Semantic Theory Week 3: Typed Lambda Calculus

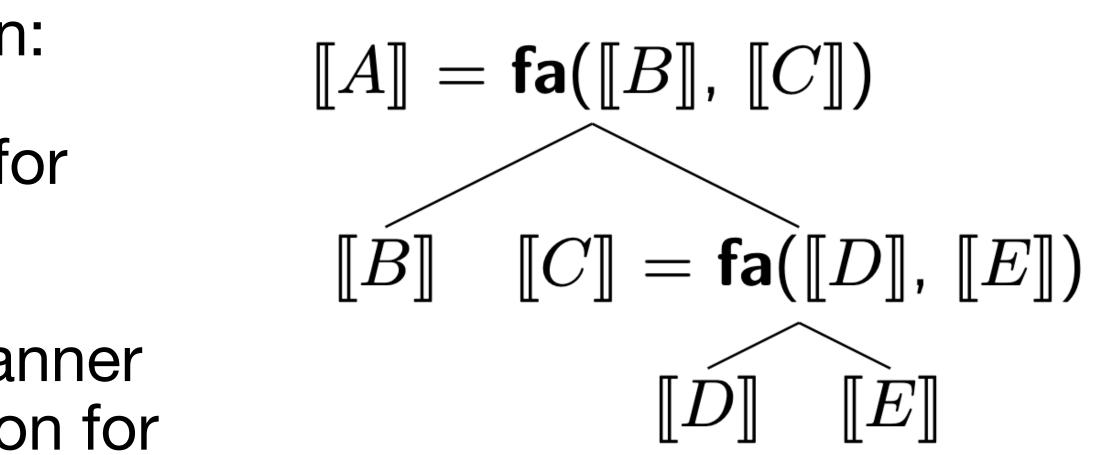
Noortje Venhuizen & Harm Brouwer – Universität des Saarlandes – Summer 2022

Principle of compositionality

"The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Barbara Partee, 1993)

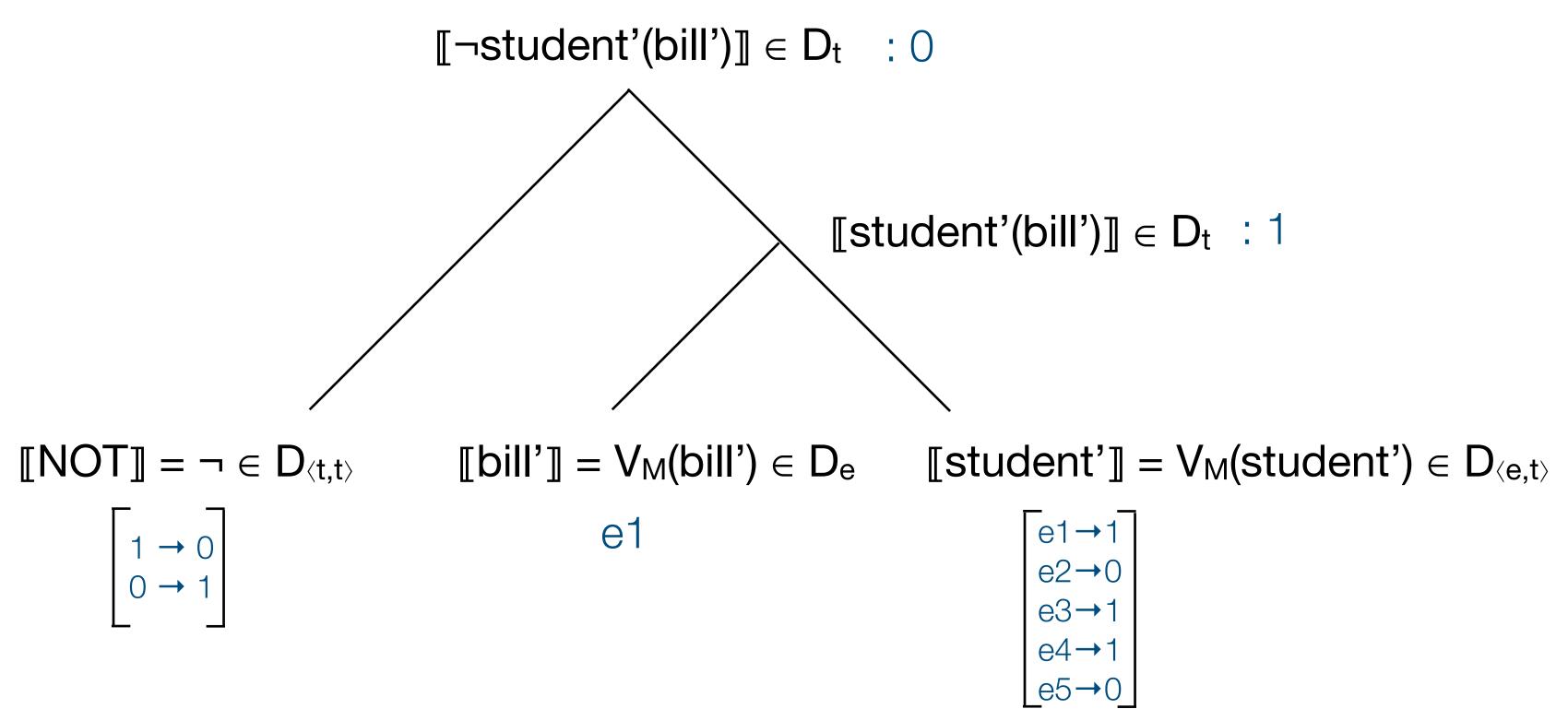
Compositional semantic construction:

- Define meaning representations for 1. sub-expressions
- 2. Combine them in a principled manner to obtain a meaning representation for a complex expression.



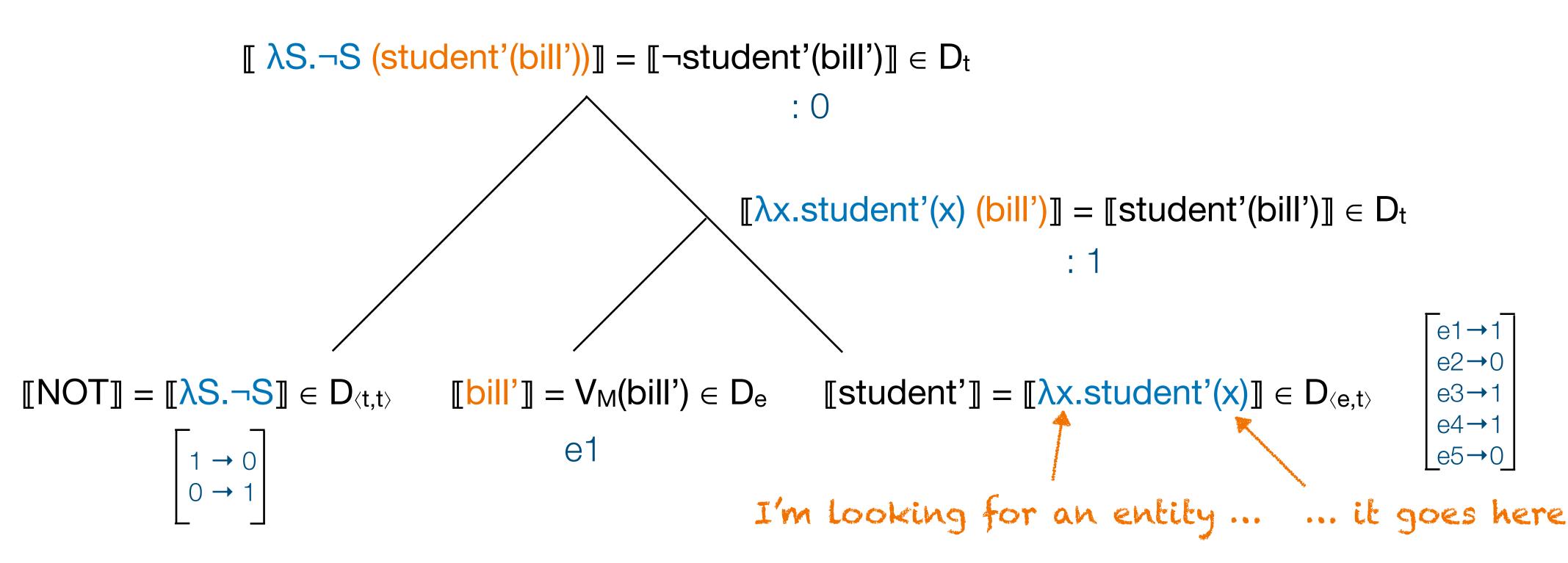
Compositionality: First try Types and denotations

Bill is not a student => [NOT [[bill]_{NP} [student]_{VP}]_S]_S



Compositionality: First try Explicating Functions and Arguments

Bill is not a student => [NOT [[bill]_{NP} [student]_{VP}]_S]_S



Lambda expressions **Expressiveness of Functions and Arguments**

- Lambda expressions are functions that consist of a set of lambda variables and a body
- The body of Lambda expressions can contain logical operators [Mary_e [sings and dances]_(e,t)] $[\lambda x(sing'(x) \land dance'(x))(mary')] \in D_t$
- Lambda expressions can themselves serve as arguments for functions [[Not smoking_(e,t)] [is healthy]_{((e,t),t)}] [healthy'(λy .¬(smoking(y)))] $\in D_t$

Lambda abstraction **Formal definition**

If α is in WE_{σ}, and x is in VAR_{π} then $\lambda x(\alpha)$ is in WE_{$\langle \pi, \sigma \rangle$}

 λ -abstraction is the operation that transforms expressions of any type σ into a function $\langle \pi, \sigma \rangle$, where π is the type of the λ -variable.

- be indicated by brackets.
- scope over Φ .

Winter: EFS Ch3 Page 65

• The scope of the λ -operator is the smallest WE to its right. Wider scope must

• We often use the "dot notation" $\lambda x \cdot \phi$ indicating that the λ -operator takes wide

Example: "Bill is a student" $iff [S]^{M,g'}([x]^{M,g'}) = 1 iff V_M(S)(V_M(b')) = 1$

• $[\lambda v \alpha]^{M,g} ([[x]^{M,g}]) = [[\alpha]^{M,g}[v/[[x]^{M,g}]]$

If the λ -expression is applied to an argument, we can simplify the interpretation:

Interpretation of Lambda-expressions

If $\alpha \in WE_{\sigma}$ and $v \in VAR_{\pi}$, then $[\lambda v \alpha]^{M,g}$ is that function $f : D_{\pi} \rightarrow D_{\sigma}$ such that for all $d \in D_{\pi}$, $f(d) = [\alpha]^{M,g[v/d]}$

$[\lambda x(S(x))(b')]^{M,g} = 1 iff [\lambda x(S(x))]^{M,g(x/[b']M,g)} = 1 iff [S(x)]^{M,g'} = 1 (where g'=g[x/[b']^{M,g}))$

 $[\lambda x(S(x))(b')]^{M,g} = [S(b')]^{M,g} Function Application!$

Semantic Theory 2022: Week 3

Venhuizen & Brouwer

β-Reduction Function application in Lambda Calculus

This operation is called β -reduction

- $\lambda v(\alpha)(\beta) \Leftrightarrow \alpha [v/\beta]$

Achtung: This equivalence is not unconditionally valid ...

Winter: EFS Ch3 Page 67

- $[\lambda v(\alpha)(\beta)]^{M,g} = [\alpha]^{M,g[v/[\beta]M,g]}$
- \Rightarrow all (free) occurrences of the λ -variable in α get the interpretation of β as value.

• where: $\alpha[v/\beta]$ is the result of replacing all free occurrences of v in α with β

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $\alpha[\beta/v]$ always equivalent?

- $\lambda x(sing'(x) \land dance'(x))(j') \Leftrightarrow sing'(j') \land dance'(j')$
- $\lambda x(sing'(x) \land dance'(x))(y) \Leftrightarrow sing'(y) \land dance'(y)$
- $\lambda x(\forall y \text{ know'}(x)(y))(j') \Leftrightarrow \forall y \text{ know}(j')(y)$
- $\lambda x(\forall y \text{ know}'(x)(y))(y) \Leftrightarrow \forall y \text{ know}(y)(y) \Rightarrow \text{Problem: } y \text{ is not "free for x"}$

or a λ -operator that binds v.

Definition: Let v, v' be variables of the same type, and let α be a WE of any type. • v is free for v' in a iff no free occurrence of v' in a is in the scope of a quantifier

Conversion rules Equivalence transformations in Lambda Calculus

- **β-conversion:** $\lambda v(\alpha)(\beta) \Leftrightarrow \alpha[v/\beta]$ (a with all instances of v replaced by β) (assuming all free variables in β are free for v in α)
- **a-conversion:** $\lambda v.\alpha \Leftrightarrow \lambda w.\alpha[v/w]$ (a with all instances of v replaced by w) (assuming w is free for v in α)
- **n-conversion:** $\lambda v.a(v) \Leftrightarrow a$

Quantifiers as lambda-expressions

- a student works $\rightarrow \exists x(student'(x) \land work'(x))$
 - $\rightarrow \lambda P \exists x(student'(x) \land P(x))$ • a student
 - $\rightarrow \lambda Q \lambda P \exists x (Q(x) \land P(x))$ • a, some
- every student
 - every
- no student
 - no \bullet
- someone

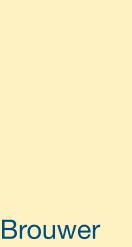
- $\rightarrow \lambda P \forall x (student'(x) \rightarrow P(x))$
- $\rightarrow \lambda Q \lambda P \forall x (Q(x) \rightarrow P(x))$
- $\rightarrow \lambda P \neg \exists x(student(x) \land P(x))$
- $\rightarrow \lambda Q \lambda P \neg \exists x (Q(x) \land P(x))$
- $\rightarrow \lambda F \exists x F(x)$

- :: t
- $:: \langle \langle e,t \rangle,t \rangle$
- $:: \langle \langle e,t \rangle, \langle \langle e,t \rangle,t \rangle \rangle$
- $\therefore \langle \langle e,t \rangle,t \rangle$
- $\therefore \langle \langle e,t \rangle, \langle \langle e,t \rangle,t \rangle \rangle$
- $:: \langle \langle e,t \rangle,t \rangle$
- $\therefore \langle \langle e,t \rangle, \langle \langle e,t \rangle,t \rangle \rangle$
- $\therefore \langle \langle e,t \rangle,t \rangle$

Quantifiers as lambda-expressions Interpretation of expressions of type $\langle \langle e,t \rangle,t \rangle$

- someone' $\in CON_{\langle\langle e,t\rangle,t\rangle}$, so V_M (someone') $\in D_{\langle\langle e,t\rangle,t\rangle}$
- $D_{\langle\langle e,t\rangle,t\rangle}$ is the set of functions from $D_{\langle e,t\rangle}$ to D_t i.e., the set of functions from $\mathcal{P}(U_M)$ (the powerset of U_M) to $\{0,1\}$, which in turn is equivalent to $\mathcal{P}(\mathcal{P}(U_M))$
- From V_M (someone') $\in \mathcal{P}(\mathcal{P}(U_M))$ it follows that V_M (someone') $\subseteq \mathcal{P}(U_M)$ More specifically:
- V_M (someone') = {S $\subseteq U_M \mid S \neq \emptyset$ }, if U_M is a domain of individuals

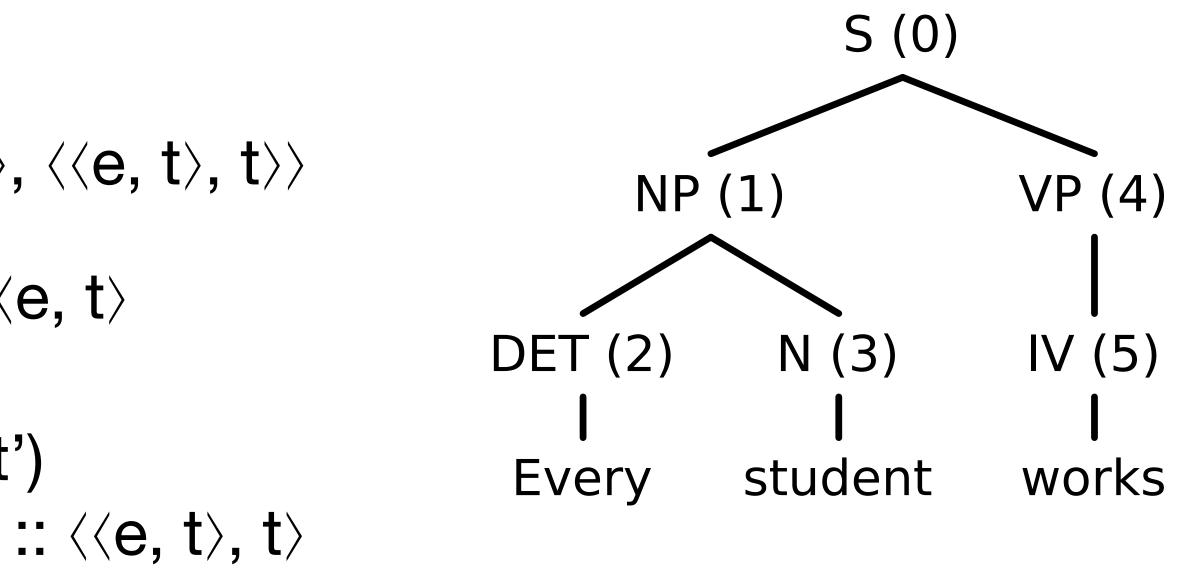
 \Rightarrow More on quantified expressions in natural language in two weeks!



Compositional construction Example with quantified expression

Every student works.

- $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$ (2)
- (3) $\lambda y.student'(y) \Leftrightarrow^{n} student' :: \langle e, t \rangle$
- (1) $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x))(student')$ $\Leftrightarrow^{\beta} \lambda Q \forall x (student'(x) \rightarrow Q(x)) :: \langle \langle e, t \rangle, t \rangle$
- $\lambda z.work'(z) \Leftrightarrow^{n} work' :: \langle e, t \rangle$ (4)/(5)
- (0)



$\lambda Q \forall x(student'(x) \rightarrow Q(x))(work') \Leftrightarrow^{\beta} \forall x(student'(x) \rightarrow work'(x)) :: t$

Compositional construction Example with higher-order expression

Not smoking is healthy => [[Not smoking] [is healthy]]

$$\label{eq:linearized_states} \begin{split} & [\mbox{healthy}(NOT\ smoking)] \in D_t \\ & [\mbox{λP.healthy}'(P)(\mbox{λx}(\neg smoking'(x)))] \\ & \Leftrightarrow^{\beta} \ [\mbox{healthy}'(\mbox{λx}(\neg smoking'(x)))] \end{split}$$

 $[\![NOT smoking]\!] \in D_{\langle e,t \rangle}$ $[\![\lambda Q \lambda x. \neg Q(x)(smoking')]\!]$ $\Leftrightarrow^{\beta} [\![\lambda x. \neg smoking'(x)]\!]$

 $\llbracket NOT \rrbracket \in D_{\langle \langle e,t \rangle, \langle e,t \rangle} \qquad [smoking] \in D_{\langle e,t \rangle} \\ \llbracket \lambda P \lambda x. \neg P(x) \rrbracket \Leftrightarrow^{\alpha} \llbracket \lambda Q \lambda x. \neg Q(x) \rrbracket \qquad [\lambda x. smoking'(x)] \Leftrightarrow^{\alpha} \llbracket smoking']$

 $[[healthy]] \in D_{\langle\langle e,t\rangle,t\rangle}$ $[[healthy']] \Leftrightarrow^{\alpha} [[\lambda P.healthy'(P)]]$

Type Clash When arguments and functions do not match

- **Problem:** In natural language, quantified expressions occur with transitive verbs in both subject and object position.
- **Example:** Someone reads a book

someone :: $\langle \langle e, t \rangle, t \rangle$

- **Solution**: reverse functor-argument relation (again!)
 - Logical form: someone(read(a book))

read :: $\langle e, \langle e, t \rangle \rangle$ a book :: $\langle \langle e, t \rangle, t \rangle$

?? :: ??

?? :: t

• Use type raising to adjust the type of the transitive verb: read $\langle\langle\langle e, t \rangle, t \rangle, \langle e, t \rangle\rangle$

Type Raising Interpretation of type-raised expressions

What if we only change the type of the transitive verb?

• read \rightarrow read' \in CON $\langle\langle\langle e,t \rangle, t \rangle, \langle e,t \rangle\rangle$

[someone reads a book] = $[\lambda F \exists x F(x)(read'(\lambda P \exists y(book'(y) \land P(y)))]]$ $\Leftrightarrow^{\beta} [[\exists x(read'(\lambda P \exists y(book'(y) \land P(y))))(x)]]$

Problem: this does not support the following entailment:

someone reads a book \models there exists a book

Hence, we need a more explicit λ -term:

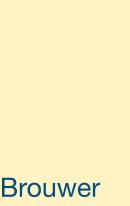
• read $\rightarrow \lambda Q \lambda z. Q(\lambda x(read^*(x)(z))) \in WE_{\langle\langle\langle e,t \rangle, t \rangle, \langle e, t \rangle\rangle}$

... No further reduction steps possible.

where: read* $\in WE_{(e, (e, t))}$ is the "underlying" first-order relation

Semantic Theory 2022: Week 3

Venhuizen & Brouwer



Compositionality with Transitive Verbs Using type raised expressions: Example

someone reads a book: someone(reads(a book)) $\lambda F \exists x F(x)(\lambda Q \lambda z(Q(\lambda x(read^{*}(x)(z))))(\lambda R \lambda P(\exists y(R(y) \land P(y)))(book^{'})))$ $\Leftrightarrow^{\beta} \lambda F \exists x F(x)(\lambda Q \lambda z(Q(\lambda x(read^{*}(x)(z))))(\lambda P(\exists y(book'(y) \land P(y)))))$ $\Leftrightarrow^{\beta} \lambda F \exists x F(x)(\lambda z(\lambda P(\exists y(book'(y) \land P(y)))(\lambda x(read^{*}(x)(z)))))$ $\Leftrightarrow^{\beta} \lambda F \exists x F(x)(\lambda z(\exists y(book'(y) \land \lambda x(read^{*}(x)(z))(y))))$ $\Leftrightarrow^{\beta} \lambda F \exists x F(x)(\lambda z(\exists y(book'(y) \land read^{*}(y)(z))))$ $\Leftrightarrow^{\beta} \exists x(\lambda z(\exists y(book'(y) \land read^{*}(y)(z)))(x))$ $\Leftrightarrow^{\beta} \exists x \exists y (book'(y) \land read^{*}(y)(x))$

Reading material Recommended reading

 Winter: Elements of Formal Semantics (Chapter 3, Part III) http://www.phil.uu.nl/~yoad/efs/main.html

