than not using it at all.

3.3. Quantitative results of BootLex

BootLex was exercised on a wide variety of text corpora, both to evaluate the effec-

tiveness of the algorithm itself under various conditions, and as part of a larger project to

explore differences among various language corpora (Batchelder, 1997). Six corpora were

used, two each in English, Spanish, and Japanese. One of each language pair was from the

CHILDES collection of corpora of transcribed child-directed adult speech (MacWhinney,

1995), and the second was a text which had been originally composed in writing (a science

book for young children, and a novel and some short stories for an adult audience). All the
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Fig. 1. Comparison of the average word length over successive 5000-word sections of a text as parsed by BootLex

with and without the optimum-length parameter.



results reported in this section were achieved with the parameter optlen set to the average

length of a standard word in the corpus being tested.

The best results were achieved on an English corpus of child-directed speech derived

from the Bernstein-Ratner corpus (Bernstein Ratner, 1996) in the CHILDES collection.

The original Bernstein-Ratner corpus was collected from recordings taken over a period of

a year from nine mothers, each talking to her infant daughter aged 1;1 to 1;11, and

transcribed in standard English orthography. For use with a computer model it was tran-

scribed into 50 phonemic symbols – “an ASCII-based phonetic representation [which]

paralleled the IPA alphabet… diphthongs, r-colored vowels and syllabic consonants were

each represented as one character” (Cartwright & Brent, 1994, p. 150). For instance, ‘b7’

was boy, ‘lebL’ was label, and ‘bRd’ was bird. Parallel samples of both transcriptions are

shown in Table 5 to illustrate the representational system, and also to show BootLex’s
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Fig. 2. BootLex segmentation results using various optimum-length parameters on one corpus.

Table 4

BootLex parses of toy corpus without optlen (same as Table 2) and with optlen

Cycle Parse without optlen (from Table 2) Parse with optlen ( ¼ avglen of 2.7 chars.)

1 a b i g p e t a c u t e d o g a b i g p e t a c u t e d o g

2 t h e pe t t h ed og t h e pe t t h ed og

3 a d og a pet a d og a pet

4 t he bi g dog t he cu te pet t he bi g dog t he cu te pet

5 a big pet a cute dog a big pet a cute dog

6 the pet the dog the pet the dog

7 a dog apet a dog apet

8 the big dog the cute pet the big dog t he cute pet

9 abig peta cutedog abig pet a cute dog

10 thepet thedog the pet the dog

11 a dogapet a dog apet

12 thebig dogthe cutepet the big dog t he cute pet

13 abig petacutedog abig pet a cute dog

14 thepetthedog the pet the dog

15 adogapet a dog apet

16 thebig dogthecutepet the bi g dog the cute pet



segmentation results as it progresses through successive utterances in both orthographic

and phonemic versions of the same corpus.

Results of BootLex runs on several variations of this corpus17 are shown in the rightmost

two columns of Table 6: word recall, word precision. The dimensions along which the

corpora were varied are described in the columns to the left: child- vs. adult-directed

speech (the latter corpus created from separately recorded interviews with each mother),

size (number of characters, words), and coding structure (number of codes and code type:

phonemic symbols vs. orthography). The results demonstrate the greater segmentation

effectiveness of a larger corpus, of phonemic coding, and of child-directed speech. The

best results (highest recall and precision) were obtained on the Large phoneme-coded

child-directed corpus, and smaller amounts of data in the same series (Medium and Small)

resulted in corpora with poorer performance, probably due to lower repetition levels

(TTR). The adult-directed corpus, with a much longer utterance length (Avg # chars/

utt), and consequently a lower percentage of word boundaries given as utterance bound-

aries (%UB), performs the worst of the five, even though it is the second biggest; it also has

low repetition.18 The medium-size phonemic and the orthographic corpora had the same

number of words and the same content, simply coded differently, and the phonemic coding

did a little better. However, we show below that this tendency was not borne out with other

corpora.
X Multilingual tests. To test whether these results were limited to English, we also ran

BootLex on child-directed corpora in Japanese and in Spanish (Table 7), finding that the

algorithm did not do as well on these. Not only were the languages different, but also the

statistical characteristics of the various corpora, so it is difficult to draw conclusions about

the effect of language alone without testing a greater variety of corpora in each language.

In an extensive series of controlled tests, Batchelder (1997) found that certain character-

istics of the input affected segmentation performance. When other factors were held

constant, short utterance length, short words, and a high rate of lexical repetition correlated

with a faster rate of “learning” – a more accurate segmentation with less text input. In turn,

since these text characteristics were more typical of spoken than written texts, and of

child-directed than of adult-directed speech, child-directed speech tended to be better

segmented than other types of texts. However, significant amounts of learning and
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17 So that interested readers can tell which chart references are to the same corpus versions, the variations of

each corpus are listed here by our internal file names, in the order of their appearance in each chart. Table 6:

brechall, brecar, bresh, breconew, bread. Table 7: brechall, akirom, akih, spano; maughamt, eucnew, eucnewr,

doledt. Table 8 and Fig. 3: brecar, breconew; akirom, akih, akihr; spano, spanall, spanph; maughamph, mauword,

maughamt; eucnew, eucnewr, eucnewrx. Table 11 and Figs. 2, 4, 5 and 6: brechall.
18 The metrics reported here are for the most part those that have been reported for other similar models, the

better to compare them, and they are each the results of a “training” run on a full corpus. For comparison, I also

report one “held-out” test (Batchelder, 1997), which showed that performance was somewhat better when using

the algorithm with a previously “trained” lexicon on a novel portion of text – one test of whether the “learning” is

effective on new material:

Recall Precision

Training on full English written corpus 44.9 43.0

Training on 90% of the corpus 44.7 42.5

Test on remaining 10% of the corpus 48.1 46.7



segmentation took place even on corpora with long utterances and low repetition. From a

cognitive point of view this is a favorable finding, since a segmentation model which

yields results on a wide range of language input is a more realistic analog to the way that

children can learn language even under very adverse conditions. The unexplained differ-

ences in performance among the three language groups deserve further exploration.
X Code variations. Our tests, however, failed to detect any systematic differences in

performance depending on representational code. For each of five corpora, two or three

variations in code representation were submitted to segmentation by BootLex (samples of
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Table 5

Samples as segmented by BootLex from two versions of the Bernstein-Ratner corpus

Orthographic version Phonemic version

Line no. Utterances as segmented Line no. Utterances as segmented

100 is it da d d y onthe p hon e 100 IzIt d& d i anD6 fo n

101 p r es s the but t on 101 p r Es D 6bAt ,
102 there youg o 102 D*yug o

103 say 103 se

104 hello dada 104 hElo d &d&

520 t ur nthep age 1125 t 3n D6peG

521 okay 1126 oke

522 whats here 1127 WAts h(

523 flow ers 1128 fl QRz

524 you see the flowers 1129 yu si D6fl QRz

1000 whats that 2164 WAts D&t

1001 a cat right 2165 6k&t r9t

1002 there s another cat 2166 D*z 6 nADR k&t

1003 thatsa no ther cat 2167 D&ts 6 nADR k&t

1004 whats this cat doin 2168 WAts DIs k&t du IN

1005 what shedo in 2169 WAts hi duIN

1006 whats the cat doin 2170 WAts D6 k&t duIN

1007 ishe awa ke 2171 Izhi 6we k

4287 open that 9641 op , D&t

4288 now em ust nt openthat one 9642 no wi mAs ,t op , D&t wAn

4289 because this canget us alld irt y 9643 bI kAz DIs k&ngEt As Old 3t i

4290 keep this one closed 9644 kip DIs wAn kloz d

4291 dont open that one either 9645 dont op , D&t wAn iDR

4292 open that 9646 op , D&t

4293 you can open that 9647 yu k&n op , D&t

4294 canya close it 9648 k&n yu kloz It

4295 very good 9649 v*i gUd

4296 you cut your finger a little bit 9650 yu kAt y) fINgR 6 lItLbI t

4297 y uh 9651 y&

4298 that s right 9655 D&ts r9t

4299 put them away 9656 pUt DEm 6we

4300 good 9657 gUd

4301 you want the doll 9658 yu want D6 dal
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Table 6

Corpus characteristics and results of BootLex segmentation for five variations of the Bernstein-Ratner corpusa

Corpus characteristics Performance %

Number of Code type Avg # chars %UB Lex Rep (TTR) Word recall Word precision

chars words codes /utt /word

Child-directed speech

Large 95,809 33,399 50 phon 9.8 2.9 30 25.3 68.2 67.2

Medium 40,792 14,184 50 phon 9.4 2.9 31 16.0 65.0 62.3

Small 13,690 4,746 50 phon 8.9 2.9 33 9.7 57.8 51.8

Other variations

Orthographic 53,439 14,188 26 alph 12.4 3.8 31 15.5 61.9 58.4

Adult-directed 61,784 20,242 50 phon 19.6 3.1 16 10.7 53.7 50.5

a Code ¼ primitive symbols (character set): phonemic or Roman alphabet; %UB ¼ percent of standard word boundaries that are also utterance boundaries ¼ chars/

word 4 chars/line; TTR ¼ (# word tokens in standard) 4 (# of word types in standard); word recall ¼ (# word tokens same in model and standard) 4 (# word tokens in

standard) £ 100; word precision ¼ (# word tokens same in model and standard) 4 (# word tokens in model) £ 100.
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Table 7

Corpus characteristics and results of BootLex segmentation for eight corpora in three languagesa

Corpus characteristics Performance %

Number of Code type Avg # chars %UB Lex Rep (TTR) Word recall Word precision

chars words codes /utt /word

Transcribed speech

English (large) 95,809 33,399 50 phon 9.8 2.9 30 25.3 68.2 67.2

Japanese (A) 312,818 77,219 24 alph 11.8 4.1 35 21.4 56.0 53.8

Japanese (H cvt) 184,022 77,219 77 hira 7.0 2.4 34 21.4 54.5 53.3

Spanish 103,892 26,552 32 alph 15.6 3.9 25 10.3 50.5 46.8

Written prose

English 313,321 74,951 26 alph 42.1 4.2 10 10.6 44.9 43.0

Japanese (H) 37,060 19,255 78 hira 17.7 1.9 11 11.0 38.0 37.4

Japanese (A cvt) 74,120 19,255 30 alph 35.5 3.8 11 11.0 35.3 34.4

Spanish 126,946 25,926 26 alph 47.6 4.9 10 4.2 32.0 26.1

a (A) ¼ as originally transcribed, in Roman alphabet; (H cvt) ¼ mechanically converted from alphabet to hiragana; (H) ¼ as originally published, in hiragana

characters; (A cvt) ¼ mechanically converted from hiragana to alphabet; Code ¼ primitive symbols (character set): phonemic; alphabet (for Spanish, with no diacritics);

Japanese hiragana syllabary; %UB ¼ percent of standard word boundaries that are also utterance boundaries ¼ chars/word 4 chars/line; TTR ¼ (# word tokens in

standard) 4 (# of word types in standard); word recall ¼ (# word tokens same in model and standard) 4 (# word tokens in standard) £ 100; word precision ¼ (# word

tokens same in model and standard) 4 (# word tokens in model) £ 100.



the codings are shown in Table 8). The English spoken corpus was run in standard

orthography and in the 50-code phonemic scheme which was shown above. The Japanese

spoken corpus used the original roman alphabetic coding, plus a mechanical transliteration

from alphabet to syllabic kana characters, and then mechanically converted back to alpha-

bet. A Spanish spoken corpus used orthography with and without diacritics, and ortho-

graphy adjusted toward a more phonemic representation. Segmentation results (recall and

precision) for all the corpora are shown graphically in Fig. 3, in the same order as listed in

Table 8. It can be seen that the results for different versions of the same corpus were more

similar than those across corpora (R ¼ 0:96, P ¼ 0:0001), even within the same language.

Corpus characteristics which were correlated with performance in these tests were the

relative number of standard word boundaries which were provided as utterance boundaries

(%UB, R ¼ 0:80, P ¼ 0:0006) and the rate of lexical repetition (TTR; recall, R ¼ 0:574,

P ¼ 0:032; with precision, R ¼ 0:632, P ¼ 0:015).

We expected that representations which were closer to the speech signal (more phone-
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Table 8

Comparison of different encodings for the same corpus, shown for five corpora

Corpus description No. of codes Percentage Percentage Sample encodings (content same across one corpus)

Recall Precision

English spoken (ENGV)

Phonemic 50 65.0 62.3

Orthographic 26 61.9 58.4

Japanese spoken (JAPV)a

Roman original 24 56.0 53.8

Hiragana transliteration 77 54.5 53.3

Roman transliteration 29 52.4 50.5

Spanish spoken (SPAV)

Without diacritics 26 50.5 46.8

With diacritics 32 50.4 46.3

Phonemic 32 48.1 44.6

English written (ENGW)b

Phonetic 35 47.8 45.7

Expanded 26 45.4 43.3

Orthographic 26 44.9 43.0

Japanese written (JAPW)c

Hiragana original 78 38.0 37.4

Roman transliteration 30 35.3 34.4

Roman adjusted 29 32.5 31.8

a The Japanese spoken corpus was first transcribed in Roman letters, then transliterated (by machine) into

hiragana syllabary, then retransliterated (by machine) into alphabet.
b For the “expanded” version of the English written corpus, an extra character was added to every vowel (az, eh,

ij, ow, ur) in order to make the overall number of characters roughly equal to the phonetic version.
c The Japanese written corpus was first written in hiragana, then transliterated by machine into Roman letters,

then the Roman version was adjusted (by machine) to bring it closer to the standard Roman orthography.



mic or phonetic) would perform better than more traditional – and less transparent –

orthography, but we could not find a consistent effect either way. The BootLex algorithm

seems to segment more or less effectively regardless of the coding scheme.

One explanation for this finding is that any transcription system which is devised by

humans to “make sense” – that is, to be consistent with our knowledge of language – is

sufficiently abstract and grounded in the (human) transcriber’s knowledge of the language,

that the difference between two or more such systems will be comparatively small and will

not give a significant advantage in segmentation. In other words, BootLex can detect

word-form-based regularities using any idiosyncratic representation which is both cate-

gorical and consistent. By analogy, then, we can say that early word segmentation which is

based on probabilistic parsing like the BootLex algorithm would allow infants to have

initially idiosyncratic mental representations during this early stage and still be successful

word-finders.
X Lexical measures. Lexical recall and precision are similar to ordinary recall and

precision, but computed on lexical types rather than on running-word tokens. In computing

this measure for BootLex (Fig. 4), all word types which were used in at least one parse

were considered part of the lexicon which had been “learned”. The recall measure is hits

(those “correctly” parsed by the model) divided by the standard, while precision is hits

divided by the total number of found words. Since the number of word types created by

BootLex was significantly greater than the number of word types in the standard, lexical
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Fig. 3. Comparison of recall and precision (%) of BootLex performance using different encodings on five corpora

(corpora shown here in the same order as listed in Table 8).

Fig. 4. Lexical recall and precision (%), both marginal and cumulative, for BootLex on the large phonemic child-

directed version of the Bernstein-Ratner corpus, by 500-utterance sections.



recall was higher than lexical precision: hits accounted for more than 50% of the types in

the standard (recall varied from 51.0 to 56.0%), but for only about 30% of the total types

found by the model (precision from 30.4 to 33.7%). Marginal rates are also shown,

calculated for just the new types in each 500-utterance section, and these rates can be

seen to fluctuate considerably. The apparent stability of the cumulative figures is due to the

fact that there are fewer and fewer new types in each successive section, and they have a

correspondingly smaller and smaller influence on the cumulative percentage.

The quantitative measures we have discussed here show that BootLex is an effective

segmenter, able to use statistical measures of co-occurrence tendency to divide the text

stream into chunks that closely resemble traditional and intuitive “words”. Further, its

segmenting effectiveness works across a broad range of texts which vary in language,

encoding, and content.

3.4. Functional characteristics of BootLex

Here, BootLex is positioned with respect to the five functional characteristics discussed

in Section 2.1.
X Build lexicon? As it receives the input and produces segmented output, BootLex is

simultaneously building a lexicon which serves as the store of its cumulative knowledge.

The lexicon contains particular words (word types) which have been “learned” and are

reused (as word tokens) in segmentations of new utterances as they are encountered.
X Cluster or divide? BootLex is a clustering algorithm, beginning with minimal “words”

consisting of the individual codes which were provided at the outset. These are combined

into clusters based on which groupings are seen most frequently in the input, so the

“words” get longer and longer with experience.
X Cumulative? In BootLex, learning is incremental and cumulative, continuing as long

as text is received. Possible words are added to the lexicon, and some of these candidates

gradually become more and more likely as evidence for their existence accumulates –

while others fall further and further from consideration if not much additional evidence is

encountered, and if they consistently fail to win in competition with other candidates.

Should the nature of the input change midway in some significant respect, the BootLex

learning process gradually adapts itself to this change, with segmentation decisions

increasingly reflecting the newer input as more of it is seen. Words could even be

“unlearned”, or abandoned, if a better segmentation comes into use (though there is no

provision in the computer model to actually remove such words; they would just cease to

appear in newly parsed utterances).
X Feedback from output? During BootLex processing, both inputs and outputs occur

continuously and overlap with each other, each input utterance immediately followed by a

segmented output. However, this is not just a mechanical alternation of input and output,

but a more diffuse learning process based on feedback from output to input. After an input

utterance is segmented based on the information in the current lexicon, the results of that

segmentation are recorded in the lexicon as new information. Thus, the lexicon represents

knowledge accumulated not from the input utterances directly, but only after their trans-

formation into system outputs. Further, because each processed utterance becomes part of

the knowledge store, the effect of a particular input/output sequence is not completely
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exhausted in the same cycle, but it continues to influence decisions made many cycles

later.
X Constraints? The “optimum-length” parameter in BootLex sets an upper limit on the

algorithm’s inherent tendency to produce longer and longer words as more input is

processed. This constraint penalizes the creation and use of words which are longer

than the “optlen” when there are suitable shorter candidates, thus giving very long

words a probabilistic disadvantage without absolutely preventing their use. The actual

value of the optlen parameter used in the experiments was calculated to produce about the

same number of word tokens as exist in the standard, in order to realize the most optimal

match with the standard and thus compare the algorithm’s peak performance on various

texts. While there are cognitive analogs for a general constraint on the word-lengthening

tendency, which we will discuss at greater length in Section 5, we do not claim that the

child actually calculates or uses such a parameter. It is an arbitrary external constraint,

such as is used by many computer models.

3.5. BootLex vs. Olivier and other probabilistic models

Olivier (1968) was the first to create a working probabilistic segmentation routine. In a

dissertation entitled Stochastic grammars and language acquisition mechanisms, he was

concerned both with psychological reality and empirical effectiveness. Although Olivier

(1968) has been widely cited in subsequent research, it is usually as a curiosity or excep-

tion. Batchelder (1997) was the first attempt to resurrect his ideas in a viable cognitive

model. In detail, the differences between Olivier’s algorithm as originally implemented

and BootLex are:

Olivier BootLex

Parse sections contain exactly 480 characters. Parse sections contain varying numbers of

characters,19 representing utterances or sentences.

Parse sections may end mid-word. Parse sections never break a word.

Dictionary is purged of unused candidates when

it gets too full.

Dictionary is allowed to expand (now we have

larger computers).

Lexicon tallies are updated for each word in the

parse, and also for each word-pair candidate

Lexicon tallies are updated for each word in the

parse, but word-pair candidates are not tallied

until used in a parse.

No constraint; words are allowed to get longer

and longer.

The parsing algorithm is constrained by an ideal

average word length (optlen) and parses are

penalized if they exceed it.

E.O. Batchelder / Cognition 83 (2002) 167–206 185

19 The effect of supplied boundaries is significant. Trials with BootLex on utterances of various number of words

indicate that as the ratio %UB (# utterance boundaries/# word boundaries) increases, the recall rate tends to

increase, generally by an amount about one-half the amount of the ratio increase. Thus, for instance, the written

English (maughamt) corpus was tested with %UB ratios of 5, 10, and 19%, and the recall rates were 43, 45, and

49%, respectively. Accuracy rates also increased comparably.



Wolff (1975, 1977) used a very similar approach. He knew Olivier’s work only by a

report in Brown (1973), and apparently developed the idea independently, inspired by the

artificial-language-learning experiments of Hayes and Clark (1970). Wolff also began with

single letters and entered in the dictionary pairs of parsed “words”, with the difference that,

while Olivier entered all possible pairs, Wolff entered only those pairs that passed some

frequency threshold. Wolff’s results, both lexicon and parsed text, highlighted the various

levels of structure in the language. His lexicon also gave a count of the number of text

letters which had been traversed when the item was added, which can be seen as an

indicator of structural level, or strength of association. In fact, Wolff was less concerned

with the segmented results of parsing or the “words” found in the final dictionary than he

was with the relative strengths of association. He showed that the general trend of his

routine was not only to discover boundaries, but to rank them in terms of strength, with

intra-morpheme connections stronger than morpheme boundaries, which in turn were

stronger than word boundaries, words stronger than phrases, and so on.

A rather offhand experiment in segmentation was carried out by Redlich (1993) as a

trial and demonstration of techniques to be applied later in visual image processing. It

used entropy as the evaluation criterion – specifically, the redundancy of the word

distribution relative to the character distribution. Like Olivier and Wolff, he started by

assuming that each letter was a word and gradually combined them to make larger and

larger words. But, like the minimum description length (MDL) techniques to be

discussed below, his algorithm created a lexicon by optimizing the representation of a

particular and finite corpus, a strategy which we will show has serious limitations as a

cognitive model.

More recently, work by Perruchet and Vinter (1998) is also relevant and interesting.

Their model combined observed characteristics of perception and memory, such as atten-

tion, forgetting, and interference. The operation of the model was startlingly similar to that

of BootLex, despite its different theoretical origins:

Our account assumes that the material is mandatorily perceived as a succession of

small and disjunctive chunks composed of a few primitives. This characteristic is

thought to be inherent in the attentional processing of ongoing information. When a

chunk is repeatedly perceived, its components are associated and form a new repre-

sentational unit as an automatic by-product of the joint attentional processing of the

components. The units of the language initially emerge thanks to a sort of natural

selection process: among all the units that are created, only those matching the

words (or parts of words) are sufficiently repeated to resist forgetting and inference.

These initial representational units in turn become able to guide perception and to

enter as components of other percepts, and this process continues recursively. (p.

258)

This model was able to duplicate the results of the several human experiments by

Saffran et al. (Saffran et al., 1996a,b; Saffran, Newport, Aslin, Tunick, & Barrueco,

1997), which used a small number of nonsense words and syllables, but the authors

correctly recognize that tests on larger and more natural sample of language are neces-

sary before much can be said about its overall effectiveness as a model of early language

learning.
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4. Other model strategies

A number of computational models of segmentation using other paradigms have been

reported recently, falling into three main groups:

(i) Three connectionist networks

(ii) Two algorithms using the minimum description length principle

(iii) Two algorithms based on a formal statistical model called “Model-based dynamic

programming” (MBDP)

All these models interpret the cognitive problem of word segmentation similarly, as

discussed above, but there are significant differences among them in goals and methods.

Each group will be described and discussed, particularly with respect to the five functional

characteristics introduced earlier, and then compared with each other and with BootLex.

4.1. Connectionist models

Three groups of researchers have created connectionist networks to study segmentation

from a developmental point of view.20 These models do not create a lexicon or directly

refer to words as objects; they learn phonotactic regularities rather than particular words.

Table 9 gives more detailed information about the architecture and training parameters for

each network.

4.1.1. University of Rochester

Aslin, Woodward, LaMendola, and Bever (1996) of the University of Rochester used a

simple feed-forward network which was trained to predict utterance boundaries from

phoneme and pause information. Each of 44 phonemes was coded as 18 articulatory binary

features of a type now traditional in linguistics (sonorant, coronal, round, etc.), and the

input stream was presented as moving triples – phonemes 1 2 3, then phonemes 2 3 4, etc.

There were thus 55 input units – three phonemes (3 £ 18 ¼ 54), plus a unit indicating the

presence of an utterance boundary. The output of the network was a single unit that

indicated the presence or absence of an utterance boundary. A very small corpus of

child-directed speech was input, and the state of this output unit was noted after each

input sequence (once for each phoneme). As expected, the highest activation of the output

unit occurred at utterance boundaries, but there was also greater activation on average at

lexical (word) boundaries than between word-internal phonemes. This meant that the

network was “learning” something about word boundaries by observing the beginnings

and ends of words at utterance boundaries.

4.1.2. University of Southern California (USC)

At USC, Christiansen, Allen and Seidenberg (Christiansen et al., 1998) tested the effect of
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20 Two additional connectionist models have been reported, both aimed at replicating the results of the Saffran et

al. experiments with nonsense syllables: Gasser and Colunga (1999) and Dominey and Ramus (2000). They will

not be treated here because, like Perruchet and Vinter (1998), discussed in Section 3.5, they do not report tests on

natural language inputs.



combined cues to word segmentation – sequential phonotactic structure, utterance bound-

aries, and word stress information. They used a simple recurrent network (SRN) design

(Elman, 1990), which combines new input with a “memory” of its own state in the preceding

cycle, recorded in “context units”. A fairly large corpus was used, from the CHILDES

database (MacWhinney, 1995), of speech directed to infants of 6–16 weeks of age. The

corpus was edited to avoid unusual or idiosyncratic words, deleting about one-quarter of the

text for this reason, and then transcribed using 33 phonemes, which were represented to the

network as 11 binary features. Utterance boundaries were represented as a single binary

unit. After supervised training, for both the next phoneme and boundary unit status, outputs

at test showed a much higher mean activation level of the boundary unit at lexical bound-

aries than word-internally. The results were very similar to those of the Rochester group; see

the comparison in Table 10. The difference between the low and high activation is about the

same in both studies, but in one the “lexical boundary” level is closer to “utterance bound-

ary”, while in the other it is closer to “word-internal”. Since there was no lexical boundary
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Table 9

Comparison of three connectionist networks designed for word segmentation

Rochester USC Edinburgh

Training corpus

Transcribed speech directed to infant infant adult

Size in words 1300 25,000 300,000

Size in segments (characters) ,5000 73,947 1,000,000

Average segments per word ,3.75a 3.00 3.30

Average segments per utterance 10–15 9 n.a.a

Token/type ratio (TTR) for words #10 30 #25

Coding

# segments ,44a 33b 45

# binary features (bits) 18 11 9

Training process

Iterations 2–3 1 2

Total segments input #15,000 73,947 2,000,000

Total bits input #270,000 813,417 18,000,000

Next-segment training? yes yes yes

Utterance boundary training? yes yes no

Net architecturec FF (window of 3) SRN BPTT

Input units 54 1 1 11 1 1b 9

Hidden units 30 80 60

Context units – 80 60

Output units 1 36 1 1d 27

a , indicates an approximate estimate, where precise figures are not reported; n.a., information not reported.
b Although 36 phonemes were intended, in fact only 33 phonemes were input. In three cases, identical feature

codings were used for two different phonemes: /I/ and /V/, /e/ and /i/, and /k/ and /g/, the latter as erroneously

coded (Christiansen et al., 1998, p. 266).
c FF, feed-forward; SRN, simple recurrent network; BPTT, back-propagation through time.
d Input was by features, output was local coding (one unit for each phoneme).



information given to the nets, the activation of the boundary unit at those points can only be a

generalization from utterance boundary information. Christiansen et al. (1998) thus claim

that their net has a greater ability to generalize than was found by Aslin et al. (1996).

4.1.3. University of Edinburgh

A group at the University of Edinburgh (Cairns, Shillcock, Chater, & Levy, 1994, 1997;

Shillcock, Cairns, Chater, & Levy, 2000) used the “back-propagation through time”

(BPTT) network architecture, a computationally more intensive method than the SRN,

and one which “allows the error signal to be back-propagated through longer stretches of

time than in the SRN… The task is to echo the current slice of input [phoneme], to

remember the previous, and to predict the next… [B]oundaries are proposed at peaks in

the error score on the prediction output units” (Cairns et al., 1997, p. 133f). This group

used a very large corpus, the London-Lund Corpus of adult speech, converted to a phone-

mic feature-based representation using 45 phonemes and nine features (Shillcock, Lind-

sey, Levy, & Chater, 1992), but even the best results were poor. The authors concluded

that “…the network does not segment more whole words from the test stretch than it would

by chance” (Cairns et al., 1997, p. 140). Although other differences, such as adult-directed

rather than child-directed speech and an unusual feature scheme, may also have contrib-

uted to the lackluster results, it seems likely that the lack of boundary training was

primarily responsible. While utterance or pause information was represented in the

input to the other two networks, no boundary information at all was supplied here.

4.1.4. Functional characteristics of connectionist models
X Build lexicon? None of the networks produces a lexicon.21 For networks, the store of

knowledge learned is in the hidden units of the network, which mediate between input and

output, not a lexicon. Thus, we can say that what the networks are “learning” is different in

principle from what BootLex and the other models to be described here are “learning”: the

networks’ goal is not to discover and learn words, but to acquire word-finding skills. They

model the learning of phonotactic characteristics of words by observing those phoneme (or

featural) clusters which tend to occur at utterance boundaries and then generalizing these
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21 While this statement is restricted to the networks described here, I do not know of any connectionist model

which creates “lexical entries” from subword units in the course of processing and provides for them to be the

objects of activation, though some, like TRACE (McClelland & Elman, 1986), can recognize words which are

“built-in” to the architecture of the model as objects from the outset.

Table 10

Comparison of two SRN networks: activation of the output unit at three types of position

Mean boundary unit activation at: USCa University of Rochesterb

Word-internal (not a boundary) 0.05 0.08

Lexical (word) boundary 0.25 0.18

Utterance boundary 0.34 0.35

a Including the stress component, estimated from Fig. 4 in Christiansen et al. (1998, p. 242).
b Estimated from Fig. 8.5 in Aslin et al. (1996, p. 129).



to discover the most likely utterance-internal word boundaries. The end result of the

process is thus not a store of learned words, but knowledge of phonotactic regularities

of the language.
X Cluster or divide? While BootLex clusters, the networks divide. While segmentation

is a side-effect of the clustering process, with boundaries arising between clusters, the

converse occurs in the networks – points of unusually low cohesion are treated as word

boundaries and words arise as a side-effect of this dividing process.
X Cumulative? This is the only one of these five functional characteristics for which the

connectionist models and BootLex are similar: both proceed by small increments toward

the learning goal. If the input should change, both will gradually reflect the new input in

the output.
X Feedback from output? While the connectionist models learn incrementally, input and

output are not interleaved, which is a precondition for feedback of output to input, so the

nets cannot make use of such feedback. In these models, input events as a group are

separated in time from output events. The network is instructed either to “learn” (training

phase) or to “perform” (testing phase), but never both concurrently. During the training

phase, a data stream is presented and each increment of data causes a slight modification of

the internal weights. The mechanism of learning is the network’s prediction about the next

item of data (based on its observations so far), which is “corrected” when that item of data

arrives, and the gap between the prediction and the correction becomes part of the training

process. In this sense, temporally “local” outputs feed back to affect learning, but a

distinction can be made between these local outputs, which are not recorded or reported,

and those “global” outputs which are the goal of the learning process. After training is

deemed complete, the network is instructed not to further modify its representations, but to

preserve its internal state and continue to make predictions about the incoming data

stream, using its accumulated knowledge. It is these predictions that are captured by the

researchers and interpreted as global outputs, the end results of the learning process being

modeled. Thus, the global inputs and outputs of the model’s learning process are not

overlapped, and the reported outputs do not affect the learning process, since it is already

complete.
X Constraints? Networks have a number of external constraints, beginning with the

various technical decisions involved in designing and running the network (as detailed in

Table 9). In all three networks reported here, a crucial external constraint was the bound-

ary output threshold which was needed to convert the outputs from graded values (a range

of activation levels between 0 and 1) to discrete data (word boundary: yes or no). Those

outputs which had activation levels exceeding this criterion threshold were reported as

word boundaries. The Rochester and USC nets both trained a special output unit by

matching it to utterance boundary information, and used as a threshold the mean activation

level of all these output units. The Edinburgh group used a cross-entropy error measure (0–

1) of the output of a phoneme prediction task, and a threshold that “maximized the mutual

information” (Cairns et al., 1997, p. 134). Using that cutoff value, the network greatly

underdivided the corpus, with the number of inserted boundaries only 35% of the standard

number. It is not clear from their report whether a different cutoff value would have

yielded better results.
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4.2. Minimum Description Length

Minimum description length refers to an evaluation criterion (Ristad & Thomas, 1995)

that looks for the shortest combined length of both the data and its analysis – that is, the

encoded text and the lexicon derived from it. The MDL technique was originally devel-

oped for data compression, but it is also effective as a segmentation technique, since it

finds the best representation of a text as a series of recurring small units.

Carl de Marcken (1995, 1996a,b) used the MDL metric to segment text, though he made

no claim to be modeling cognitively realistic processes. He used an optimized approach to

avoid testing every possible lexicon, and his results on a variety of corpora were quite

remarkable as a testimony to both the amount of structure in language and the ability of the

MDL algorithm to extract it. However, his algorithm discovered structure at various levels

rather than creating a single series of words. For example (de Marcken, undated):

[s[h[or]]t] [c[ut]]
[[[ju][st]]_] [a[s_]]
[m[er]] [e[[ly]_]]

This kind of graded segmentation can be an advantage for some purposes, but it makes a

quantitative evaluation of segmentation performance more difficult.

Brent and Cartwright (1996) used the MDL algorithm for segmentation in a model

which exhaustively tested every possible segmentation of a text in order to select the

best one – the one with the shortest combined length of the lexicon and the coded

representation of the text. This process is equivalent to choosing as “words” those combi-

nations which occur together most frequently and in the greatest variety of contexts. Brent

and Cartwright (1996) ran experiments on the same phonemic corpus that we have

described above (Cartwright & Brent, 1994). The results reported by Brent and Cartwright

(1996) were based on a tiny part of this corpus, since the algorithm was so computationally

intensive that it could not handle a larger amount of data.

To characterize the MDL algorithm reported by Brent and Cartwright (1996) in terms of

our functional characteristics, it produced a lexicon and used a clustering process. Further,

like other MDL algorithms, it was constrained by the tension between the length of the

word type and its frequency. Minimizing the combined length of the coded text and the

lexicon results in the avoidance of two extremes: long words which occur rarely, and very

short words which occur too frequently.

However, in the MDL-based algorithm the timing of input and the consequent learning

were not incremental processes. All input was accepted as a single event and then

processed repeatedly, at the end producing a lexicon and a segmented version of the

input text.

The search algorithm… operates in batch mode, reading in the entire input before

segmenting any part of it. Clearly, children do not work this way. Rather, they add to

their lexicons incrementally as new input becomes available. (Brent & Cartwright,

1996, p. 117)

Since the input and output did not overlap at any point, no feedback from output to input
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was possible. Further, the MDL principle assumes a bounded set of data to work on, with

no possibility of the input changing or being extended during the learning process. This

restriction is so unlike the ongoing process of human word-learning that, despite the fact

that Brent and Cartwright (1996) is the most widely cited simulation of infant word

segmentation, it is hard to consider MDL a successful cognitive model.

4.3. Model-based dynamic programming (MBDP)

Brent (1999a) presented another, and truly incremental, algorithm called MBDP-1, and

a very similar one is reported in Venkataraman (2001).22 These models are similar to

BootLex in many respects. Like BootLex, they build a lexicon, and select words from the

lexicon to parse utterances, keeping a tally of the number of times each word appears in a

successful parse. This “parse frequency” is used to evaluate succeeding parses, thus

providing for output to feed back into the learning process. However, while BootLex is

a “clusterer”, MBDP is a “divider”. The MBDP models begin with an empty lexicon and

create new “words” in two ways:

(i) When an utterance cannot be segmented, by default the whole utterance is added to

the lexicon as a single “word”. The first utterance in the corpus, therefore, always becomes

the first item in the lexicon – the first “word”.

(ii) During the process of segmenting an utterance by recognizing one or more lexical

items in it, any unrecognized portion is considered to be one or more new words. For

instance, suppose the utterance hello is encountered and entered in the lexicon (because it

could not be segmented). Later, the utterance hellojoe occurs, and the listed word hello is

recognized within it. The residue of this second utterance – joe – is then added to the

lexicon as a word.

As discussed above for BootLex, it is often the case that a given utterance can yield a

number of different parses by using different items from the lexicon and/or by segmenting

residue strings differently. The method of determining the best parse in MBDP is similar to

BootLex: compute the estimated probability (“preference value”) of each word in each

possible parse and select the parse with the largest product of these preference values. In

the MBDP algorithms, there are two formulas for calculating preference values: one for

lexicalized words (those previously seen) and one for novel words.
X The preference value for a lexicalized word is approximately its “parse frequency” –

the number of parsed occurrences for its type in the lexicon, divided by the total parsed

word tokens so far.
X The preference value for a novel word is its likelihood purely as a string of phonemes,

estimated as the product of individual phoneme probabilities. Each phoneme’s probability

is estimated as its frequency of occurrence in the list of word types in the lexicon.23 The

algorithm reduces the preference value by a constant factor for each novel word, so a given
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22 Because the algorithm in Venkataraman (2001) is much simpler than, and the results are virtually identical to,

Brent (1999a), my description of the algorithm leans more heavily on the former paper.
23 Venkataraman (2001) tested three bases for phoneme frequencies: types (frequency of phonemes in the
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(equal) distribution. There was a significant performance disadvantage to the flat distribution, but only a very

small advantage to the type-based over the token-based frequencies.



phoneme string will always score better as a single word than as several. However, short

novel words will generally receive a higher score than longer ones as the product of

phoneme frequencies, since products of fractions tend to decrease with the number of

terms (cf. Table 3). This means that parses which leave shorter residue strings will be

preferred in the overall calculation.

Thus, the MBDP algorithms and BootLex both model an incremental and cumulative

learning process which creates a lexicon. Input and output are overlapped, with feedback

from the output to the lexicon. The major difference is that in MBDP “words” start out

long and get smaller, whereas in BootLex they start small and get longer. The occurrence

and co-occurrence frequency patterns of phonemes and pauses in the text, which are

central to the BootLex learning strategy, are less important in MBDP. The MBDP algo-

rithms learn words as whole utterances with no internal structure, and then use a “divide”

strategy to recognize previously learned chunks in order to segment new utterances.
X Principled vs. intuitive. Constraints used in the MBDP algorithms include several

mathematically complex and computationally intensive parameters. The implementation

in Brent (1999a) incorporates several heuristic approximations which use externally

derived parameters, such as particular distributions on the positive integers. Venkataraman

(2001, p. 361) says of the model in Brent (1999a) that it “requires the explicit calculation

of the probability of the [current] lexicon in order to calculate the probability of any single

segmentation”, rather than simply using dynamically recorded frequencies. The Venka-

taraman (2001) model requires only the calculation of phoneme frequencies in the current

lexicon.

MBDP is based on a formal statistical model as defined by a set of complex mathema-

tical formulas. Such mathematical foundations are typical of many computer models, and

they represent an issue which affects scholarly exchange among members of the modeling

community. Computer models of language acquisition and processing like those discussed

here are potentially the offspring of three quite different research traditions – linguistics,

psychology, and computational linguistics. Computational linguistics has close ties to

computer science and artificial intelligence, in which a “formal model” consists of a

system of mathematical relationships which are intended to express hypothesized relation-

ships among the processes being modeled (Charniak, 1993). Such models have certain

predictable properties which have been well documented, and are thus good research

vehicles that can be developed and compared in an orderly fashion. The MBDP algorithms

are statistical models in this tradition, and the connectionist networks also have a math-

ematical basis.

On the other hand, BootLex does not have such a mathematical justification. It would

thus be termed “ad hoc” or “heuristic” by those who work closer to algorithmic theory than

to psychological ones. However, mathematical notation, which is indeed the most precise

description of a model’s operation, is frequently incomprehensible to all but specialists in

that field. The necessary “leap” from a cognitive hypothesis to its mathematical expression

may thus not be easily available for review. A simpler and more intuitive algorithm can be

easier to comprehend, and thus easier to evaluate as plausible or not, even though it is not

guaranteed to be mathematically consistent.

The ideal solution might be an approach like that of Perruchet and Vinter (1998),

discussed above, in which psychological principles form the basis for a computational
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model, which would then be more intuitive than mathematically-based models but more

principled than a completely heuristic one.

4.4. Quantitative comparison of models

Representative quantitative results reported for the models discussed above are

summarized in Table 11. Both cut and word measures are shown wherever available, in

order to provide as many points of comparison as possible despite different reporting

practices. Evaluating the correctness of cuts is less stringent than evaluating words,

since a correct word requires that at least two cuts be correctly placed. Table 11 shows

that BootLex does as well as or better than the others by both measures.

MBDP are the most recently reported models, and their performance is much better than

earlier models, competitive with BootLex. Since both the MBDP models and BootLex

report results on the Bernstein-Ratner(–Cartwright) corpus, they can be directly compared.

Fig. 5 shows both precision and recall plotted for successive sections of 500 utterances in

the corpus, plus a smoothed version for easier interpretation. On this corpus of almost

10,000 utterances, the two algorithms are performing at almost identical levels by the end

of the learning process.

Neither Brent (1999a) nor Venkataraman (2001) report lexical precision and recall

information like that shown for BootLex in Fig. 4. Brent (1999a) does give a statistic

which he calls “lexical precision”, but which is computed differently. The word types

parsed from a given 500-utterance section of the corpus are compared with all word types

in the entire standard corpus up to and including that section. This statistic will generally

be greater than the marginal and cumulative precision we showed in Fig. 4, because it uses

two different text spans to define correct word types.24 Applying Brent’s formula also to

BootLex (Fig. 6), we see that BootLex consistently outperforms MBDP on this novel

measure.

The performances of MBDP and BootLex are thus very similar. However, it should not

be surprising to find that quite different techniques can be equally successful in harnessing

the inherent statistics of language:

When two computationally powerful systems are given the same set of input data,

they both extract every bit of data regularity from that input. (MacWhinney, 1993, p.

295)

Taken together, these results demonstrate that there is a good deal of information in the

statistical structure of the speech signal that could help the infant locate initial word

boundaries, and that quite different techniques succeed in extracting this information.
X Effect of kind of language input. BootLex and MBDP performed very similarly on the
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count of all word types found in the same area, and let “correct words” be defined as those word types found
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same inputs. However, only BootLex was tested on a number of other texts, using three

languages and varying the encoding and other characteristics of the input as well. These

tests showed that the BootLex algorithm achieved significant segmentation results on a

variety of corpora, but it performed better on the spoken corpora tested. The probable

reasons for this are not hard to guess. Spoken corpora have shorter utterances, which give

more information about word boundaries by providing relatively more utterance bound-

aries, and shorter words, which tend to involve less of a confound between the phonotac-

tics of syllables and words. When longer and more complex words are encountered,

phonotactic strategies which (in English) are largely syllable-based will be likely to

misdivide words like seg ment and mis read.

The MBDP algorithms reported results only on a spoken child-directed corpus, but it

would also seem likely to do less well with more complex texts, perhaps tending to

incorrectly segment out embedded words when faced with multimorphemic words like

cat er pillar or house keeper. Although it has been shown that short utterances and high

repetition rates are typical of child-directed speech, there is also ample evidence that “the

abused and neglected children of the world, regardless of their other difficulties,

adequately acquire the language of their communities” (Gleitman & Bloom, 1999, p.

435), so an algorithm which requires input to have particular characteristics would not

be a satisfactory model of this learning process. MBDP, as well as the connectionist nets,

should be tested on a wider range of language input.
X Distribution of what? Before proceeding to more general cognitive issues, we should

observe that, although all of the models used distributional information to make segmen-

tation decisions, they did not all attend to the distribution of the same elements. As

Redington and Chater (1998, p. 145) point out:

To state that a particular aspect of language is acquired from distributional informa-
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Table 11

Comparison of reported quantitative performance of segmentation models, measured as cuts or words matching

the respective standard

Model type and project Training set (phonemes) Evaluating cuts Evaluating words

Recall Precision Recall Precision

BootLex 96,000 83% 81% 68% 67%

Connectionist

Rochester # 15,000 62 74 – –

USCa 74,000 71 66 40 37

Edinburgh 2,000,000 21 60 – –

MDL

Brent and Cartwright (DR) 1,520 – – 47 41

MBDP

Brent (1999a)b 96,000 – – 69 67

Venkataraman (2001, 1-gram) b 96,000 – – 70 68

a The network trained on stress information in addition to phonemic and utterance boundary information

achieved slightly higher levels: 74% recall and 70% precision on cuts, 45% recall and 43% precision on words.
b From Table 2 in Venkataraman (2001); no comparable figures were given in Brent (1999a).



tion has, by itself, no more explanatory power than to say that a particular aspect of

language is known innately.

Two kinds of distributional information have been discussed. One is the tendency of

individual codes (segments) and code clusters to occur at utterance boundaries, and the

second is their tendency to form within-utterance clusters.

Both of these were recorded by two of the connectionist networks, but the Edinburgh net

used only segmental information, and no utterance boundaries. Since all the networks

coded phonemes as constellations of features, it is possible that the models recognized

both the actual code clusters and also clusters with similar features, but the reports do not

quantify the extent to which such generalization of features actually occurred, and other

code representations were not tested, neither alternate feature schemes nor local repre-

sentations of the phonemes.25

BootLex was influenced by segment/boundary co-occurrences, but only by that portion

of segment/segment clusters which happened to occur in the parsed output and thus flowed

into the lexicon. To illustrate, consider the parsed utterances in Table 2. Although there are

16 occurrences of the cluster ‘dog’ in the text, only five will be directly counted in the

lexicon (plus one for the first “trial entry”, which was created from the parsed pair ‘d’ and

‘og’ in line 3). All other instances of ‘dog’ were divided, or became part of a longer word.

Thus, while the networks continued to collect information about all trigrams throughout

their processing, the BootLex algorithm selected some combinations, entered them in the

lexicon, and then used this stored knowledge to shape its processing of succeeding inputs.

Utterance boundaries were important because they represent fixed word boundaries and, as

stated earlier19, the proportion of utterance boundaries relative to word boundaries has a

significant effect on BootLex’s performance.

The MBDP algorithms also made use of those clusters which found their way into the

lexicon after parsing, though these were a still smaller subset than in BootLex. MBDP

depended more heavily on the full character string enclosed between two utterance bound-

aries, which became the starting lexical entries. Parsing a residue string into new “words”

relied on the frequencies of individual codes in the lexicon (a list of word types) rather than

on code clusters previously collected from the text. Thus, although both BootLex and

MBDP hypothesized lexical entries and then let future parses determine which ones

survived, their hypotheses were based on quite different information sources.

5. From computer model to infant cognition

The previous two sections have presented the BootLex algorithm and compared it in

some detail with two other groups of models, both in terms of quantitative performance

and more global characteristics of design and function. In this final section, we examine
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the claims of these computational models to be cognitive models – to go beyond the purely

engineering goal of an end product that is comparable with that realized by human infants,

and also demonstrate similarities in process.

The relation between any model and its original is at best a loose analogy, and these

single-purpose computer programs are very far from being true models of human cogni-

tion, even for this limited task. However, it may be instructive to look at the extent to

which, in each case, human attributes can be seen in the machine’s workings, not in the

detailed mechanisms that are used, but in their processing characteristics. The following
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Fig. 5. Quantitative comparison of BootLex and MBDP algorithms by 500-utterance sections [MBDP data points

estimated from graphs published in Brent, 1999a; Venkataraman, 2001].



subsections discuss some cognitive implications of the functional characteristics which

were introduced in Section 2.1.
X Issues of timing and feedback. The infant’s learning process appears to be a continuous

and ongoing one, with “input” being received from birth and “output”, or learning, also

taking place incrementally from the beginning. Thus, we have considered that the mini-

mum requirement of a useful learning model is that it also receive language and learn from

it in a continuous and cumulative fashion. One group of models discussed here, those

based on the MDL algorithm, was unable to demonstrate such a continuous and incre-

mental learning process, and was omitted from further discussion.

Babies also appear to interleave inputs and outputs. This capability was lacking in the

connectionist networks, which partitioned inputs and outputs into separate processing

phases (“training” and “testing”). Although local outputs which represented learning

proceeded concurrently with input, no results issued from the model during the input

phase. Thus, when networks model cognitive processes which would normally alternate

input and output, we must interpret them loosely, as more of an abstraction from the

human original.

Because the networks did not provide for overlapping of inputs and outputs, they had no

possibility of learning from the feedback of output to input. Both the BootLex and MBDP

models used this additional source of information – one which is also likely to be used by

language-learning infants as they engage in an ongoing dialog with their environment,

testing hypotheses and modifying their knowledge based on the response.
X The modeling goal: words or rules? BootLex and MBDP both built data structures in

memory (lexicons), while the network models extracted co-occurrence regularities for

later application. This is the difference between “learning how” and “learning what” –

the networks were learning how to segment, while BootLex and MBDP were discovering

particular words and remembering them for later use. In the lexical approach, a segmenta-

tion of thebunny into the | bunny means that the and bunny have been identified as words.

In the regularity-oriented approach, it implies that the occurrence of a boundary between e
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and b is a more likely linguistic event than one at any other point in the string. For instance,

theb and thebu are determined to be less likely linguistic units than bun or bunny. The two

approaches model different cognitive assumptions – either focused on learning how to

recognize patterns of sounds typical of words and word boundaries, or on remembering

particular words.

However, when we turn from models to babies, it is difficult, perhaps impossible, to

sharply distinguish between the object of learning and the path by which it is reached. In

the absence of any guidelines, learners may make random guesses and then extract

patterns from those guesses which are successful. Memorization of successful guesses

(words) proceeds hand in hand with observation of which cues most reliably lead to

success (regularities). As more and more words are learned, more and more regularities

that led to their hypothesis are confirmed. “Rules”, in the sense of probabilistic regula-

rities, are thus both the cause and the result of successful word-finding. The words

themselves are consciously “known”, while the “rules” or cues that led to successful

learning are implicit knowledge, beneath conscious awareness (Cleeremans, 1993;

Reber, 1993).

In this way, infants are undoubtedly engaged in both “learning what” and “learning how”

simultaneously. Ongoing research in several laboratories continues to try to tease apart the

relative contributions of different cues at various stages in the child’s development (Hauser

et al., 2001; Johnson & Jusczyk, 2001; Mattys & Jusczyk, 2001a,b; Saffran, 2001).
X Cluster vs. divide? Both clustering and dividing are plausible cognitive strategies,

given different starting assumptions. Indeed, the child undoubtedly uses both at various

points, and different children may use different strategies, depending on their learning

styles (Peters, 1983) and the kind of input they receive. However, there are open questions

about their respective uses as first segmentation strategies.

The networks’ divide strategy consisted of locating points of lowest cohesion between

phonemes in the speech stream. This strategy requires that a stream of speech longer than a

word have a mental representation which can then be divided into smaller parts. To aid such

a process, the child might use prosodic features like stress, intonation contours, and pauses

to subdivide long utterances into pieces small enough for computation. Since the network

models did not attempt to use prosody for a preliminary subdividing, it is likely that their

success depended on the use of a corpus of child-directed speech with short utterances. In

fact, the Edinburgh group used adult-directed speech and did not have good success.

In the case of the MBDP models, their use of a very different divide strategy also may

have presumed sufficient short (one-word) utterances to bootstrap the rest of the lexicon. A

recent report by Brent and Siskind (2000) points out that not just “utterances”, but also

mid-utterance words which are bounded by pauses in the speech stream will serve as well.

That paper reported that when child-directed speech was transcribed with attention to the

actual length of pauses, it contained more of such instances, and in more variety, than had

previously been documented. However, both the networks and the MBDP models need to

demonstrate that they are not dependent on particular kinds of input for successful

segmentation.

Secondly, neither of these divide strategies can explain the experimental results of

Saffran et al. (1996a,b), which showed that “when confronted with long stretches of speech

containing no familiar words and no utterance boundaries, infants can still discover novel
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words” (Brent, 1999b, p. 299).26 By contrast, BootLex, which also requires utterance

boundaries at intervals, can succeed in discovering words in this task by breaking the

stream arbitrarily at various points to create “utterances”. Randomly placed boundaries

will incorrectly divide a few words, but not sufficiently frequently to interfere with the

learning process, which also includes observation of within-utterance segment clusters.

The experimental babies, too, must have done something like this – observe the relation-

ships among small chunks of sound – in order to infer boundaries.

Of the models presented here, BootLex is the only viable example of a clustering

algorithm. Although the mechanical nature of a computer algorithm is evident in the

implausibility of some of its early one-unit “words” (like ‘t’ and ‘h’), the general approach

of starting with small bits and building up is a cognitively plausible strategy for even very

young infants, doing what Perruchet and Vinter (1998, p. 249) call “chunking… a ubiqui-

tous phenomenon, due to the intrinsic constraints of attentional processing”. One further

objection that may be raised is that, as Redington and Chater (1998) point out, a clustering

strategy taken literally predicts that children will learn small words before longer ones,

presumably including the function words, which tend to be among the shortest words in a

language. This may be answered by saying that, though infants do not produce function

words, it is possible that they do comprehend them (Gerken, Landau, & Remez, 1990).
X Constraints? Any computer model requires that the target problem be highly struc-

tured, defining in fair detail both data and processes and, for an incremental model,

determining the beginning and end points. All of these design decisions serve to constrain

the problem (the “search space”) so that it is finite and soluble. When there is no motivated

or principled way to make these decisions, they must be made arbitrarily. Since one goal of

all of these projects was to demonstrate just how useful their respective sources of statis-

tical information might be for segmentation, it is likely that optimal values were selected

for all parameters so as to achieve maximal results in the experimental situation.

For human learning and growth also, there must be something to give that growth

direction and structure. So we must ask, with Locke (1996), “Why do infants begin to

talk?” What forces drive their learning? We do not know much about the cognitive

structures which are necessary to shape the infant’s learning of language, neither that

portion which must be taken in completely from the environment, nor that which may

be an actualization of innate capacities. In both cases, those constraints which succeed in

directing similar learning in models can perhaps give us hints about what kinds of

constraints to look for in human babies.

One candidate for a constraint on babies’ learning is an innate tendency to attend to

certain stimuli in the environment, such as human voices (Aslin, Jusczyk, & Pisoni, 1998,

p. 158, and references therein). Another possibility is restricted attentional and computa-

tional resources, or what Jusczyk (1998a, p. 212) calls “the size of the learner’s processing

window”. Such limitations are widely assumed to be developmentally determined, and the
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“less is more” hypothesis (Goldowsky & Newport, 1996; Kareev, 1995; Newport, 1990)

suggests that they may also be cognitively advantageous. We will not attempt to match one

for one such plausible constraints with each model’s constraints, but we will ask what in

particular acted to constrain the incremental learning process in each model.

For the networks, we know that learning was incremental because that is the way

connectionist models function, but the direction of the incremental process is not clear.

For instance, would more training have tended to produce more boundaries, or just to mark

the same ones more strongly? The end of training is the ultimate limit of the learning

process, but the reports do not state how the end of training was determined – how the

number of iterations of the input corpus was decided – and they describe very few tests of

variations in the training or testing parameters, or the input corpus.

For the MBDP algorithms, we can logically assume that words tend to become shorter

and shorter as larger chunks are divided into smaller ones. However, none of the external

pieces of data provided – such as the number of words currently in the lexicon and the

frequency of individual phonemes in the lexicon needed by Venkataraman (2001), or the

more elaborate derivations of Brent (1999a) – seemed to be acting as a constraint on such a

tendency. Perhaps this logical tendency was controlled implicitly by tensions among the

various processes within the algorithm itself, though the authors do not make such a claim.

If so, this would be perhaps the most cognitively plausible kind of constraint. On the other

hand, the tendency to find words within words may, as we mentioned above, have been

minimized by using input with a simple vocabulary, and some further constraint might

become necessary with more complex vocabulary.

The BootLex algorithm’s tendency to produce longer and longer words as its process

continued was curbed by an “optimal length” parameter. As we discussed in Section 3.4

above, this is an arbitrary external constraint which was optimized separately for each

corpus tested, in order to compare their performances. Since BootLex was the only model

that reported results on more than one corpus, we do not know whether the other models

would also have had to alter their operation in some way to achieve good results on widely

differing corpora.

However, how a particular value is assigned to this parameter can be separated from the

fact that such a constraint is necessary for BootLex’s learning process. In the case of

BootLex, the optlen constraint serves to curb the model’s tendency to produce longer and

longer “words” as more language is experienced. We claim that there is a cognitive analog

for such a constraining influence in the child’s segmentation process – the short time

period over which the bootstrapping process is hypothesized to operate, as described in

the following section.
X A developmental stage or a lifelong process? A final difference among the models is

their relation to the developmental process. BootLex was designed to model the early

bootstrapping process of the infant who builds a small first lexicon without much linguistic

knowledge. We hypothesize that this temporary nonlinguistic process – a purely probabil-

istic strategy – comes to a natural end when the lexicon contains sufficient linguistic

information to enable the child to forge more sophisticated tools. This hypothesis is

supported by at least one estimate of an early “comprehension spurt” between the ages

of 0;11 and 1;3 (Harris & Chasin, 1999).

The other models do not share with BootLex this view of their task as a temporary or
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nonlinguistic process, but see it as the learning of skills that become a permanent part of

the linguistic repertoire. The networks model a phonotactics-based segmentation process

which is seen as continuing to assist speech processing in adulthood (Cairns et al., 1997;

Christiansen et al., 1998; Shillcock et al., 2000). The MBDP models are based on locating

previously defined words in an utterance and then also treating as words any residual

chunks. Brent believes that this strategy is learned early and persists throughout the life-

span, and Dahan and Brent (1999) demonstrated experimentally its use by adults. Thus,

both the networks and MBDP are modeling the learning of permanent skills, though

different ones.

This issue of continuity arises in all developmental research. It requires that, in addition

to estimating the contribution of various information sources to cognitive performance at a

certain age, we must also be alert to the possibility that the same information may be used

in substantially different ways at different stages of development. Further research with

both infants and adults is needed to ascertain just how the information sources modeled

here actually aid segmentation at various life stages.

6. Conclusion

A new model, BootLex, was shown to be a conceptually simple and effective segmen-

tation procedure. Based on observation of frequently appearing phoneme clusters and their

relationship to utterance boundaries, a lexicon was built incrementally and used to recog-

nize words and parse incoming utterances, with the results fed back to further modify the

lexicon. The algorithm was tested on a number of corpora with a variety of characteristics.

Then, two other groups of models which have been applied to similar segmentation

problems – connectionist networks and MBDP algorithms – were closely compared to

BootLex, and the suitability of all three groups as cognitive analogs was examined. This

case study demonstrated that word segmentation can be accomplished to a significant

degree by purely probabilistic techniques. Using different techniques and starting assump-

tions, all three groups were able to draw upon the statistical structure inherent in language,

suggesting that children might do the same.

In one respect, however, the contrastive approach used here does a disservice to cogni-

tive science. What have been presented as disjunctive choices may in fact be cooperating

influences. It is probable that infants use not just one approach, but a number of sources of

information and a variety of strategies, in their struggle to make sense of the speech stream

surrounding them.

Our efforts so far to model segmentation, as well as other cognitive problems, have with

few exceptions been limited to “one-trick” programs – not necessarily because we believe

these are the truth, but because our modeling technologies have been unable to do justice

to the observed complexity of organic cognitive systems. However, as Markman and

Dietrich (2000, p. 162f) say:

The diversity of representational schemes is to be embraced rather than avoided…

[C]ognitive science must find ways to integrate processes involving different kinds

of representations.
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If we could create more complex and layered models, we could explore the effects of using

both connectionist-style activation and object-oriented lexicons in cooperation. We could

combine several distributional cues in varying proportions. We could test various timing

assumptions, with different abilities “kicking in” at different stages of development. In the

future, we must challenge ourselves to create more cognitively plausible models and to

find ways to more accurately reflect the probable reality of multiple representations and

cooperative strategies.
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