Semantic Theory

Week 5: Event Semantics

Noortje Venhuizen \& Harm Brouwer - Universität des Saarlandes - Summer 2022

A problem with verbs and adjuncts

(1) The gardener killed the baron
(2) The gardener killed the baron in the park $\leftrightarrow \operatorname{kill}_{2}\left(g^{\prime}, b^{\prime}, p^{\prime}\right)$
(3) The gardener killed the baron at midnight \mapsto kill $l_{3}\left(\mathrm{~g}^{\prime}, \mathrm{b}^{\prime}, \mathrm{m}^{\prime}\right)$
(4) The gardener killed the baron at midnight in the park \mapsto kill4 $\left(g^{\prime}, b^{\prime}, m^{\prime}, p^{\prime}\right)$ kill ${ }_{4}:: ~ . .$.
(5) The gardener killed the baron in the park at midnight $\mapsto \operatorname{kill}_{5}\left(g^{\prime}, b^{\prime}, p^{\prime}, m^{\prime}\right)$ kill $5::$...

Q: How to explain the systematic logical entailment relations between the different uses of "kill"?
(4) \Leftrightarrow (5)

NB. We use the FOL syntax for predicates here, i.e., "kill (x, y) " - which is equivalent to the type theoretic expression "kill(y)(x)"
kill $_{1}::\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
kill $_{2}::\langle e,\langle e,\langle e, t\rangle\rangle$
kill $_{3}::\langle e,\langle e,\langle e, t\rangle\rangle$ $\mapsto \operatorname{kill}_{1}\left(\mathrm{~g}^{\prime}, \mathrm{b}^{\prime}\right)$
(2)
(1)

Davidson's solution

Verbs as event-denoting expressions

Verbs expressing events have an additional event argument, which is not realised at linguistic surface:

- kill $\mapsto \lambda y \lambda x \lambda e(k i l l \prime(e, x, y))::\langle e,\langle e,\langle e, t\rangle\rangle\rangle$ arity $=n+1$

Sentences denote sets of events:

- $\lambda y \lambda x \lambda e(k i l l \prime(e, x, y))\left(b^{\prime}\right)\left(g^{\prime}\right) \Rightarrow \beta \lambda e\left(k i l l \prime\left(e, g^{\prime}, b^{\prime}\right)\right)::\langle e, t\rangle$

Existential closure turns sets of events into truth conditions

- λ Рョe($\mathrm{P}(\mathrm{e}))::\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
- λ Pョe $(P(e))\left(\lambda e_{1}\left(\right.\right.$ kill $\left.\left.^{\prime}\left(e_{1}, g^{\prime}, b^{\prime}\right)\right)\right) \Rightarrow \beta \exists e\left(k i l l \prime\left(e, g^{\prime}, b^{\prime}\right)\right):: t$

Davisonian events and adjuncts

Adjuncts express two－place relations between events and the respective ＂circumstantial information＂：time，location，．．．
－at midnight $\leftarrow \lambda P \lambda e\left(P(e) \wedge\right.$ time $\left.\left(e, m^{\prime}\right)\right)::\langle\langle e, t\rangle,\langle e, t\rangle\rangle$
－in the park $\leftarrow \lambda P \lambda e(P(e) \wedge$ location（e，p＇））：：〈〈e，t〉，＜e，t $\rangle\rangle$

The gardener killed the baron at midnight in the park
$\mapsto \exists \mathrm{e}\left(\mathrm{kill}\left(\mathrm{e}, \mathrm{g}^{\prime}, \mathrm{b}^{\prime}\right) \wedge\right.$ time $(\mathrm{e}, \mathrm{m}) \wedge$ location（e，p$\left.\left.{ }^{\prime}\right)\right)$
$\Leftrightarrow \exists e\left(\right.$ kill $\left(e, g^{\prime}, b^{\prime}\right) \wedge$ location（e，$\left.p\right) \wedge$ time $\left.\left(e, m^{\prime}\right)\right)$

$$
\begin{aligned}
& \left.\left.\mathcal{Z}^{\vDash \exists \mathrm{E}} \text { (kill(e, } \mathrm{g}^{\prime}, \mathrm{b}^{\prime}\right) \wedge \operatorname{time}\left(\mathrm{e}, \mathrm{~m}^{\prime}\right)\right) \\
& \} \vDash \exists \mathrm{e}\left(\mathrm{kill}\left(\mathrm{e}, \mathrm{~g}^{\prime}, \mathrm{b}^{\prime}\right) \wedge \text { location(e, } \mathrm{p}^{\prime}\right)\right) \\
& \text { } \left.\left.\vDash \exists \mathrm{e} \text { (kill(e, } \mathrm{g}^{\prime}, \mathrm{b}^{\prime}\right)\right)
\end{aligned}
$$

Compositional derivation of event-semantic representations

the gardener killed the baron

$$
\lambda x_{e} \lambda y_{e} \lambda e_{e}[\operatorname{kill}(e, y, x)]\left(b^{\prime}\right)\left(g^{\prime}\right) \Rightarrow^{\beta} \lambda e\left[\operatorname{kill}\left(e, g^{\prime}, b^{\prime}\right)\right]
$$

... at midnight

$\lambda F_{\langle e, t\rangle} \lambda e_{e}\left[F(e) \wedge \operatorname{time}\left(e, m^{\prime}\right)\right]\left(\lambda e_{1}\left[\operatorname{kill}\left(e_{1}, g^{\prime}, b^{\prime}\right)\right]\right) \Rightarrow \beta \lambda e\left[\operatorname{kill}(e, g, b) \wedge\right.$ time $\left.\left(e, m^{\prime}\right)\right]$
... in the park
$\lambda F_{\langle e, t} \lambda e_{e}\left[F(e) \wedge \operatorname{location}\left(e, p^{\prime}\right)\right]\left(\lambda e_{2}\left[k i l l\left(e_{2}, g^{\prime}, b^{\prime}\right) \wedge\right.\right.$ time $\left.\left.\left(e_{2}, m^{\prime}\right)\right]\right) \Rightarrow \beta$ $\lambda e\left[k i l l\left(e, g^{\prime}, b^{\prime}\right) \wedge\right.$ time $\left(e, m^{\prime}\right) \wedge$ location $\left.\left(e, p^{\prime}\right)\right]$

Existential closure

$$
\lambda P_{\langle e, t\rangle} \exists e(P(e))\left(\lambda e^{\prime}(K \wedge T \wedge L) \Rightarrow \beta \exists e\left[\text { kill }\left(e, g^{\prime}, b^{\prime}\right) \wedge \text { time }\left(e, m^{\prime}\right) \wedge \operatorname{location}\left(e, p^{\prime}\right)\right]\right.
$$

Model structures with events

Enriched ontological structures

Ontology: The area of philosophy identifying and describing the basic "categories of being" and their relations.

A model structure with events is a triple $\mathbf{M}=\langle\mathbf{U}, \mathbf{E}, \mathbf{V}\rangle$, where

- U is a set of "standard individuals" or "objects"
- E is a set of events
- $\mathrm{U} \cap \mathrm{E}=\varnothing$,
- V is an interpretation function like in first order logic

Sorted (first-order) logic

A variable assignment g assigns individuals (of the correct sort-specific domain) to variables:

- $g(x) \in U$ for $x \in \operatorname{VAR} u \quad$ VAR $u=\left\{x, y, z, \ldots, x_{1}, x_{2}, \ldots\right\} \quad$ (Object variables)
- $g(e) \in E$ for $e \in \operatorname{VAR}_{E} \quad \operatorname{VAR}_{E}=\left\{e, e^{\prime}, e^{\prime \prime}, \ldots, e_{1}, e_{2}, \ldots\right\} \quad$ (Event variables)
$N B$. variables from VAR u and $V A R E_{E}$ are all of type e (in the formalisation used here)
Quantification ranges over sort-specific domains:
- $\llbracket \exists x \Phi \mathbb{\rrbracket}^{M, g}=1 \quad$ iff there is some $d \in U$ such that $\llbracket \Phi \mathbb{\rrbracket}^{M, g[x / d]}=1$
- $\llbracket \exists$ ョ $\Phi \rrbracket^{M, g}=1 \quad$ iff there is some $s \in E$ such that $\llbracket \Phi \rrbracket^{M, g[e / s]}=1$
- (universal quantification analogous)

Interpreting events

Example

John kisses Mary $\mapsto \exists \mathrm{e}$ (kiss(e, j', m’))
$\llbracket \exists e\left(k i s s\left(e, j^{\prime}, m^{\prime}\right)\right) \rrbracket^{M, g}=1$
iff there is an $s \in E$ such that $\llbracket k i s s\left(e, j ', m^{\prime}\right) \rrbracket^{M, g[e / s]}=1$
iff there is an $\mathrm{s} \in \mathrm{E}$ such that $\left\langle\mathrm{s}, \mathrm{V}_{\mathrm{M}}\left(\mathrm{j}^{\prime}\right), \mathrm{V}_{\mathrm{M}}\left(\mathrm{m}^{\prime}\right)\right\rangle \in \mathrm{V}_{\mathrm{M}}(\mathrm{kiss})$
U

Advantages of Davidsonian events

- Intuitive representation and semantic construction for adjuncts
- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Uniform treatment of verb complements

(1) Bill saw an elephant
$\mapsto \exists \mathrm{e} \boldsymbol{x}\left(\right.$ see $\left(e, b^{\prime}, x\right) \wedge$ elephant(x))

```
see :: \langlee,\langlee,\langlee,t\rangle\rangle
```

(2) Bill saw an accident
$\mapsto \exists \mathrm{e} \not \mathrm{e}^{\prime}\left(\right.$ see $\left(\mathrm{e}, \mathrm{b}, \mathrm{e}^{\prime}\right) \wedge$ accident($\left.\left.\mathrm{e}^{\prime}\right)\right)$

```
see ::\langlee,\langlee,\langlee,t\rangle\rangle
```

(3) Bill saw the children play
$\mapsto \exists \mathrm{e}$ ョ' (see(e, b, e') ^ play(e', the-children)) see :: $\langle\mathbf{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$

Adjuncts and post－nominal modifiers

Treatment of adjuncts as predicate modifiers，analogous to attributive adjectives：
－ $\operatorname{red} \mapsto \lambda F \lambda x\left[F(x) \wedge \operatorname{red}^{*}(x)\right]$
－in the park $\mapsto \mathrm{F} \boldsymbol{\lambda e}[\mathrm{F}(\mathrm{e}) \wedge$ location（e，park）］〈e，t〉，＜e，t〉＞
（1）The murder in the park．．．
$\leftrightarrow \lambda F \lambda e\left[F(e) \wedge\right.$ location（e，park）］（ e_{1}［murder（ $\left.\left.\mathrm{e}_{\mathrm{e}}\right)\right]$ ）
（2）The fountain in the park ．．．．
$\leftrightarrow \lambda F \lambda x[F(x) \wedge$ location $(x$, park）］（ λy［fountain（y）］）

Advantages of Davidsonian events

- Intuitive representation and semantic construction for adjuncts

■ Uniform treatment of verb complements
■ Uniform treatment of adjuncts and post-nominal modifiers

- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Classical Tense Logic

Prior's tense logic

- John walks walk(john)
- John walked
- John will walk

```
P(walk(john))
F(walk(john))
```

Syntax like in first-order logic, plus

Ф has always been the case
Φ is always
going to be the case

- if Φ is a well-formed formula, then PФ, FФ, HФ, GФ are also well-formed formulae such that:
- $\mathrm{P} \equiv \neg \mathrm{H} \neg$
- $F \equiv \neg G \neg$

$$
\text { © happened } \quad \text { in will happen }
$$

Classical Tense Logic

Model structures with tense information

Tense model structures are quadruples $\mathrm{M}=\langle\mathrm{U}, \mathrm{T},<, \mathrm{V}\rangle$ where

- U is a non-empty set of individuals (the "universe")
- T is a non-empty sets of points in time
- $\mathrm{U} \cap \mathrm{T}=\varnothing$
- < is a linear order on T
- V is a value assignment function, which assigns to every non-logical constant a a function from T to appropriate denotations of a

Temporal Relations and Events

Observation: Event structure is inherently related to temporal structure.
(1) The door opened, and Mary entered the room.
(2) John arrived. Then Mary left.
(3) Mary left, before John arrived.
(4) John arrived. Mary had left already.

Q: How can we extend event-based models with a notion of temporal order between events?

Temporal Event Structure

Ordered universe of events

A model structure with events and temporal precedence is defined as: $\mathrm{M}=\left\langle\mathrm{U}, \mathrm{E},\left\langle, \mathrm{e}_{\mathrm{u}}, \mathrm{V}\right\rangle\right.$, where

- $\mathrm{U} \cap \mathrm{E}=\varnothing$,
- $<\subseteq \mathrm{E} \times \mathrm{E}$ is an asymmetric relation (temporal precedence)
- $e_{u} \in E$ is the utterance event
- V is an interpretation function like in standard FOL
- Notation for overlapping events: $e \cdot e^{\prime}$ iff neither $e<e^{\prime}$ nor $e^{\prime}<e$

Tense in Semantic Construction

- We can represent tense inflection as an abstract tense operator reflecting the temporal location of the reported event relative to the utterance event.

```
PAST ↔ \P..\existse [P(e)^e< eu]: <<e, t>, t\rangle
PRES \mapsto \P.\existse[P(e)^e e eu]: <<e, t\rangle, t\rangle
```

- Standard function application results in integration of temporal information and binding of the event variable (i.e., replacing E-CLOS):

$$
\begin{array}{ll}
\text { Bill walk } & \mapsto \lambda x \lambda e[\text { walk }(e, x)]\left(b^{\prime}\right) \Rightarrow \beta \lambda e\left[\text { walk }\left(e, b^{\prime}\right)\right] \\
\text { PAST (Bill walk) } & \mapsto \lambda E \exists e\left[E(e) \wedge e<e_{u}\right]\left(\lambda e^{\prime}\left[\text { walk }\left(e^{\prime}, b\right)\right]\right) \\
& \Rightarrow \beta \exists e\left[\lambda e^{\prime}\left[\text { walk(e', b) }(e) \wedge e<e_{u}\right]\right. \\
& \Rightarrow \beta \exists e\left[\text { walk }(e, b) \wedge e<e_{u}\right]
\end{array}
$$

Advantages of Davidsonian events

- Intuitive representation and semantic construction for adjuncts

■ Uniform treatment of verb complements
■ Uniform treatment of adjuncts and post-nominal modifiers
$\boxed{\square}$ Coherent treatment of tense information

- Highly compatible with analysis of semantic roles

Verbal arguments
 A related problem?

Verbal arguments with the same semantic "role" may syntactically appear in different positions.
(1) John broke the window with a rock.
(2) A rock broke the window.
(3) The window broke.
... and we're back to the same entailment issue:
$\exists e\left(\operatorname{break}_{3}(\mathrm{e}, \mathrm{j}, \mathrm{w}, \mathrm{r})\right) \not \vDash \exists \mathrm{e}\left(\operatorname{break}_{2}(\mathrm{e}, \mathrm{r}, \mathrm{w})\right) \not \vDash \exists \mathrm{e}\left(\mathrm{break}_{1}(\mathrm{e}, \mathrm{w})\right)$

Semantic/Thematic roles

(1) John broke the window with a rock.
$\mapsto \exists \mathrm{f}$ [break $(\mathrm{e}) \wedge \operatorname{agent}(\mathrm{e}, \mathrm{j}) \wedge$ patient $(\mathrm{e}, \mathrm{w}) \wedge$ instrument $(\mathrm{e}, \mathrm{r})]$
(2) Arock broke the window.
$\mapsto \exists \mathrm{e}[$ break $(\mathrm{e}) \wedge$ patient $(\mathrm{e}, \mathrm{w}) \wedge$ instrument(e, r)]
(3) The window broke.
$\mapsto \exists \mathrm{e}[\operatorname{break}(\mathrm{e}) \wedge$ patient $(\mathrm{e}, \mathrm{w})]$
In standard FOL \& Type Theory: Thematic roles are implicitly represented by the canonical order of the arguments

In Neo-Davidsonian event semantics: Thematic roles are two-place relations between the event denoted by the verb, and an argument role filler.

Interpreting thematic roles

Example using event model

John kisses Mary $\mapsto \exists \mathrm{e}$ (kiss(e) \wedge agent(e, j’) \wedge patient(e,m’))
$\llbracket \exists e\left(k i s s(e) \wedge\right.$ agent(e, j') ^ patient(e,m')) $\rrbracket^{M, g}=1$
iff there is an $s \in E$ s.t. $\llbracket k i s s(e) \rrbracket^{M, g[e / s]}=1$ and \llbracket agent $\left(e, j^{\prime}\right) \rrbracket^{M, g[/ / s]}=1$ and $\llbracket p a t i e n t\left(e, m^{\prime}\right) \rrbracket^{M, g[e / s]}=1$ iff there is an $s \in E$ s.t. $s \in V_{M}(k i s s)$ and $\left\langle s, V_{M}\left(j^{\prime}\right)\right\rangle \in V_{M}$ (agent) and $\left\langle s, V_{M}\left(m^{\prime}\right)\right\rangle \in V_{M}$ (patient)

U
E

Verbal differences and similarities

Patterns for thematic roles

Different verbs allow different thematic role configurations
(1) a. John broke the window with a rock
b. John smiled at Mary
(2) a. The window broke
b. *The bread cut
agent, patient, instrument agent, recipient
allows inanimate subject does not allow inanimate subject

Thematic roles capture equivalences and entailment relations between different predicates
(3) a. Mary gave Peter the book
b. Peter received the book from Mary

$$
\forall e[\text { give }(e) \leftrightarrow \operatorname{receive}(e)] \vDash(3 a) \leftrightarrow(3 b)
$$

Determining the role inventory

Fillmore (1968): "thematic roles form a small, closed, and universally applicable inventory conceptual argument types."

A typical role inventory might consist of the roles:

- Agent, Patient, Theme, Recipient, Instrument, Source, Goal, Beneficiary, Experiencer

But what about the following examples?
(1) Lufthansa is replacing its 737s with Airbus 320
(2) John sold the car to Bill for $3,000 €$
(3) Bill bought the car from John for 3,000€

Semantic corpora with thematic roles PropBank and FrameNet

PropBank (Palmer et al. 2005): Annotation of Penn TreeBank with predicate-argument structure; separate role inventory for every lemma
(1) [Argo Lufthansa] is replacing [Arg1 its 737s] [Arg2 with Airbus A320s]
(2) [Argo Lufthansa] is substituting [Arg1 Airbus A320s] [Arg2 for its 737s]

FrameNet (Baker et al. 1998): A database of frames and a lexicon with frame information; a frame is a structured schema representing complex prototypical situations, events, and actions
(3) [Agent Lufthansa] is replacing Frame: REPLACIng [oid its 737s] [New with Airbus $^{\text {ith }}$ A320s]

Pred	replace
Arg0	Lufthansa
Arg1	its'73's
ArgZ	AirbusA320s
Pred	substitute
Arg0	Lufthansa
Arg1	AirbusA320s
ArgZ	its73'7s

Frame	REPLACING
Agent	Lufthansa
Old	its'73's
New	AirbusA320s

(4) [Agent Lufthansa] is substituting Frame: $_{\text {REPLACING [New Airbus A320s] [old for }}$ its 737s]

Advantages of Davidsonian events

■ Intuitive representation and semantic construction for adjuncts
■ Uniform treatment of verb complements
■ Uniform treatment of adjuncts and post-nominal modifiers
■ Plausible treatment of tense information
■ Compatible with analysis of semantic roles

Reading Material \& Links

- Overview paper: Lasersohn (2012) Event-Based Semantics: https:// semanticsarchive.net/Archive/jFhNWM2M/eventbasedsemantics.pdf
- PropBank: http://propbank.github.io/
- FrameNet: https://framenet.icsi.berkeley.edu/fndrupal/

