Semantic Theory

Week 1: Predicate Logic

Noortje Venhuizen \& Harm Brouwer - Universität des Saarlandes - Summer 2022

Logic \& Semantic Theory

Let's meet the players

Part I: Sentence semantics

The most certain principle in semantics

Max Cresswell (1975): "For two sentences A and B, if in some possible situation A is true and B is false, A and B must have different meanings."

- Knowing the meaning of a (declarative) sentence requires knowing what the world would have to be like for the sentence to be true:

Meaning $=$ Truth Conditions

- Applied to logical representations:

For sentence A and formula a: If there is a possible situation in which A is true and a is not, or vice versa, then a is not an appropriate meaning representation for A.

A central notion: Entailment

- Tina is tall and thin \Rightarrow Tina is tall
- Tina is tall, and Ms. Turner is not tall \Rightarrow Tina is not Ms.Turner
- A dog entered the room \Rightarrow An animal entered the room
- Tweety is a bird \neq Tweety can fly

Definition

"Given an indefeasible relation between two natural language sentences S_{1} and S_{2}, where speakers intuitively judge S_{2} to be true whenever S_{1} is true, we say that S_{1} entails S_{2}, and denote it $S_{1} \Rightarrow S_{2}$ "

Truth-conditional formal semantics

- The meaning representation of a sentence must be true in exactly the same situations as the sentence itself.
"Harry is a prince"
language

Model structures and formulas

- A model structure is a formal representation of a single possible situation
- A formula is a statement about model structures in a formal language
- Formulae obtain a truth value (true / false) with respect to model structure M.
M_{1} :

Model structures: Definition

- Formally, a model structure M can be defined as a tuple $\mathrm{M}=\langle\mathrm{U}, \mathrm{V}\rangle$, where:
- U is a set of individual entities, called the universe (sometimes called domain D);
- V is an interpretation function (sometimes denoted by I) that maps formula expressions onto (sets of) these entities. M_{1} :

$$
\begin{aligned}
& \mathrm{M}_{1}=\left\langle\mathrm{U}_{1}, \mathrm{~V}_{1}\right\rangle, \text { where: } \\
& \square U_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\} \\
& V_{1} \text { (handsome) }=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\} \\
& \left.V_{1} \text { (prince) }\right)=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}\right\} \\
& V_{1} \text { (harry) }=\mathrm{e}_{1}
\end{aligned}
$$

Formulas: Logical languages

- A logical language is a mathematical device that defines under what conditions a model makes a formula true.
- Propositional logic: Propositions as basic atoms
- Syntax: propositions (p, q,..), logical connectives ($\neg, \wedge, \vee, \rightarrow, \leftrightarrow)$
- Semantics: truth tables - truth conditions, entailment
- Limitation: propositions with internal structure

p	q	$p \& q$	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

- First-order predicate logic (FOL): Predicates and arguments
- Syntax: predicates, constants and variables (love(j,m), mortal(x), ...), quantifiers (\forall, \exists), logical connectives ($\wedge, \vee, \neg, \rightarrow, \leftrightarrow$)
- Semantics: model structures and variable assignments

First-order predicate logic: Vocabulary

- Non-logical expressions:

Individual constants: CON
n -place relation constants: PRED n, for all $\mathrm{n} \geq 0$

- Infinite set of individual variables: VAR
- Logical connectives: $\wedge, \vee, \neg, \rightarrow, \leftrightarrow, \forall, \exists$
- Brackets: (,)

First-order predicate logic: Syntax

Terms: TERM = VAR \cup CON

Atomic formulas:

- $R\left(t_{1}, \ldots, t_{n}\right) \quad$ for $R \in P R E D{ }^{n}$ and $t_{1}, \ldots, t_{n} \in$ TERM
- $t_{1}=t_{2} \quad$ for $t_{1}, t_{2} \in$ TERM

Well-formed formula (WFF):

1. All atomic formulas are WFFs;
2. If ϕ and ψ are WFFs, then $\neg \phi,(\phi \wedge \psi),(\phi \vee \psi),(\phi \rightarrow \psi),(\phi \leftrightarrow \psi)$ are WFFs;
3. If $x \in V A R$, and ϕ is a WFF, then $\forall x \phi$ and $\exists x \phi$ are WFFs;
4. Nothing else is a WFF.

FOL Formulas

Which formulas are not well-formed?

x 1. prince
2. prince(x)
x
3. prince(harry \wedge william)
4. \neg prince(harry)
\checkmark 5. rain \rightarrow happy(kate)
\checkmark 6. $\forall x$ (rain)
\checkmark 7. $\exists x(\forall x(\operatorname{happy}(x)))$
8. $\forall x($ prince $(x)) \rightarrow$ handsome (x)
assuming: prince $\in P R E D^{1}$
free variable: x
correct: prince(harry) ^ prince(william)
only if interpreted as: \neg (prince(harry))
only if: rain $\in P R E D D^{0}$ ("it rains")
vacuous quantifier: $\forall x$
vacuous quantifier: $\exists x$
watch the brackets! free variable: last x

Variable binding

- Given a quantified formula $\forall x \phi$ (or $\exists x \phi$), we say that ϕ, and every part of ϕ, is in the scope of the quantifier;
- In a formula $\forall x \phi$ (or $\exists x \phi$), the quantifier occurrence binds all occurrences of x in ϕ that are not bound by any quantifier occurrence $\forall x$ or $\exists x$ inside ϕ;
- If a variable is not bound in formula ϕ, it occurs free in ϕ;
- A closed formula is a formula without free variables (in natural language semantics, we generally only use closed formulae);
- A quantifier $\forall x$ or $\exists x$ is called vacuous if it has no free occurrences of x in its scope.

First-order predicate logic: Semantics

Interpretation of constants, predicates and variables

- FOL formulas obtain a truth value with respect to a model structure M and an assignment function g: $\llbracket ゆ \rrbracket^{M, g}:=[0 / 1]$
- First-ordered model structures are formally defined as tuples $\mathrm{M}=\left\langle\mathrm{U}_{\mathrm{M}}, \mathrm{V}_{\mathrm{M}}\right\rangle$, where U_{M} is a non-empty set (the universe) and V_{M} is an interpretation function:
- $\llbracket c \rrbracket^{M, g}=V_{M}(c) \in U_{M}$
- $\llbracket P \rrbracket^{M, g}=V_{M}(P) \subseteq U_{M}{ }^{n}$
- $\llbracket P \rrbracket^{M, g}=V_{M}(P) \in\{0,1\}$
if c is an individual constant
if P is an n-place predicate symbol
if P is an 0 -place predicate
- The assignment function g maps variables onto elements of the universe:
$\mathrm{g}::$ VAR $\rightarrow \mathrm{U}_{\mathrm{M}}$
- $\llbracket x \rrbracket^{M, g}=g(x) \in U_{M} \quad$ if x is a variable

Assignment function

Mapping variables onto model entities

An assignment function g assigns values to all variables

- $\mathrm{g}::$ VAR $\rightarrow \mathrm{U}_{\mathrm{M}}$
- We write $g[x / d]$ for the assignment function g ' that assigns d to x and assigns the same values as g to all other variables.

	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{u}	\ldots
g	e_{1}	e_{2}	e_{3}	e_{4}	\ldots
$g\left[y / e_{1}\right]$	e_{1}	e_{1}	e_{3}	e_{4}	\ldots
$g\left[x / e_{1}\right]$	e_{1}	e_{2}	e_{3}	e_{4}	\ldots
$g[y / g(z)]$	e_{1}	e_{3}	e_{3}	e_{4}	\ldots
$g\left[y / e_{1}\right]\left[u / e_{1}\right]$	e_{1}	e_{1}	e_{3}	e_{1}	\ldots
$g\left[y / e_{1}\right]\left[y / e_{2}\right]$	e_{1}	e_{2}	e_{3}	e_{4}	\ldots

Assignment function

Interpretation of variables and quantifiers

How to interpret the following sentence in model M :

- Someone is sad $\mapsto \exists x\left(\operatorname{sad}^{\prime}(x)\right)$

Intuition:

- find an entity in the universe for which the statement $x \in V_{M}\left(s^{\prime} d^{\prime}\right)$ holds: e_{4}
- replace x by e_{4} in order to make $\exists x\left(\operatorname{sad}^{\prime}(x)\right)$ true:

More formally:

- Interpret sentence relative to assignment function g: i.e., $\llbracket \exists x($ sad' $(x)) \rrbracket^{M, g}$, such that $g(x)=e_{4}$; this can be generalised to any g^{\prime} as follows: $g^{\prime}\left[\mathrm{x} / \mathrm{e}_{4}\right](\mathrm{x})=\mathrm{e}_{4}$

$\mathrm{M}_{1}=\left\langle\mathrm{U}_{1}, \mathrm{~V}_{1}\right\rangle$, where:
- $\mathrm{U}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\}$
- V_{1} (john) $=e_{1} ; V_{1}$ (yoko) $=e_{2}$;
V_{1} (ringo) $=\mathrm{e}_{3} ; \mathrm{V}_{1}$ (paul) $=\mathrm{e}_{4} ;$ V_{1} (george) $=\mathrm{e}_{5}$
- V_{1} (song-writer) $=\left\{\mathrm{e}_{1}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\}$ $\mathrm{V}_{1}($ drink_coffee $)=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\}$ $\mathrm{V}_{1}($ love $)=\left\{\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle,\left\langle\mathrm{e}_{2}, \mathrm{e}_{1}\right\rangle,\left\langle\mathrm{e}_{4}, \mathrm{e}_{5}\right\rangle\right\}$
$\mathrm{V}_{1}(\mathrm{sad})=\left\{\mathrm{e}_{4}\right\}$

First-order predicate logic: Semantics

Interpretation of formulas

Well-formed formulas are interpreted with respect to a model structure M and an assignment function g :

- $\llbracket R\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right) \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \mathrm{t}_{1}=\mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \neg \emptyset \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \phi \wedge \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \phi \vee \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
- $\llbracket \phi \rightarrow \psi \rrbracket^{M, g}=1$
- $\llbracket \phi \leftrightarrow \psi \rrbracket^{M, g}=1$
- $\llbracket \exists Х Ф \rrbracket^{M, g}=1$
- $\llbracket \forall Х Ф \rrbracket^{M, g}=1$
iff
iff
iff
iff
iff
iff
iff
iff
iff

$\llbracket \mathrm{t}_{1} \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \mathrm{t}_{2} \rrbracket^{\mathrm{M}, \mathrm{g}}$
$\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=0$
$\llbracket \phi \rrbracket^{M, g}=1$ and $\llbracket \psi \rrbracket^{M, g}=1$
$\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=0$ or $\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}=1$
$\llbracket \phi \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \psi \rrbracket^{\mathrm{M}, \mathrm{g}}$
there is a $d \in U_{M}$ such that $\llbracket \phi \rrbracket^{M, g[x / d]}=1$
for all $d \in U_{M}, \llbracket \phi \rrbracket^{M, g[x / d]}=1$

Interpretation of formulas

Computing truth conditions and truth values

- "Every songwriter drinks coffee": $\forall x(\operatorname{songwriter}(\mathrm{x}) \rightarrow$ drink_coffee(x$)$)
- Truth conditions w.r.t. $\mathrm{M}_{1}: \llbracket \forall x($ songwriter $(x) \rightarrow$ drink_coffee $(x)) \rrbracket^{\mathrm{M}, \mathrm{g}}=1$ iff for all $e \in U$: \llbracket songwriter $(x) \rightarrow$ drink_coffee $(x) \rrbracket^{M, g[x / e]}=1$ iff for all $e \in \mathrm{U}: \llbracket \operatorname{songwriter}(\mathrm{x}) \rrbracket^{\mathrm{M}, \mathrm{g}[\mathrm{x} / \mathrm{e}]}=0$ or \llbracket drink_coffee $(\mathrm{x}) \rrbracket^{\mathrm{M}, \mathrm{g}[\mathrm{x} / \mathrm{e}]}=1$ iff for all $e \in \mathrm{U}: \llbracket x \rrbracket^{\mathrm{M}, \mathrm{g}[\mathrm{x} / \mathrm{e}]} \notin \mathrm{V}_{\mathrm{M}}$ (songwriter) or $\llbracket \mathrm{x} \rrbracket^{\mathrm{M}, \mathrm{g}[\mathrm{x} / \mathrm{e}]} \in \mathrm{V}_{\mathrm{M}}$ (drink_coffee) iff for all $e \in \mathrm{U}: \mathrm{g}[\mathrm{x} / \mathrm{e}](\mathrm{x}) \notin \mathrm{V}_{\mathrm{M}}$ (songwriter) or $\mathrm{g}[\mathrm{x} / \mathrm{e}](\mathrm{x}) \in \mathrm{V}_{\mathrm{M}}$ (drink_coffee)

M_{1} :

$\mathrm{M}_{1}=\left\langle\mathrm{U}_{1}, \mathrm{~V}_{1}\right\rangle$, where:

- $\mathrm{U}_{1}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\}$
- V_{1} (john) $=\mathrm{e}_{1} ; \mathrm{V}_{1}$ (yoko) $=\mathrm{e}_{2}$; $\mathrm{V}_{1}($ ringo $)=\mathrm{e}_{3} ; \mathrm{V}_{1}($ paul $)=\mathrm{e}_{4} ;$ V_{1} (george) $=e_{5}$
- V_{1} (song-writer) $=\left\{\mathrm{e}_{1}, \mathrm{e}_{4}, \mathrm{e}_{5}\right\}$ $V_{1}($ drink_coffee $)=\left\{e_{1}, e_{2}, e_{4}, e_{5}\right\}$ V, iff for all $e \in \mathrm{U}: \mathrm{e} \notin \mathrm{V}_{\mathrm{M}}$ (songwriter) or $\mathrm{e} \in \mathrm{V}_{\mathrm{M}}$ (drink_coffee) iff V_{M} (songwriter) $\subseteq \mathrm{V}_{\mathrm{M}}$ (drink_coffee)
- Truth value in M_{1} : let $\Phi=$ songwriter $(\mathrm{x}) \rightarrow$ drink_coffee (x)

For $\mathrm{e}=\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{4}, \mathrm{e}_{5},: \llbracket \Phi \rrbracket^{\mathrm{M} 1, g[\mathrm{x} / \mathrm{e}]}=1$ since $\mathrm{e} \in \mathrm{V}_{\mathrm{M}}$ (drink_coffee);
For $\mathrm{e}=\mathrm{e}_{3}: \llbracket \phi \rrbracket^{\mathrm{M} 1, g[\mathrm{x} / \mathrm{e}]}=1$ since $\mathrm{e} \notin \mathrm{V}_{\mathrm{M}}$ (songwriter).
Therefore: $\llbracket \forall x\left(\operatorname{songwriter}(\mathrm{x}) \rightarrow\right.$ drink_coffee(x))$\rrbracket^{\mathrm{M1} 1, \mathrm{~g}}=1$ for any g .

Formalizing Natural Language

Exercise

1. Bill loves Mary.
2. Bill reads an interesting book.
3. Every student reads a book.
4. Bill passed every exam.
5. Not every student answered every question.
6. Only Mary answered every question.
7. Mary is annoyed when someone is noisy.
8. Although nobody makes noise, Mary is annoyed.

Truth, validity and entailment

- A formula φ is true in a model M iff: $\llbracket \varphi \rrbracket^{M, g}=1$ for every variable assignment g
- A formula φ is valid $(\vDash \varphi)$ iff: φ is true in all models
- A formula φ is satisfiable iff: there is at least one model M such that φ is true in M
- A set of formulas Γ entails formula $\varphi(\Gamma \vDash \varphi)$ iff: φ is true in every model in which all formulas in Γ are true
- the elements of Γ are called the premises or hypotheses
- φ is called the conclusion

Logical Equivalence

Formula ϕ is logically equivalent to formula $\psi(\phi \Leftrightarrow \psi)$, iff:

- $\llbracket \mathbb{} \Phi \rrbracket^{\mathrm{M}, \mathrm{g}}=\llbracket \mathbb{} \mathbb{4} \rrbracket^{\mathrm{M}, \mathrm{g}}$ for all models M and variable assignments g .

For all closed formulas ϕ and ψ, the following assertions are equivalent:

1. $\phi \Leftrightarrow \psi$
(logical equivalence)
2. $\phi \vDash \psi$ and $\psi \vDash \phi$
(mutual entailment)
3. $\vDash \phi \leftrightarrow \psi$
(validity of "material equivalence")

Logical Equivalence Theorems
 Propositional logic

1) $\quad \neg \neg \phi \Leftrightarrow \Phi$
2) $\quad \phi \wedge \psi \Leftrightarrow \psi \wedge \varnothing$
3) $\quad \phi \vee \psi \Leftrightarrow \psi \vee \Phi$
4) $\quad \phi \wedge(\psi \vee \mathrm{X}) \Leftrightarrow(\phi \wedge \psi) \vee(\phi \wedge X)$
5) $\quad \phi \vee(\psi \wedge \chi) \Leftrightarrow(\phi \vee \psi) \wedge(\phi \vee \chi)$

Double negation
6)
7)

Commutativity
8) $\quad \phi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \phi$
9) $\quad \phi \rightarrow \psi \Leftrightarrow \neg \phi \vee \psi$
10) $\quad \neg(\phi \rightarrow \psi) \Leftrightarrow \Phi \wedge \neg \psi$

Distributivity
9)
de Morgan's

Logical Equivalence Theorems

Quantifiers

11) $\neg \forall X \phi \Leftrightarrow \exists X \neg \Phi$
12) $\neg \exists \mathrm{X} \phi \Leftrightarrow \forall \mathrm{X} \neg \Phi$
13)
14) $\exists x(\Phi \vee \Psi) \Leftrightarrow \exists x \phi \vee \exists x \Psi$
15) $\quad \forall x \forall y \phi \Leftrightarrow \forall y \forall x \phi$
16) $\exists х \exists y Ф \Leftrightarrow \exists у \exists х \varnothing$
17) $\exists x \forall y \varnothing \Rightarrow \forall y \exists x \Phi$

Quantifier negation

Quantifier distribution

Quantifier swap
... but not vice versa!

Logical Equivalence Theorems

Quantifiers and variables

The following equivalences are valid theorems of FOL, provided that x does not occur free in ϕ :

Here, $\phi[\mathrm{x} / \mathrm{y}]$ is the result of replacing all free occurrences of y in ϕ with x

```
18) \(\exists y Ф \Leftrightarrow \exists x Ф[x / y]\)
19) \(\forall y \varnothing \Leftrightarrow \forall x \phi[x / y]\)
20) \(\Phi \wedge \forall x \Psi \Leftrightarrow \forall x(\Phi \wedge \Psi)\)
21) \(\Phi \wedge \exists x \Psi \Leftrightarrow \exists x(\Phi \wedge \Psi)\)
22) \(\phi \vee \forall x \Psi \Leftrightarrow \forall x(\phi \vee \Psi)\)
```

23) $\Phi \vee \exists x \Psi \Leftrightarrow \exists x(\Phi \vee \Psi)$
24) $\phi \rightarrow \forall x \Psi \Leftrightarrow \forall x(\phi \rightarrow \Psi)$
25) $\phi \rightarrow \exists x \Psi \Leftrightarrow \exists x(\phi \rightarrow \Psi)$
26) $\exists x \Psi \rightarrow \Phi \Leftrightarrow \forall x(\Psi \rightarrow \Phi)$
27) $\forall x \Psi \rightarrow \Phi \Leftrightarrow \exists x(\Psi \rightarrow \Phi)$

Equivalence Transformations

Example

1. $\neg \exists x \forall y(P y \rightarrow R x y) \quad$ "Nobody masters every problem"
2. $\forall x \exists y(P y \wedge \neg R x y)$
"Everybody fails to master some problem"

We show the equivalence of 1 . and 2 . as follows:

$$
\begin{array}{ll}
\neg \exists x \forall y(P y \rightarrow R x y) & \\
\Leftrightarrow \forall x \neg \forall y(P y \rightarrow R x y) & \text { (12) } \neg \exists x \phi \Leftrightarrow \forall x \neg \Phi \\
\Leftrightarrow \forall x \exists y \neg(P y \rightarrow R x y) & \text { (11) } \neg \forall x \Phi \Leftrightarrow \exists x \neg \Phi \\
\Leftrightarrow \forall x \exists y(P y \wedge \neg R x y) & (10) \neg(\phi \rightarrow \psi) \Leftrightarrow \phi \wedge \neg \psi
\end{array}
$$

Reading material

- Recommended reading: Logic in Action, Chapter 4 (sections 4.5 \& 4.6) http://www.logicinaction.org
- Further background: Winter, Elements of Formal Semantics, Chapter 2 http://www.phil.uu.nl/~yoad/efs/main.html

