Semantic Theory

Week 3: Typed Lambda Calculus

Noortje Venhuizen \& Harm Brouwer - Universität des Saarlandes - Summer 2022

Principle of compositionality

"The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined"
(Barbara Partee, 1993)

Compositional semantic construction:

1. Define meaning representations for sub-expressions
2. Combine them in a principled manner to obtain a meaning representation for a complex expression.

Compositionality: First try

Types and denotations

Bill is not a student $=>\left[\text { NOT }\left[[b i l l]_{N P}[\text { student }]_{v P}\right]_{s}\right]_{s}$

Compositionality: First try

Explicating Functions and Arguments

Bill is not a student $=>\left[\right.$ NOT $\left[[b i l l]_{\mathrm{NP}}[\right.$ student $\left.\left.] \mathrm{vp}\right] \mathrm{s}\right] \mathrm{s}$

Lambda expressions

Expressiveness of Functions and Arguments

- Lambda expressions are functions that consist of a set of lambda variables and a body
- The body of Lambda expressions can contain logical operators

$$
\left[\text { Marye }[\text { sings and dances }]_{e, t}\right] \quad \llbracket \lambda x\left(\text { sing }^{\prime}(x) \wedge \text { dance }^{\prime}(x)\right)\left(\text { mary }^{\prime}\right) \rrbracket \in D_{t}
$$

- Lambda expressions can themselves serve as arguments for functions
$\left[\left[\right.\right.$ Not smoking $\left.{ }_{e, t}\right][$ is healthy $\left.] \ll e, t, t\right] \quad \llbracket$ healthy ${ }^{\prime}(\lambda y . \neg($ smoking $(y))) \rrbracket \in D_{t}$

Lambda abstraction

Formal definition

If a is in $W E_{\sigma}$, and x is in VAR_{π} then $\lambda x(a)$ is in $W E_{(\pi, \sigma\rangle}$

λ-abstraction is the operation that transforms expressions of any type σ into a function $\langle\pi, \sigma\rangle$, where π is the type of the λ-variable.

- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda x . \phi$ indicating that the λ-operator takes wide scope over \varnothing.

Interpretation of Lambda-expressions

If $a \in W E_{\sigma}$ and $v \in V^{\prime} R_{\pi}$, then $\llbracket \lambda v a \rrbracket^{M, g}$ is that function $f: D_{\pi} \rightarrow D_{\sigma}$ such that for all $d \in D_{\pi}, f(d)=\llbracket a \rrbracket^{M, g[v / d]}$

If the λ-expression is applied to an argument, we can simplify the interpretation:

- $\llbracket \lambda v a \rrbracket^{M, g}\left(\llbracket \mathrm{X} \rrbracket^{\mathrm{M}, \mathrm{g})}=\llbracket \mathbb{a} \rrbracket^{\mathrm{M}, \mathrm{g}[\sqrt{[}[\mathrm{x}] \mathrm{M}, \mathrm{g}]}\right.$

Example: "Bill is a student"

$\rightarrow \llbracket \lambda x(S(x))\left(b^{\prime}\right) \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket S\left(\mathrm{~b}^{\prime}\right) \rrbracket^{\mathrm{M}, \mathrm{g}} \quad$ Function Application!

β-Reduction

Function application in Lambda Calculus

$$
\llbracket \lambda v(a)(\beta) \rrbracket^{M, g}=\llbracket \alpha \rrbracket^{M, g[v /[\beta \rrbracket M, g]}
$$

\Rightarrow all (free) occurrences of the λ-variable in α get the interpretation of β as value.
This operation is called β-reduction

- $\lambda v(\alpha)(\beta) \Leftrightarrow a[v / \beta]$
- where: $a[v / \beta]$ is the result of replacing all free occurrences of v in a with β

Achtung: This equivalence is not unconditionally valid ...

Variable capturing

$Q: \operatorname{Are} \lambda v(\alpha)(\beta)$ and $\alpha[\beta / v]$ always equivalent?

- $\lambda x\left(\right.$ sing $^{\prime}(x) \wedge$ dance $\left.^{\prime}(x)\right)\left(j^{\prime}\right) \Leftrightarrow \operatorname{sing}^{\prime}\left(j^{\prime}\right) \wedge$ dance $^{\prime}\left(j^{\prime}\right)$
- $\lambda x\left(\right.$ sing $^{\prime}(x) \wedge$ dance $\left.^{\prime}(x)\right)(y) \Leftrightarrow \operatorname{sing}^{\prime}(y) \wedge$ dance $^{\prime}(y)$
- $\lambda x\left(\forall y \mathrm{know}{ }^{\prime}(x)(y)\right)\left({ }^{\prime}\right) \Leftrightarrow \forall y \operatorname{know}\left(j^{\prime}\right)(y)$

Definition: Let v , v ' be variables of the same type, and let a be a WE of any type.
- v is free for v^{\prime} in a iff no free occurrence of v^{\prime} in a is in the scope of a quantifier or a λ-operator that binds v .

Conversion rules

Equivalence transformations in Lambda Calculus

- β-conversion: $\lambda v(\alpha)(\beta) \Leftrightarrow a[v / \beta]$ (a with all instances of v replaced by β) (assuming all free variables in β are free for v in a)
- a-conversion: $\lambda \mathrm{v} . \mathrm{a} \Leftrightarrow \lambda \mathrm{w} . \mathrm{a}[\mathrm{v} / \mathrm{w}]$ (a with all instances of v replaced by w) (assuming w is free for v in a)
- \mathbf{n}-conversion: $\lambda \mathrm{v} . \mathrm{a}(\mathrm{v}) \Leftrightarrow \mathrm{a}$

Quantifiers as lambda－expressions

－a student works $\rightarrow \exists x\left(\right.$ student $^{\prime}(\mathrm{x}) \wedge$ work＇$\left.^{\prime}(\mathrm{x})\right)$
：：t
－a student $\rightarrow \lambda P \exists x\left(\right.$ student $\left.{ }^{\prime}(x) \wedge P(x)\right)$
$::\langle\langle e, t\rangle, t\rangle$
－a，some

$$
\rightarrow \lambda Q \lambda P \exists x(Q(x) \wedge P(x))
$$

：：$\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$
－every student
$\rightarrow \lambda P \forall x\left(\right.$ student $\left.{ }^{\prime}(x) \rightarrow P(x)\right)$
$::\langle\langle e, t\rangle, \mathrm{t}\rangle$
－every

$$
\rightarrow \lambda Q \lambda P \forall x(Q(x) \rightarrow P(x))
$$

$::\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle\rangle$
－no student
$\rightarrow \lambda P \neg \exists x($ student $(x) \wedge P(x))$
：：〈＜e，t＞，t〉
－no

$$
\rightarrow \lambda Q \lambda P \neg \exists x(Q(x) \wedge P(x))
$$

：：〈＜e，t＞，＜＜e，t＞，t＞＞
－someone
$\rightarrow \lambda \mathrm{F} \mathrm{\exists xF}(\mathrm{x})$
$::\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$

Quantifiers as lambda-expressions

Interpretation of expressions of type $\langle\langle\mathbf{e}, \mathbf{t}, \mathbf{t}\rangle$

- someone' $\in \mathrm{CON}_{\langle(e, t, t, t,}$ so $\mathrm{V}_{\mathrm{M}}($ someone' $) \in \mathrm{D}_{\langle(e, t, t\rangle}$
- $D_{\langle(e, t, t\rangle}$ is the set of functions from $D_{\langle e, t\rangle}$ to D_{t} i.e., the set of functions from $\mathcal{P}\left(\mathrm{U}_{M}\right)$ (the powerset of $\left.\mathrm{U}_{\mathrm{M}}\right)$ to $\{0,1\}$, which in turn is equivalent to $\boldsymbol{P}\left(\mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)\right.$)

From $\mathrm{V}_{\mathrm{M}}($ someone $) \in \mathcal{P}\left(\mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)\right)$ it follows that $\mathrm{V}_{\mathrm{M}}\left(\right.$ someone $\left.{ }^{\prime}\right) \subseteq \mathcal{P}\left(\mathrm{U}_{\mathrm{M}}\right)$ More specifically:

- $\mathrm{V}_{\mathrm{M}}\left(\right.$ someone $\left.{ }^{\prime}\right)=\left\{S \subseteq \mathrm{U}_{\mathrm{M}} \mid S \neq \varnothing\right\}$, if U_{M} is a domain of individuals
\Rightarrow More on quantified expressions in natural language in two weeks!

Compositional construction

Example with quantified expression

Every student works.
(2) $\quad \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))::\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
(3) $\quad \lambda y$. student $^{\prime}(\mathrm{y}) \Leftrightarrow n$ student' $::\langle\mathrm{e}, \mathrm{t}\rangle$
(1) $\quad \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))$ (student')

$$
\Leftrightarrow \beta \lambda Q \forall x\left(\text { student }{ }^{\prime}(x) \rightarrow Q(x)\right)::\langle\langle e, t\rangle, t\rangle
$$

(4)/(5) $\quad \lambda z$. work' $^{\prime}(z) \Leftrightarrow n$ work' $::\langle e, t\rangle$
(0) $\quad \lambda Q \forall x\left(\right.$ student $\left.^{\prime}(x) \rightarrow Q(x)\right)\left(\right.$ work' $\left.^{\prime}\right) \Leftrightarrow \beta \forall x\left(\right.$ student' $^{\prime}(x) \rightarrow$ work' $\left.^{\prime}(x)\right):: t$

Compositional construction

Example with higher-order expression

Not smoking is healthy => [[Not smoking] [is healthy]]

Type Clash
 When arguments and functions do not match

- Problem: In natural language, quantified expressions occur with transitive verbs in both subject and object position.
- Example: Someone reads a book
$\frac{\text { read }::\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle \quad \text { a book :: }\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle}{\frac{\text { someone }::\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle}{\text { ?? :: } \mathrm{t}}}$
- Solution: reverse functor-argument relation (again!)
- Logical form: someone(read(a book))
- Use type raising to adjust the type of the transitive verb: read $\langle\langle(e, t, t,\langle,\langle, t\rangle\rangle$

Type Raising

Interpretation of type-raised expressions

What if we only change the type of the transitive verb?

- read \rightarrow read' $\in \operatorname{CON}\langle\langle\langle e, t, t\rangle,\langle e, t\rangle$

```
|someone reads a book\rrbracket=
\llbracket\lambdaF\existsxF(x)(read'(\lambdaP\existsy(book'(y) ^ P(y))))\rrbracket
&^
```

... No further reduction steps possible.

Problem: this does not support the following entailment:
someone reads a book \vDash there exists a book
Hence, we need a more explicit λ-term:

- read $\rightarrow \lambda Q \lambda z . Q\left(\lambda x\left(r^{\prime}{ }^{*}(x)(z)\right)\right) \in W E_{\langle\langle e, t\rangle, t,\langle e, t\rangle}$
where: read $^{\star} \in \mathrm{WE}_{\langle e, ~<e, ~ t\rangle\rangle}$ is the "underlying" first-order relation

Compositionality with Transitive Verbs

Using type raised expresssions: Example

someone reads a book: someone(reads(a book))

```
\lambdaFョxF(x)(\lambdaQ\lambdaz(Q(\lambdax(read*(x)(z))))(\lambdaR\lambdaP(\existsy(R(y) ^P(y)))(book')))
\Leftrightarrow\beta}\lambda\mp@code{F\existsxF(x)(\lambdaQ\lambdaz(Q(\lambdax(read*(x)(z))))(\lambdaP(\existsy(book'(y) ^ P(y)))))
\Leftrightarrow\beta \lambdaF\existsxF(x)(\lambdaz(\lambdaP(\existsy(book'(y) ^P(y)))(\lambdax(read*(x)(z))))
\Leftrightarrow\beta}\mp@subsup{|}{}{\beta}\exists\textrm{xF}(x)(\lambdaz(\existsy(book'(y) ^ \lambdax(read*(x)(z))(y)))
\Leftrightarrow^}
\Leftrightarrow\beta}\existsx(\lambdaz(\existsy(book'(y) ^ read*(y)(z)))(x)
&
```


Reading material

Recommended reading

- Winter: Elements of Formal Semantics (Chapter 3, Part III) http://www.phil.uu.n1/~yoad/efs/main.html

