Semantic Theory

Noortje Venhuizen & Harm Brouwer — Universitat des Saarlandes — Summer 2022

Principle of compositionality

Compositional semantic construction:

1. Define meaning representations for
sub-expressions

2. Combine them in a principled manner
to obtain a meaning representation for
a complex expression.

Semantic Theory 2022: Week 3

[A] = fa([B], [C])

N

[C] = fa([D]. [E])

|B]

P
(D] 1]

Venhuizen & Brouwer

Compositionality: First try
Types and denotations

Bill is not a student => [NOT [[bill]np [student]vp]s]s

[-student’(bill’)] € Dt : O

/

INOT]=-€ D¢y [bil’]=Vwmil’) e De [student’] = Vm(student’) € Dt

[student’(bill’)] € Dt : 1

1 50 e el—1
0 — 1 e2—0
B | e3—1
ed—1
e5—0]

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Compositionality: First try
Explicating Functions and Arguments

Bill is not a student => [NOT [[bill]np [student]vp]s]s

[Ax.student’(x) (bill")] = [student’(bill’)] € Dx

[AS.=S (student’(bill”))] = [-~student’(bill’)] € D+
1
e1—1]

0
/ e2—0

[NOT] = [AS.=S] € Dapy [DIl'] = Vm(bill’) € De [student’] = [Ax.student’(x)] € Dety |e8—1

ed—1
1 50 61 \ _95—’0_

0—
L I'm looking for an entity ik goes here

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Lambda expressions

Expressiveness of Functions and Arguments

| ambda expressions are functions that consist of a set of lambda variables
and a body

 The body of Lambda expressions can contain logical operators

[Marye [sings and dances]en] [AX(sing’(x) A dance’(x))(mary’)] € Dt

| ambda expressions can themselves serve as arguments for functions

| [Not smokingee,t] [is healthyl«e] [healthy’(Ay.~(smoking(y)))] € Dt

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Lambda abstraction Winger: FES 0h2

Formal definition

A-abstraction is the operation that transforms expressions of any type o into a
function (r1,0), where 11 Is the type of the A-variable.

 The scope of the A-operator is the smallest WE to its right. Wider scope must
be indicated by brackets.

* \We often use the “dot notation” Ax.¢ indicating that the A-operator takes wide
scope over .

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Interpretation of Lambda-expressions

If the A-expression is applied to an argument, we can simplify the interpretation:

o [AvaJM.g ([xJM.9) = [a]M.olv/IxIM.g]

Example: “Bill is a student”
[AX(S(X))(D’)IM:9 = 1 jff [AX(S(X))IM.9WIbIM.9) = 1 jff [S(X)]M-9" = 1 (Where g’'=g[x/[b’IM.9])
iff [SIM9'([xIM9") = 1 iff Vm(S)(Vm(b’)) = 1

=P [Ax(S(X))(0")IM9 = [S(b))IMe Function Application!

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

[3-Reduction Wikger: BF3 Oh?

Function application in Lambda Calculus

[Av(@)(B)IM-9 = [a]M.9lVIBIM.g]

= all (free) occurrences of the A-variable in a get the interpretation of 3 as value.

This operation is called 3-reduction

* A(Q)(B) & alv/B]

* where: a[v/[] is the result of replacing all free occurrences of v in a with 3

Achtung: This equivalence is not unconditionally valid ...

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Variable capturing

Q: Are Av(a)(B) and a[p/v] always equivalent?

e AX(sing’(x) A dance’(x))(j’) & sing’(j’) A dance’(j’)
e AX(sing’(x) A dance’(x))(y) & sing’(y) A dance’(y)
* AX(vy know’(x)(y))(’) & vy know(j’)(y)
(

o AX(VY know’(X)(y))(y) # vy know(y)(y) = Problem:y is not “free for x”

Definition: Let v, v’ be variables of the same type, and let a be a WE of any type.

e Vv is free for v’ In a iff no free occurrence of v’ In a is in the scope of a quantifier
or a A-operator that binds v.

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Conversion rules

Equivalence transformations in Lambda Calculus

* B-conversion: Av(a)(B) & a[v/B] (a with all instances of v replaced by ()
(assuming all free variables in 3 are free for v in q)

e a-conversion: A\v.a & Aw.q|v/w] (a with all instances of v replaced by w)
(assuming w is free for v in Q)

* n-conversion: A\v.a(v) & a

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Quantifiers as lambda-expressions

e a student works = 3ax(student’(x) A work’(x))
e a student - AP3ax(student’(x) A P(x))
e 3, SOMe -2 AQAP3ax(Q(x) A P(x))

e every student = APvx(student’(x) = P(x))

¢ every 2> AQAPVX(Q(x) = P(x))

e Nno student - AP-3x(student(x) A P(x))
* NO > AQAP-3x(Q(x) A P(x))

e SOMeone > AF3axF(x)

Semantic Theory 2022: Week 3

T

(e, t),t)

e, D, e, D))
e, D,

e, 0, e, D))
(e, t),t)

(e,),(e, b))
e, D,

uizen & Brouwer

Quantifiers as lambda-expressions

Interpretation of expressions of type (e,t),t)

« someone’e CONet.ty, SO Vm(someone’) € Dee t

e Duwent IS the set of functions from Dty to Di
.e., the set of functions from 2(Uwm) (the powerset of Um) to {0,1},
which in turn is equivalent to 2(2(Uwm))

From Vu(someone’) € 2(2(Un)) it follows that Vm(someone’) € 2(Uw)
More specifically:

e Vm(someone’) = {S ¢ Uuw | S # @}, if Uu is @ domain of individuals

= More on quantified expressions in natural language in two weeks!

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Compositional construction

Example with quantified expression

Every student works. S (0)

(2) APAQVX(P(x) = Q(x)) :: (e, 1), (e, 1), 1)) NPm(4)
(3) Ay.student’(y) &n student’ :: (e, t) DETmB) y ‘(5)
1) APAQWX(P() — Q))student) cvery student works

B AQvX(student’(x) = Q(x)) :: Ke, D), t)
(4)/(5) Az.work’(z) &n work’ :: (e, 1)

(0) AQvx(student’(x) = Q(x))(work’) <P vx(student’(x) = work’(x)) :: t

Semantic Theory 2022: Week 3 Venhuizen

& Brouwer

Compositional construction

Example with higher-order expression

Not smoking is healthy => [[Not smoking] [is healthy]]

[healthy(NOT smoking)] € Dt
[AP.healthy’(P)(Ax(=smoking’(x)))]
&B [healthy’(Ax(=smoking’(x)))]

[NOT smoking] € D¢t
[AQAX.~Q(x)(smoking’)]]
B [AX.~smoking’(X)]

[NOT]] € D<<e,t>,<e,t>> [[3moking]] € D<e,t> [healthy]] € D<<e,t>,t>
[APAX.—-P(X)] 2 [AQAX.7Q(X)] [Ax.smoking’(x)] @c[smoking’] [healthy’] <o [AP.healthy’(P)]

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Type Clash

When arguments and functions do not match

* Problem: In natural language, quantified expressions occur with transitive
verbs in both subject and object position.

« Example: Someone reads a book
read :: (e,(e, 1)) a book :: (e, t),t)

someone :: (e, t),t) P9 .77

P77 1

* Solution: reverse functor-argument relation (again!)
* Logical form: someone(read(a book))
o Use type raising to adjust the type of the transitive verb: readce, tt), e, t»

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Type Raising

Interpretation of type-raised expressions

What if we only change the type of the transitive verb?

e read = read’ € CONet, t. @ t

[someone reads a book] =
[AFaxF(x)(read’(AP3y(book’(y) A P(y)))]
B [ax(read’(APay(book’(y) A P(y))))(X)]

... No further reduction steps possible.

Problem: this does not support the following entailment;:

someone reads a book & there exists a book

Hence, we need a more explicit A-term:

e read = ANQAz.Q(Ax(read*(x)(z))) € WE«et, v, <e, t»
where: read™ € WE, (, tyy IS the “underlying” first-order relation

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

Compositionality with Transitive Verbs

Using type raised expresssions: Example

someone reads a book: someone(reads(a book))

AF3axF(x)(AQAz(Q(Ax(read™(x)(2))))(ARAP(3y(R(y) A P(y)))(book’)))
B AFaxXF(X)(AQAz(Q(Ax(read*(x)(2))))(AP(3y(book’(y) A P(y)))))

=B AFIXF()(Az(AP3y(book’(y) A P(y))(Ax(read*(x)2)))
=B AFIXF(x)(\z(3y(book’(y) A Ax(read*(x)(2))(y)))

=B AFaxF(x)(\z(3y(book’(y) A read*(y)(2)))

P 3x(Az(3y(book’(y) A read*(y)(z)))(x))

B ax3ay(book’(y) A read*(y)(x))

Semantic Theory 2022: Week 3

uizen & Brouwer

Reading material

Recommended reading

* Winter: Elements of Formal Semantics (Chapter 3, Part lll)
http://www.phil.uu.nl/~yoad/efs/main.html

Semantic Theory 2022: Week 3 Venhuizen & Brouwer

http://www.phil.uu.nl/~yoad/efs/main.html

