Semantic Theory

Week 2: Type Theory

Noortje Venhuizen & Harm Brouwer — Universität des Saarlandes — Summer 2022

Truth-conditional semantics

Assumption: Logical formula captures truth-conditions of NL sentence; they are true in the same possible models.

Truth, validity and entailment

- A formula φ is true in a model M iff:
 [φ]^{M,g} = 1 for every variable assignment g
- A formula φ is valid (⊨ φ) iff:
 φ is true in all models
- A formula φ is satisfiable iff:
 there is at least one model M such that φ is true in M
- A set of formulas Γ entails formula φ (Γ ⊨ φ) iff:
 φ is true in every model in which all formulas in Γ are true
 - the elements of Γ are called the premises or hypotheses
 - φ is called the conclusion

First-order logic

Predication and quantification over individual entities

- First-order logic talks about:
 - Individual objects: V_M(john') ∈ U_M; g(x) ∈ U_M
 - Properties of and relations between individual objects: happy'(john'); love'(john',mary')
 - Quantification over individual objects: ∀x(happy(x))

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:

Jumbo is a <u>small</u> elephant. (Predicate modifiers)

Being rich is a <u>state of mind.</u> (Second-order predicates)

Yesterday, it rained.
 (Non-logical sentence operators)

• Bill and John have the same hair color. (Higher-order quantification)

→ What system can capture this diversity?

Simple idea: introduce higher order predication & quantification

Introducing Russell's paradox

Bertrand Russell

From: **Logicomix** — **An epic search for truth**; A.
Doxiadis, C.H.
Papadimitriou, A.

Papadatos and A. Di Donna

Problem for higher-order predicate logic

Russell's paradox

What if we extend the FOL interpretation of predicates, and simply interpret higher-order predicates as sets of sets of properties?

- For every predicate P, we define a set {x | P(x)} containing all and only those entities for which P holds; higher order predicates are defined as sets of sets, e.g., {P | H(P)}
- This means that we can formally define a set $S = \{X \mid X \notin X\}$ representing the set of all sets that are not members of itself
- Paradox: does S belong to itself?

If it does, then S must satisfy its constraints, namely that it doesn't belong to itself, which is not possible if we assume it belongs to S. If not, then S is a set that doesn't belong to itself, hence it belongs to S.

→ Conclusion: We need a more restricted way of talking about properties and relations between properties!

Bertrand Russell 1872 — 1970 Venhuizen & Brouwer

Type Theory

Winter: EFS Ch3 Page 50

Basic and complex types

• In Type Theory, all non-logical expressions are assigned a type (that may be basic

or complex), which restricts how they can be combined.

- Basic types:
 - e the type of individual terms ("entities")
 - t the type of formulas ("truth-values")
- Complex types:
 - If π , σ are types, then $\langle \pi, \sigma \rangle$ is a type

This represents a functor expression that takes an expression of type π as its argument and returns an expression of type σ ; this functor is sometimes written as $(\pi \to \sigma)$ or simply $(\pi \sigma)$

Type Theory

Winter: EFS Ch3 Page 53

Types & Function Application

Types for first-order expressions:

- Individual constants (Luke, Death Star): e (Entity)
- One-place predicates (to walk, to be a jedi): (e, t) (Function from entities to truth values; a property)
- Two-place predicates (to admire, to fight with): (e, (e, t)) (Function from entities to properties)
- Three-place predicates (to give, to introduce): (e, (e, (e, t)))
 (Function from entities to functions from entities to properties)

Function application: Combining a functor of complex type $\langle \pi, \sigma \rangle$ with an appropriate argument of type π , results in an expression of type σ : $\langle \pi, \sigma \rangle (\pi) \mapsto \sigma$

- $jedi'(luke') :: \langle e, t \rangle \langle e \rangle \rightarrow t$ ("luke is a jedi": statement that has a truth value)
- admire'(luke') :: $\langle e, \langle e, t \rangle \rangle \langle e, t \rangle$ ("[to] admire luke" is a property)

More examples of types

Higher-order expressions

- Predicate modifiers (expensive, small): $\langle (\mathbf{e}, \mathbf{t}), \langle \mathbf{e}, \mathbf{t} \rangle \rangle$ (Function from properties to properties)
- Second-order predicates (state of mind): ((e, t), t)
 (Property of properties)
- Degree particles (very, too): ((e, t), (e, t)), (e, t), (e, t)) *complex function*

If π , σ are basic types, $\langle \pi, \sigma \rangle$ can be abbreviated as $\pi \sigma$. The types of predicate modifiers and second-order predicates can then be more conveniently written as: $\langle \mathbf{et}, \mathbf{et} \rangle$ and $\langle \mathbf{et}, \mathbf{t} \rangle$.

Type Theory: Vocabulary

Non-logical constants:

A (possibly empty) set of non-logical constants for every type σ : CON $_{\sigma}$ such that the sets for all distinct types are pairwise disjoint

Variables:

An infinite set of variables For every type σ : VAR $_{\sigma}$ (pairwise disjoint)

- Logical symbols: ∀, ∃, ¬, ∧, ∨, →, ↔, =
- Brackets: (,)

Type Theory: Syntax

For every type σ , the set of well-formed expressions WE_{σ} is defined as follows:

- (i) $CON_{\sigma} \subseteq WE_{\sigma}$ and $VAR_{\sigma} \subseteq WE_{\sigma}$;
- (ii) If $\alpha \in WE_{(\pi, \sigma)}$, and $\beta \in WE_{\pi}$, then $\alpha(\beta) \in WE_{\sigma}$; (function application)
- (iii) If A, B are in WE_t, then \neg A, (A \wedge B), (A \vee B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;
- (iv) If A is in WE_t and x is a variable of arbitrary type, then $\forall xA$ and $\exists xA$ are in WE_t;
- (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;
- (vi) Nothing else is a well-formed expression.*

*NB: This prevents us from running into Russell's paradox!

Type inferencing

- Based on the syntactic structure of a sentence, we can derive its logical form, which defines how functions and arguments are combined
- Each expression that constitutes the logical form obtains a type, which can be inferred from the function-argument structure
- Luke is a talented jedi ⇔* talented'(jedi')(luke')

```
talented :: \langle\langle e, t \rangle, \langle e, t \rangle\rangle jedi' :: \langle e, t \rangle luke':: e talented'(jedi') :: \langle e, t \rangle
```

talented'(jedi')(luke') :: t

^{*} Note: we here ignore the semantic contribution of "is" and "a" (see Winter, pg 61)

Type inferencing: examples

Recommended strategy: Start by describing the logical form of the sentences (how are functions and arguments combined, based on the given syntactic bracketing), then derive types for all relevant sub-expressions (see previous slide).

- 1. Yodae [is faster than Palpatinee].
- 2. Yodae [is much [faster than]] Palpatinee.
- 3. [[Han Solo]_e fights] [because [[the Dark Side]_e is rising]].
- 4. Obi-Wane [[told [Qui-Gon Jinn]e] he will take [the Jedi-exam]e].

Higher-order predicates

Higher-order quantification:

• Leia has the same hair colour as Padmé

$$\exists C \text{ (hair_colour(C)} \land C(I') \land C(p'))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\langle e, t \rangle, t \rangle \qquad \langle e, t \rangle e$$

Higher-order equality:

- For p, $q \in CON_t$, "p=q" expresses material equivalence: "p \leftrightarrow q".
- For F, G ∈ CON_{⟨e, t⟩}, "F=G" expresses co-extensionality: "∀x(Fx↔Gx)"
- For any formula ϕ of type t, $\phi=(x=x)$ is a representation of " ϕ is true".

Type Theory: Semantics

Type domains

- Let **U** be a non-empty set of entities.
- The domain of possible denotations \mathbf{D}_{σ} for every type $\boldsymbol{\sigma}$ is given by:
 - $D_e = U$
 - $D_t = \{0,1\}$
 - $D_{(\pi, \sigma)}$ is the set of all functions from D_{π} to D_{σ} : $D_{\sigma}^{D\pi}$
- For any type σ , expressions of type σ denote elements of the domain D_{σ}

Type Theory: Semantics

Example domains

- For M = (U, V), let U consist of five entities. For selected types, we have the following sets of possible denotations:
 - $D_t = \{0,1\}$
 - $D_e = U = \{e_1, e_2, e_3, e_4, e_5\}$

•
$$D_{\langle e,t\rangle} = \{ \begin{bmatrix} e_1 \to 0 \\ e_2 \to 0 \\ e_3 \to 0 \\ e_4 \to 0 \\ e_5 \to 0 \end{bmatrix}, \begin{bmatrix} e_1 \to 1 \\ e_2 \to 0 \\ e_3 \to 0 \\ e_4 \to 0 \\ e_5 \to 0 \end{bmatrix}, \dots, \begin{bmatrix} e_1 \to 0 \\ e_2 \to 1 \\ e_3 \to 1 \\ e_4 \to 0 \\ e_5 \to 1 \end{bmatrix}, \dots, \begin{bmatrix} e_1 \to 1 \\ e_2 \to 1 \\ e_3 \to 0 \\ e_4 \to 0 \\ e_5 \to 1 \end{bmatrix}, \dots \}$$

Equivalent set notation: $D_{e,t} = \{\{\}, \{e_1\}, \dots, \{e_2, e_3, e_5\}, \dots, \{e_1, e_2, e_5\}, \dots\}$

Characteristic functions

- Many natural language expressions have a type $\langle \sigma, t \rangle$; expressing functions that map elements of type σ to truth values: $\{0,1\}$
- Such functions with a range of $\{0,1\}$ are called *characteristic functions*, because they uniquely specify a subset of their domain D_{σ}

The characteristic function of set S in a domain U is the function F_S : $U \rightarrow \{0,1\}$ such that for all $e \in U$, $F_M(e) = 1$ iff $e \in S$.

• NB: For first-order predicates, the FOL denotation (using sets) and the type-theoretic denotation (using characteristic functions) are equivalent.

Type Theory: Semantics

Model-theoretic interpretation

- A model structure for a type theoretic language is a tuple **M** = (**U**, **V**) such that:
 - **U** is a non-empty domain of individuals
 - **V** is an interpretation function, which assigns to every $\alpha \in CON_{\sigma}$ an element of D_{σ} (where σ is an arbitrary type)
- The variable assignment function g assigns to every typed variable $v \in VAR_{\sigma}$ an element of the domain D_{σ} (where σ is an arbitrary type): $g :: VAR_{\sigma} \to D_{\sigma}$
- Interpretation of expressions: Given model structure M = (U, V) and assignment g:
 - $[\alpha]^{M,g}$ = $V(\alpha)$ if α is a constant = $g(\alpha)$ if α is a variable
 - $[\alpha(\beta)]^{M,g} = [\alpha]^{M,g}([\beta]^{M,g})$ function application

Type Theory: Semantics

Interpretation of formulas

• Given a type-theoretic model structure $\mathbf{M} = \langle \mathbf{U}, \mathbf{V} \rangle$ and variable assignment \mathbf{g} :

•
$$[\![\varphi \land \psi]\!]^{M,g} = 1$$
 iff $[\![\varphi]\!]^{M,g} = 1$ and $[\![\psi]\!]^{M,g} = 1$

•
$$[\phi \lor \psi]^{M,g} = 1$$
 iff $[\phi]^{M,g} = 1$ or $[\psi]^{M,g} = 1$

•

For any variable v of type σ:

•
$$[\exists v \varphi]^{M,g} = 1$$
 iff there is a $d \in D_\sigma$ such that $[\![\varphi]\!]^{M,g[v/d]} = 1$

•
$$[\forall v \varphi]^{M,g} = 1$$
 iff for all $d \in D_\sigma : [\varphi]^{M,g[v/d]} = 1$

Type-theoretic interpretation

Example

```
Luke is a talented jedi ⇔ talented'(⟨e, t⟩, ⟨e, t⟩)(jedi'⟨e, t⟩)(luke'e)
```

```
[talented'(jedi')(luke')]M,g = [talented'(jedi')]^{M,g} ([luke']^{M,g})
```

= $[talented']^{M,g}([jedi']^{M,g})([luke']^{M,g}) = V_M(talented')(V_M(jedi'))(V_M(luke'))$

Semantic Theory 2022: Week 2

Assume the following denotations:

•
$$V_M(luke') = e_1 (\in \mathbf{D_e})$$

•
$$V_{M}(jedi') = \begin{pmatrix} e_{2} \rightarrow 0 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1 \end{pmatrix} (\in D_{\langle e,t \rangle})$$

• V_M(talented') =
$$\begin{bmatrix} e_1 \rightarrow 1 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 1 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_1 \rightarrow 0 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 0 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_1 \rightarrow 0 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 1 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_1 \rightarrow 0 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 0 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_1 \rightarrow 0 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 0 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_1 \rightarrow 0 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 0 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_1 \rightarrow 0 \\ e_2 \rightarrow 0 \\ e_3 \rightarrow 0 \\ e_4 \rightarrow 0 \\ e_5 \rightarrow 1 \end{bmatrix}$$

Type-theoretic models of natural language

Defining the right model

Consider the following Model M:

$$D_e = U_M = \{e_1, e_2, e_3, e_4, e_5\}$$

V_M(anakin'_e) = V_M(darth_vader'_e) = e₂

$$V_{M}(jedi'_{\langle e,t\rangle}) = \begin{bmatrix} e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0 \end{bmatrix} \quad V_{M}(dark_sider'_{\langle e,t\rangle}) = \begin{bmatrix} e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1 \end{bmatrix}$$

$$V_{M}(\text{powerful'}_{\langle\langle e,t\rangle\langle e,t\rangle\rangle}) = \begin{bmatrix} e_{1}\rightarrow 1 \\ e_{2}\rightarrow 1 \\ e_{3}\rightarrow 1 \\ e_{4}\rightarrow 1 \\ e_{5}\rightarrow 0 \end{bmatrix} \rightarrow \begin{bmatrix} e_{1}\rightarrow 0 \\ e_{2}\rightarrow 1 \\ e_{3}\rightarrow 0 \\ e_{4}\rightarrow 1 \\ e_{5}\rightarrow 0 \end{bmatrix}, \begin{bmatrix} e_{1}\rightarrow 0 \\ e_{2}\rightarrow 1 \\ e_{3}\rightarrow 0 \\ e_{4}\rightarrow 0 \\ e_{5}\rightarrow 1 \end{bmatrix} \rightarrow \begin{bmatrix} e_{1}\rightarrow 0 \\ e_{2}\rightarrow 1 \\ e_{3}\rightarrow 0 \\ e_{4}\rightarrow 0 \\ e_{5}\rightarrow 1 \end{bmatrix}, \dots$$

Note that "powerful" is defined to be truth-preserving: Powerful $X_{(e,t)} \models X_{(e,t)}$

Meaning postulates

Restricting denotations

- Some valid inferences in natural language:
 - Bill is a poor piano player ⊨ Bill is a piano player
 - Bill is a blond piano player ⊨ Bill is blond
 - Bill is a former professor ⊨ Bill isn't a professor
- → These entailments do not hold in type theory by definition.

Meaning postulates: Restrictions on models that constrain the possible meanings of certain words

Meaning postulates for adjective classes

- Restrictive or subsective adjectives (e.g., "poor")
 - Restriction: [poor N] ⊆ [N]
 - Meaning postulate: ∀G∀x(poor(G)(x) → G(x))
- Intersective adjectives (e.g., "blond")
 - Restriction: [blond N] = [blond] ∩ [N]
 - Meaning postlate: ∀G∀x(blond(G)(x) → (blond*(x) ∧ G(x))
 - NB: blond \in WE $\langle (e, t), (e, t) \rangle \neq blond^* \in$ WE $\langle (e, t) \rangle \neq blond^* \in$ WE $\langle (e, t) \rangle \in$
- Privative adjectives (e.g., "former")
 - Restriction: [former N] ∩ [N] = ∅
 - Meaning postlate: ∀G∀x(former(G)(x) → ¬G(x))

Reading material

Recommended reading

 Winter: Elements of Formal Semantics (Chapter 3, Part I & II) http://www.phil.uu.nl/~yoad/efs/main.html

