
Noortje Venhuizen & Harm Brouwer — Universität des Saarlandes — Summer 2022

Semantic Theory
Week 3: Typed Lambda Calculus

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Principle of compositionality
“The meaning of a complex expression is a function of the meanings of its
parts and of the syntactic rules by which they are combined”  
	 	 	 	 	 	 (Barbara Partee, 1993)

Compositional semantic construction:

1. Define meaning representations for
sub-expressions

2. Combine them in a principled manner
to obtain a meaning representation for
a complex expression.

Venhuizen & BrouwerSemantic Theory 2022: Week 3

⟦NOT⟧ = ¬ ∈ D⟨t,t⟩ ⟦bill’⟧ = VM(bill’) ∈ De ⟦student’⟧ = VM(student’) ∈ D⟨e,t⟩

⟦¬student’(bill’)⟧ ∈ Dt

⟦student’(bill’)⟧ ∈ Dt

Compositionality: First try
Types and denotations

e1→1 
e2→0 
e3→1 
e4→1 
e5→0

e1

Bill is not a student => [NOT [[bill]NP [student]VP]S]S

1 → 0 
0 → 1

: 1

: 0

Venhuizen & BrouwerSemantic Theory 2022: Week 3

⟦NOT⟧ = ⟦λS.¬S⟧ ∈ D⟨t,t⟩ ⟦bill’⟧ = VM(bill’) ∈ De ⟦student’⟧ = ⟦λx.student’(x)⟧ ∈ D⟨e,t⟩

⟦ λS.¬S (student’(bill’))⟧ = ⟦¬student’(bill’)⟧ ∈ Dt

⟦λx.student’(x) (bill’)⟧ = ⟦student’(bill’)⟧ ∈ Dt

Compositionality: First try
Explicating Functions and Arguments
Bill is not a student => [NOT [[bill]NP [student]VP]S]S

I’m looking for an entity … … it goes here

e1→1 
e2→0 
e3→1 
e4→1 
e5→0e11 → 0 

0 → 1

: 1

: 0

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Expressiveness of Functions and Arguments

• Lambda expressions are functions that consist of a set of lambda variables
and a body

• The body of Lambda expressions can contain logical operators 
 

• Lambda expressions can themselves serve as arguments for functions 

Lambda expressions

[[Not smoking⟨e,t⟩] [is healthy]⟨⟨e,t⟩,t⟩] ⟦healthy’(λy.¬(smoking(y)))⟧ ∈ Dt

[Marye [sings and dances]⟨e,t⟩] ⟦λx(sing’(x) ∧ dance’(x))(mary’)⟧ ∈ Dt

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Lambda abstraction

λ-abstraction is the operation that transforms expressions of any type σ into a
function ⟨π,σ⟩, where π is the type of the λ-variable.

• The scope of the λ-operator is the smallest WE to its right. Wider scope must
be indicated by brackets.

• We often use the “dot notation” λx.φ indicating that the λ-operator takes wide
scope over φ.

If α is in WEσ, and x is in VARπ then λx(α) is in WE⟨π, σ⟩

Winter: EFS Ch3

Page 65

Formal definition

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Interpretation of Lambda-expressions

If the λ-expression is applied to an argument, we can simplify the interpretation:

• ⟦λvα⟧M,g (⟦x⟧M,g) = ⟦α⟧M,g[v/⟦x⟧M,g]

Example: “Bill is a student”

⟦λx(S(x))(b’)⟧M,g = 1 if ⟦λx(S(x))⟧M,g(x/⟦b’⟧M,g) = 1 if ⟦S(x)⟧M,g’ = 1 (where g’=g[x/⟦b’⟧M,g])

if ⟦S⟧M,g’(⟦x⟧M,g’) = 1 if VM(S)(VM(b’)) = 1

If α ∈ WEσ and v ∈ VARπ, then ⟦λvα⟧M,g is that function f : Dπ → Dσ
such that for all d ∈ Dπ, f(d) = ⟦α⟧M,g[v/d]

⟦λx(S(x))(b’)⟧M,g = ⟦S(b’)⟧M,g 	 Function Application!

Venhuizen & BrouwerSemantic Theory 2022: Week 3

β-Reduction
Function application in Lambda Calculus

	 	 	 ⟦λv(α)(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

⇒ all (free) occurrences of the λ-variable in α get the interpretation of β as value.

This operation is called β-reduction

• λv(α)(β) ⇔ α[v/β]

• where: α[v/β] is the result of replacing all free occurrences of v in α with β

Achtung: This equivalence is not unconditionally valid …

Winter: EFS Ch3

Page 67

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Variable capturing
Q: Are λv(α)(β) and α[β/v] always equivalent?

• λx(sing’(x) ∧ dance’(x))(j’) ⇔ sing’(j’) ∧ dance’(j’)

• λx(sing’(x) ∧ dance’(x))(y) ⇔ sing’(y) ∧ dance’(y)

• λx(∀y know’(x)(y))(j’) ⇔ ∀y know(j’)(y)

• λx(∀y know’(x)(y))(y) ⇎ ∀y know(y)(y)

Definition: Let v, v’ be variables of the same type, and let α be a WE of any type.

• v is free for v’ in α iff no free occurrence of v’ in α is in the scope of a quantifier

or a λ-operator that binds v.

⇒ Problem: y is not “free for x”

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Conversion rules
Equivalence transformations in Lambda Calculus

• β-conversion: λv(α)(β) ⇔ α[v/β] (α with all instances of v replaced by β) 
(assuming all free variables in β are free for v in α)

• α-conversion: 	λv.α ⇔ λw.α[v/w] (α with all instances of v replaced by w) 
(assuming w is free for v in α)

• η-conversion: 	λv.α(v) ⇔ α

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Quantifiers as lambda-expressions
• a student works ➔ ∃x(student’(x) ∧ work’(x)) 	 :: t

• a student	 ➔ λP∃x(student’(x) ∧ P(x)) 		 :: ⟨⟨e,t⟩,t⟩

• a, some 	 ➔ λQλP∃x(Q(x) ∧ P(x)) 	 	 :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• every student	 ➔ λP∀x(student’(x) → P(x)) 	 :: ⟨⟨e,t⟩,t⟩

• every 	 ➔ λQλP∀x(Q(x) → P(x)) 	 	 :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• no student 	 ➔ λP¬∃x(student(x) ∧ P(x)) 	 :: ⟨⟨e,t⟩,t⟩

• no 	 	 ➔ λQλP¬∃x(Q(x) ∧ P(x)) 	 	 :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• someone 	 ➔ λF∃xF(x) 	 	 	 :: ⟨⟨e,t⟩,t⟩

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Quantifiers as lambda-expressions
Interpretation of expressions of type ⟨⟨e,t⟩,t⟩

• someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩

• D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt  
	 i.e., the set of functions from P(UM) (the powerset of UM) to {0,1}, 
	 which in turn is equivalent to P(P(UM))

From VM(someone’) ∈ P(P(UM)) it follows that VM(someone’) ⊆ P(UM)  
More specifically:

• VM(someone’) = {S ⊆ UM | S ≠ ∅}, if UM is a domain of individuals

⇒ More on quantified expressions in natural language in two weeks!

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Example with quantified expression

Every student works.

(2) 	 λPλQ∀x(P(x) → Q(x)) :: ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩⟩

(3) 	 λy.student’(y) ⇔η student’ :: ⟨e, t⟩

(1) 	 λPλQ∀x(P(x) → Q(x))(student’)  
	 ⇔β λQ∀x(student’(x) → Q(x)) :: ⟨⟨e, t⟩, t⟩

(4)/(5) 	 λz.work’(z) ⇔η work’ :: ⟨e, t⟩

(0) 	 λQ∀x(student’(x) → Q(x))(work’) ⇔β ∀x(student’(x) → work’(x)) :: t

Compositional construction

NP (1)

S (0)

VP (4)

IV (5)DET (2)

worksEvery

N (3)

student

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Compositional construction
Example with higher-order expression

⟦NOT⟧ ∈ D⟨⟨e,t⟩,⟨e,t⟩⟩

 ⟦λPλx.¬P(x)⟧ ⇔α ⟦λQλx.¬Q(x)⟧
⟦smoking⟧ ∈ D⟨e,t⟩

⟦λx.smoking’(x)⟧ ⇔α ⟦smoking’⟧
⟦healthy⟧ ∈ D⟨⟨e,t⟩,t⟩  
⟦healthy’⟧ ⇔α ⟦λP.healthy’(P)⟧

⟦healthy(NOT smoking)⟧ ∈ Dt  

⟦λP.healthy’(P)(λx(¬smoking’(x)))⟧  
⇔β ⟦healthy’(λx(¬smoking’(x)))⟧

⟦NOT smoking⟧ ∈ D⟨e,t⟩

⟦λQλx.¬Q(x)(smoking’)⟧  
⇔β ⟦λx.¬smoking’(x)⟧

Not smoking is healthy => [[Not smoking] [is healthy]]

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Type Clash
When arguments and functions do not match

• Problem: In natural language, quantified expressions occur with transitive
verbs in both subject and object position.

• Example: Someone reads a book
	 	 read	 	 a book  
 
someone	 	 	 ??

	 	 	 ??

:: ⟨e,⟨e, t⟩⟩ :: ⟨⟨e, t⟩,t⟩

:: ⟨⟨e, t⟩,t⟩ :: ??

:: t
• Solution: reverse functor-argument relation (again!)

• Logical form: someone(read(a book))
• Use type raising to adjust the type of the transitive verb: read⟨⟨⟨e, t⟩,t⟩,⟨e, t⟩⟩

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Type Raising
Interpretation of type-raised expressions
What if we only change the type of the transitive verb?

• read ➔ read’ ∈ CON⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩

	 ⟦someone reads a book⟧ =  
	 ⟦λF∃xF(x)(read’(λP∃y(book’(y) ∧ P(y))))⟧ 
	 ⇔β ⟦∃x(read’(λP∃y(book’(y) ∧ P(y))))(x)⟧

Problem: this does not support the following entailment:

someone reads a book ⊨ there exists a book

Hence, we need a more explicit λ-term:

• read ➔ λQλz.Q(λx(read*(x)(z))) ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 
	 	 where: read* ∈ WE⟨e, ⟨e, t⟩⟩ is the “underlying” first-order relation

… No further reduction steps possible.

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Compositionality with Transitive Verbs
Using type raised expresssions: Example

someone reads a book: someone(reads(a book))

λF∃xF(x)(λQλz(Q(λx(read*(x)(z))))(λRλP(∃y(R(y) ∧ P(y)))(book’)))

⇔β λF∃xF(x)(λQλz(Q(λx(read*(x)(z))))(λP(∃y(book’(y) ∧ P(y)))))

⇔β λF∃xF(x)(λz(λP(∃y(book’(y) ∧ P(y)))(λx(read*(x)(z)))))

⇔β λF∃xF(x)(λz(∃y(book’(y) ∧ λx(read*(x)(z))(y))))

⇔β λF∃xF(x)(λz(∃y(book’(y) ∧ read*(y)(z))))

⇔β ∃x(λz(∃y(book’(y) ∧ read*(y)(z)))(x))

⇔β ∃x∃y(book’(y) ∧ read*(y)(x))

Venhuizen & BrouwerSemantic Theory 2022: Week 3

Reading material
Recommended reading

• Winter: Elements of Formal Semantics (Chapter 3, Part III)  
http://www.phil.uu.nl/~yoad/efs/main.html

http://www.phil.uu.nl/~yoad/efs/main.html

