Semantic Theory

Week 2: Type Theory

Noortje Venhuizen \& Harm Brouwer - Universität des Saarlandes - Summer 2022

Truth-conditional semantics

Assumption: Logical formula captures truth-conditions of NL sentence; they are true in the same possible models.

Truth, validity and entailment

- A formula φ is true in a model M iff: $\llbracket \varphi \mathbb{\rrbracket}^{M, g}=1$ for every variable assignment g
- A formula φ is valid $(\vDash \varphi)$ iff: φ is true in all models
- A formula φ is satisfiable iff: there is at least one model M such that φ is true in M
- A set of formulas Γ entails formula $\varphi(\Gamma \vDash \varphi)$ iff: φ is true in every model in which all formulas in Γ are true
- the elements of Γ are called the premises or hypotheses
- φ is called the conclusion

First-order logic
 Predication and quantification over individual entities

- First-order logic talks about:
- Individual objects: $\mathrm{V}_{\mathrm{M}}\left(\mathrm{john}{ }^{\prime}\right) \in \mathrm{U}_{\mathrm{M}} ; \mathrm{g}(\mathrm{x}) \in \mathrm{U}_{\mathrm{M}}$
- Properties of and relations between individual objects: happy'(john'); love'(john',mary')
- Quantification over individual objects: $\forall x(h a p p y(x))$

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

- Jumbo is a small elephant.
- Being rich is a state of mind.
- Yesterday, it rained.
- Bill and John have the same hair color.
(Predicate modifiers)
(Second-order predicates)
(Non-logical sentence operators)
(Higher-order quantification)
\rightarrow What system can capture this diversity?
Simple idea: introduce higher order predication \& quantification

Introducing Russell's paradox

LOABOUIX

an eplg senren fort thith

From: Logicomix - An
epic search for truth; A.
Doxiadis, C.H.
Papadimitriou, A.

Problem for higher-order predicate logic

Russell's paradox

What if we extend the FOL interpretation of predicates, and simply interpret higher-order predicates as sets of sets of properties?

- For every predicate P, we define a set $\{x \mid P(x)\}$ containing all and only those entities for which P holds; higher order predicates are defined as sets of sets, e.g., $\{P \mid H(P)\}$
- This means that we can formally define a set $S=\{X \mid X \notin X\}$ representing the set of all sets that are not members of itself
- Paradox: does S belong to itself?

If it does, then S must satisfy its constraints, namely that it doesn't belong to itself, which is not possible if we assume it belongs to S. If not, then S is a set that doesn't belong to itself, hence it belongs to S .
\rightarrow Conclusion: We need a more restricted way of talking about properties and relations between properties!

Type Theory

Basic and complex types

- In Type Theory, all non-logical expressions are assigned a type (that may be basic or complex), which restricts how they can be combined.
- Basic types:
- \mathbf{e} - the type of individual terms ("entities")
- t - the type of formulas ("truth-values")
- Complex types:
- If $\boldsymbol{\pi}, \boldsymbol{\sigma}$ are types, then $\langle\boldsymbol{\pi}, \boldsymbol{\sigma}\rangle$ is a type

This represents a functor expression that takes an expression of type π as its argument and returns an expression of type $\boldsymbol{\sigma}$; this functor is sometimes written as ($\pi \rightarrow \sigma$) or simply ($\pi \sigma$)

Type Theory

Types \＆Function Application

Types for first－order expressions：
－Individual constants（Luke，Death Star）：e（Entity）
－One－place predicates（to walk，to be a jedi）：〈e，t〉（Function from entities to truth values；a property）
－Two－place predicates（to admire，to fight with）：$\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle$（Function from entities to properties）
－Three－place predicates（to give，to introduce）：$\langle\mathbf{e},\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle$（Function from entities to functions from entities to properties）
Function application：Combining a functor of complex type $\langle\boldsymbol{\pi}, \boldsymbol{\sigma}\rangle$ with an appropriate argument of type $\boldsymbol{\pi}$ ，results in an expression of type $\boldsymbol{\sigma}:\langle\boldsymbol{\pi}, \boldsymbol{\sigma}\rangle(\boldsymbol{\pi}) \mapsto \boldsymbol{\sigma}$
－jedi’（luke＇）：：〈e，t＞（e）$\mapsto \mathbf{t} \quad$（＂luke is a jedi＂：statement that has a truth value）
－admire＇（luke＇）：：$\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle(\mathbf{e}) \mapsto\langle\mathbf{e}, \mathbf{t}\rangle \quad$（＂［to］admire luke＂is a property）

More examples of types

Higher-order expressions

- Predicate modifiers (expensive, small): $\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle$ (Function from properties to properties)
- Second-order predicates (state of mind): $\langle\langle\mathbf{e}, \mathbf{t}\rangle, \mathbf{t}\rangle \quad$ (Property of properties)
- Sentence operators (yesterday, unfortunately): $\langle\mathbf{t}, \mathbf{t}\rangle$ (Function from truth values to truth values)
- Degree particles (very, too): $\langle\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle,\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle{ }^{*}$ complex function*

If π, σ are basic types, $\langle\pi, \sigma\rangle$ can be abbreviated as $\pi \sigma$. The types of predicate modifiers and second-order predicates can then be more conveniently written as: $\langle\mathbf{e t}$, et \rangle and $\langle\mathbf{e t}, \mathbf{t}\rangle$.

Type Theory: Vocabulary

- Non-logical constants:

A (possibly empty) set of non-logical constants for every type σ : CON_{σ} such that the sets for all distinct types are pairwise disjoint

- Variables:

An infinite set of variables For every type σ : $V A R_{\sigma}$ (pairwise disjoint)

- Logical symbols: $\forall, \exists, \neg, \wedge, \vee, \rightarrow, \leftrightarrow,=$
- Brackets: (,)

Type Theory: Syntax

For every type σ, the set of well-formed expressions WE_{σ} is defined as follows:
(i) $\mathrm{CON}_{\sigma} \subseteq \mathrm{WE}_{\sigma}$ and $V A R_{\sigma} \subseteq \mathrm{WE}_{\sigma}$;
(ii) If $a \in W E_{(\pi, \sigma)}$, and $\beta \in W E_{\pi}$, then $a(\beta) \in W E_{\sigma}$;
(function application)
(iii) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B)$, $(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in $W E_{t}$ and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in WE_{t};
(v) If a, β are well-formed expressions of the same type, then $\alpha=\beta \in \mathrm{WE}_{\mathrm{t}}$;
(vi) Nothing else is a well-formed expression.*
*NB: This prevents us from running into Russell's paradox!

Type inferencing

- Based on the syntactic structure of a sentence, we can derive its logical form, which defines how functions and arguments are combined
- Each expression that constitutes the logical form obtains a type, which can be inferred from the function-argument structure
- Luke is a talented jedi \Leftrightarrow^{*} talented'(jedi')(luke')

$$
\text { talented :: }\langle\langle\mathrm{e}, \mathrm{t}\rangle,\langle\mathrm{e}, \mathrm{t}\rangle\rangle \quad \text { jedi' }::\langle\mathrm{e}, \mathrm{t}\rangle
$$

$$
\text { luke':: e talented'(jedi') } \quad::\langle e, t\rangle
$$

talented'(jedi’)(luke’) :: t

Type inferencing: examples

Recommended strategy: Start by describing the logical form of the sentences (how are functions and arguments combined, based on the given syntactic bracketing), then derive types for all relevant sub-expressions (see previous slide).

1. Yodae [is faster than Palpatinee].
2. Yodae [is much [faster than]] Palpatine e.
3. [[Han Solo]e fights] [because [[the Dark Side]e is rising]].
4. Obi-Wane $[$ [told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

Higher-order predicates

Higher-order quantification:

- Leia has the same hair colour as Padmé

Higher-order equality:

- For $p, q \in C O N_{t}, " p=q$ " expresses material equivalence: " $p \leftrightarrow q$ ".
- For $F, G \in C O N_{\langle e, t}$, " $F=G$ " expresses co-extensionality: " $\forall x(F x \leftrightarrow G x)$ "
- For any formula ϕ of type $t, \phi=(\mathrm{x}=\mathrm{x})$ is a representation of " ϕ is true".

Type Theory: Semantics
 Type domains

- Let U be a non-empty set of entities.
- The domain of possible denotations $\mathbf{D}_{\boldsymbol{\sigma}}$ for every type $\boldsymbol{\sigma}$ is given by:
- $D_{e}=U$
- $D_{t}=\{0,1\}$
- $D_{\langle\pi, \sigma\rangle}$ is the set of all functions from D_{π} to $D_{\sigma}: D_{\sigma} D_{\pi}$
- For any type $\boldsymbol{\sigma}$, expressions of type $\boldsymbol{\sigma}$ denote elements of the domain $\mathbf{D}_{\boldsymbol{\sigma}}$

Type Theory: Semantics

Example domains

- For $M=\langle U, V\rangle$, let U consist of five entities. For selected types, we have the following sets of possible denotations:
- $D_{t}=\{0,1\}$
- $D_{e}=U=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$\left.\left.\cdot \mathrm{D}_{<e, t\rangle}=\left\{\begin{array}{c}e_{1} \rightarrow 0 \\ e_{1} \rightarrow 0 \\ e_{3} \rightarrow 0 \\ e_{3} \rightarrow 0 \\ e_{5} \rightarrow 0\end{array}\right], \begin{array}{c}\substack{e_{1} \rightarrow 1 \\ e_{2} \rightarrow 0 \\ e_{3} \rightarrow 0 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 0}\end{array}\right], \ldots,\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right], \ldots,\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{3} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right], \ldots\right\}$
Equivalent set notation: $\mathrm{D}_{<e, t>}=\left\{\{ \},\left\{\mathrm{e}_{1}\right\}, \ldots,\left\{\mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{5}\right\}, \ldots,\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{5}\right\}, \ldots\right\}$

Characteristic functions

- Many natural language expressions have a type $\langle\boldsymbol{\sigma}, \mathbf{t}\rangle$; expressing functions that map elements of type $\boldsymbol{\sigma}$ to truth values: $\{\mathbf{0 , 1}\}$
- Such functions with a range of $\{\mathbf{0}, \mathbf{1}\}$ are called characteristic functions, because they uniquely specify a subset of their domain $\mathbf{D}_{\boldsymbol{\sigma}}$

> The characteristic function of set S in a domain U is the function $$
F_{S}: U \rightarrow\{0,1\} \text { such that for all } e \in U, F_{M}(e)=1 \text { iff } e \in S \text {. }
$$

- NB: For first-order predicates, the FOL denotation (using sets) and the typetheoretic denotation (using characteristic functions) are equivalent.

Type Theory: Semantics

Model-theoretic interpretation

- A model structure for a type theoretic language is a tuple $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ such that:
- \mathbf{U} is a non-empty domain of individuals
- \mathbf{V} is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{C O N} \mathbf{N}_{\boldsymbol{\sigma}}$ an element of $\mathbf{D}_{\boldsymbol{\sigma}}$ (where $\boldsymbol{\sigma}$ is an arbitrary type)
- The variable assignment function \mathbf{g} assigns to every typed variable $\mathbf{v} \in \mathbf{V A R}_{\boldsymbol{\sigma}}$ an element of the domain $\mathbf{D}_{\boldsymbol{\sigma}}$ (where $\boldsymbol{\sigma}$ is an arbitrary type): \mathbf{g} :: $\mathbf{V A R}_{\boldsymbol{\sigma}} \rightarrow \mathbf{D}_{\boldsymbol{\sigma}}$
- Interpretation of expressions: Given model structure $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$ and assignment g :
- $\llbracket \alpha \rrbracket^{\mathrm{M}, \mathrm{g}}$
$=\mathrm{V}(\mathrm{a})$
$=g(a)$
$=\llbracket \alpha \rrbracket^{M, g\left(\llbracket \beta \rrbracket^{M, g}\right)}$
if a is a constant
if α is a variable
function application

Type Theory: Semantics

Interpretation of formulas

- Given a type-theoretic model structure $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$ and variable assignment \mathbf{g} :
- $\llbracket \alpha=\beta \rrbracket^{M, g}=1$
iff
$\llbracket \alpha \rrbracket^{M, g}=\llbracket \beta \rrbracket^{M, g}$
- $\llbracket \neg Ф \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \phi \wedge \psi \rrbracket^{M, g}=1$
- $\llbracket \phi \vee \psi \rrbracket^{M, g}=1$
iff
$\llbracket Ф \rrbracket^{M, g}=0$
iff
iff
$\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ and $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \phi \rrbracket^{M, g}=1$ or $\llbracket \psi \rrbracket^{M, g}=1$
- ...
- For any variable \mathbf{v} of type $\boldsymbol{\sigma}$:
- $\llbracket \exists \vee \nmid \rrbracket^{M, g}=1 \quad$ iff
- $\llbracket \forall V \phi \rrbracket^{M, g}=1 \quad$ iff there is a $d \in D_{\sigma}$ such that $\llbracket \Phi \rrbracket^{M, g[v / d]}=1$ for all $d \in D_{\sigma}: \llbracket \phi \rrbracket^{M, g[v / d]}=1$

Type-theoretic interpretation

Example

Luke is a talented jedi \Leftrightarrow talented' ${ }^{\prime}\langle\langle e, t\rangle,\langle e, t\rangle\rangle\left(\right.$ jedi' $\left.^{\prime}\langle e, t\rangle\right)\left(l u k e^{\prime}{ }^{\prime}\right)$
\llbracket talented'(jedi')(luke') $\rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket$ talented'(jedi') $\rrbracket^{M, g}\left(\llbracket l u k e^{\prime} \rrbracket^{M, g}\right)$
$=\llbracket$ talented $\left.\rrbracket^{\mathrm{M}, \mathrm{g}(\llbracket j e d i} \rrbracket^{\mathrm{M}, \mathrm{g}}\right)\left(\llbracket\right.$ luke $\left.^{\prime} \rrbracket^{\mathrm{M}, \mathrm{g}}\right)=\mathrm{V}_{\mathrm{M}}($ talented'$)\left(\mathrm{V}_{\mathrm{M}}\left(\mathrm{jedi} \mathrm{I}^{\prime}\right)\right)\left(\mathrm{V}_{\mathrm{M}}(\right.$ luke'$\left.)\right)$

Assume the following denotations:

- $\mathrm{V}_{\mathrm{M}}($ luke' $)=\mathrm{e}_{1}\left(\in \mathrm{D}_{\mathrm{e}}\right)$

- $\mathrm{V}_{\mathrm{M}}($ talented' $)=$

Type-theoretic models of natural language
 Defining the right model

Consider the following Model M:
$D_{e}=U_{M}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$\mathrm{V}_{\mathrm{M}}\left(\right.$ anakin' $\left.{ }_{\mathrm{e}}\right)=\mathrm{V}_{\mathrm{M}}\left(\right.$ darth_vader' $\left.{ }^{\mathrm{e}}\right)=\mathrm{e}_{2}$

\square
Note that "powerful" is defined to be truth-preserving: Powerful $X_{\langle e, t\rangle} \vDash X_{\langle e, t\rangle}$

Meaning postulates
 Restricting denotations

- Some valid inferences in natural language:
- Bill is a poor piano player \vDash Bill is a piano player
- Bill is a blond piano player $=$ Bill is blond
- Bill is a former professor $=$ Bill isn't a professor
\rightarrow These entailments do not hold in type theory by definition.
Meaning postulates: Restrictions on models that constrain the possible meanings of certain words

Meaning postulates for adjective classes

- Restrictive or subsective adjectives (e.g., "poor")
- Restriction: \mathbb{I} poor $\mathrm{N} \rrbracket \subseteq \mathbb{I} \mathbb{N}$
- Meaning postulate: $\forall \mathrm{G} \forall x(\operatorname{poor}(\mathrm{G})(\mathrm{x}) \rightarrow \mathrm{G}(\mathrm{x}))$
- Intersective adjectives (e.g., "blond")
- Restriction: $\mathbb{4}$ blond $\mathrm{N} \rrbracket=\llbracket$ blond $\rrbracket \cap \mathbb{N} \rrbracket$
- Meaning postlate: $\forall G \forall x\left(\right.$ blond $(G)(x) \rightarrow\left(b l o n d^{*}(x) \wedge G(x)\right)$
- NB: blond $\in \mathrm{WE}_{\langle\langle, \mathrm{t},\langle,\langle, \mathrm{t}\rangle\rangle} \neq$ blond $^{\star} \in \mathrm{WE}_{(e, \mathrm{t}\rangle}$
- Privative adjectives (e.g.,"former")
- Restriction: \mathbb{I} former $\mathrm{N} \rrbracket \cap \mathbb{N} \mathbb{}$ = \varnothing
- Meaning postlate: $\forall \mathrm{G} \forall x(f o r m e r(G)(x) \rightarrow \neg G(x))$

Reading material

Recommended reading

- Winter: Elements of Formal Semantics (Chapter 3, Part I \& II) http://www.phil.uu.nl/~yoad/efs/main.html

