# Semantic Theory Week 1: Predicate Logic

Noortje Venhuizen & Harm Brouwer – Universität des Saarlandes – Summer 2022



# Let's meet the players





Semantic Theory 2022: Week 1

Venhuizen & Brouwer



# Part I: Sentence semantics



## The most certain principle in semantics

Max Cresswell (1975): "For two sentences A and B, if in some possible situation A is true and B is false, A and B must have different meanings."

- would have to be like for the sentence to be true: Meaning = Truth Conditions
- Applied to logical representations:

For sentence A and formula a: If there is a possible situation in which A is true and a is not, or vice versa, then a is **not** an appropriate meaning representation for A.



Knowing the meaning of a (declarative) sentence requires knowing what the world







### **A central notion: Entailment**

- Tina is tall and thin  $\Rightarrow$  Tina is tall
- Tina is tall, and Ms. Turner is not tall  $\Rightarrow$  Tina is not Ms. Turner
- A dog entered the room  $\Rightarrow$  An animal entered the room
- Tweety is a bird  $\Rightarrow$  Tweety can fly

#### Definition

that  $S_1$  entails  $S_2$ , and denote it  $S_1 \rightarrow S_2$ "



#### "Given an indefeasible relation between two natural language sentences S<sub>1</sub> and $S_2$ , where speakers intuitively judge $S_2$ to be true whenever $S_1$ is true, we say



### **Truth-conditional formal semantics**

situations as the sentence itself.

#### "Harry is a prince"

language





#### • The meaning representation of a sentence must be true in exactly the same



### **Model structures and formulas**

- A model structure is a formal representation of a single possible situation
- A formula is a statement about model structures in a formal language
  - Formulae obtain a truth value (true / false) with respect to model structure M.







### **Model structures: Definition**

- Formally, a model structure M can be defined as a tuple  $M = \langle U, V \rangle$ , where:
  - U is a set of individual entities, called the *universe* (sometimes called domain D);
  - V is an *interpretation function* (sometimes denoted by I) that maps formula expressions onto (sets of) these entities.







 $M_1 = \langle U_1, V_1 \rangle$ , where:  $\Box$  U<sub>1</sub> = {e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>, e<sub>4</sub>, e<sub>5</sub>}  $\Box$  V<sub>1</sub>(handsome) = {e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub>}  $V_1(prince) = \{e_1, e_2, e_3, e_4\}$  $V_1(harry) = e_1$ 



# Formulas: Logical languages

- A logical language is a mathematical device that defines under what conditions a model makes a formula true.
- Propositional logic: Propositions as basic atoms
  - Syntax: propositions (p, q,..), logical connectives (¬,∧,∨,→,↔)
  - Semantics: truth tables truth conditions, entailment
  - Limitation: propositions with internal structure
- First-order predicate logic (FOL): Predicates and arguments
  - Syntax: predicates, constants and variables (*love(j,m), mortal(x), …*), quantifiers (∀,∃), logical connectives (∧, ∨, ¬, →, ↔)
  - Semantics: model structures and variable assignments



| P | 9 | p & q | $p \lor q$ | $p \rightarrow q$ | Pé |
|---|---|-------|------------|-------------------|----|
| Т | Т | Т     | Т          | Т                 |    |
| Т | F | F     | Т          | F                 |    |
| F | Т | F     | Т          | Т                 | 1  |
| F | F | F     | F          | Т                 |    |
|   | _ |       |            |                   |    |



Gottlob Frege *Begriffsschrift* (1879)

Venhuizen & Brouwer





### **First-order predicate logic: Vocabulary**

• Non-logical expressions:

Individual constants: CON

n-place relation constants: PRED<sup>n</sup>, for all  $n \ge 0$ 

- Infinite set of individual variables: VAR
- Logical connectives:  $\land$ ,  $\lor$ ,  $\neg$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\forall$ ,  $\exists$
- Brackets: (, )





### First-order predicate logic: Syntax

Terms: TERM = VAR ∪ CON

#### **Atomic formulas:**

- for  $R \in PRED^n$  and  $t_1, \ldots, t_n \in TERM$ •  $R(t_1, ..., t_n)$
- $t_1 = t_2$ for  $t_1, t_2 \in \text{TERM}$

#### Well-formed formula (WFF):

- 1. All atomic formulas are WFFs;
- 3. If  $x \in VAR$ , and  $\phi$  is a WFF, then  $\forall x \phi$  and  $\exists x \phi$  are WFFs;
- 4. Nothing else is a WFF.



Logic in action Ch4: pg 26

# 2. If $\phi$ and $\psi$ are WFFs, then $\neg \phi$ , $(\phi \land \psi)$ , $(\phi \lor \psi)$ , $(\phi \rightarrow \psi)$ , $(\phi \leftrightarrow \psi)$ are WFFs;

Semantic Theory 2022: Week 1

Venhuizen & Brouwer





# **FOL Formulas**

Which formulas are not well-formed?

- × 1. prince
- $\checkmark$  2. prince(x)
- $\times$  3. prince(harry  $\wedge$  william)
- ✓ 4. ¬prince(harry)
- ✓ 5. rain → happy(kate)
- ✓ 6. ∀x(rain)
- ✓ 7.  $\exists x(\forall x(happy(x)))$

✓ 8.  $\forall x(prince(x)) \rightarrow handsome(x)$ 



assuming: prince  $\in PRED^1$ free variable: x *correct: prince(harry)* ^ *prince(william)* only if interpreted as: ¬(prince(harry)) only if: rain ∈ PRED<sup>0</sup> (~ "it rains") *vacuous quantifier:*  $\forall x$ vacuous quantifier: 3x watch the brackets! free variable: last x



# Variable binding

- Given a quantified formula  $\forall x \varphi$  (or  $\exists x \varphi$ ), we say that  $\varphi$ , and every part of  $\varphi$ , is in the scope of the quantifier;
- In a formula  $\forall x \varphi$  (or  $\exists x \varphi$ ), the quantifier occurrence binds all occurrences of x in  $\phi$  that are not bound by any quantifier occurrence  $\forall x$  or  $\exists x$  inside  $\phi$ ;
- If a variable is not bound in formula  $\phi$ , it occurs free in  $\phi$ ;
- A closed formula is a formula without free variables (in natural language semantics, we generally only use closed formulae);
- A quantifier  $\forall x$  or  $\exists x$  is called vacuous if it has no free occurrences of x in its scope.







#### **First-order predicate logic: Semantics** Interpretation of constants, predicates and variables

- FOL formulas obtain a truth value with respect to a model structure M and an assignment function  $g: [\Phi]^{M,g} := [0/1]$
- is a non-empty set (the *universe*) and  $V_M$  is an interpretation function:

• 
$$\llbracket c \rrbracket^{M,g} = V_M(c) \in U_M$$
 if

• 
$$\llbracket P \rrbracket^{M,g} = V_M(P) \subseteq U_M^n$$
 if

• 
$$[P]^{M,g} = V_M(P) \in \{0,1\}$$
 if

- The assignment function g maps variables onto elements of the universe:  $g :: VAR \rightarrow U_M$ 
  - $[x]^{M,g} = g(x) \in U_M$





• First-ordered model structures are formally defined as tuples  $M = \langle U_M, V_M \rangle$ , where  $U_M$ 

- c is an individual constant
- P is an n-place predicate symbol
- P is an 0-place predicate

if x is a variable



#### **Assignment function** Mapping variables onto model entities

An assignment function g assigns values to all variables

- $g :: VAR \rightarrow U_M$
- the same values as g to all other variables.

|                                         | X  | У                     | Z                     | u          |       |
|-----------------------------------------|----|-----------------------|-----------------------|------------|-------|
| g                                       | e1 | <b>e</b> 2            | <b>e</b> <sub>3</sub> | <b>e</b> 4 | •••   |
| g[y/e <sub>1</sub> ]                    | e1 | e1                    | e <sub>3</sub>        | <b>e</b> 4 | •••   |
| g[x/e <sub>1</sub> ]                    | e1 | e2                    | <b>e</b> <sub>3</sub> | <b>e</b> 4 | •••   |
| g[y/g(z)]                               | e1 | e3                    | <b>e</b> 3            | <b>e</b> 4 | • • • |
| g[y/e1][u/e1]                           | e1 | e1                    | <b>e</b> 3            | e1         |       |
| g[y/e <sub>1</sub> ][y/e <sub>2</sub> ] | e1 | <b>e</b> <sub>2</sub> | <b>e</b> 3            | <b>e</b> 4 | •••   |



Logic in action Ch4: pg. 31

• We write g[x/d] for the assignment function g' that assigns d to x and assigns



#### **Assignment function** Interpretation of variables and quantifiers

How to interpret the following sentence in model M:

• Someone is sad  $\mapsto \exists x(sad'(x))$ 

#### Intuition:

- find an entity in the universe for which the statement  $x \in V_M(sad')$  holds: e<sub>4</sub>
- replace x by  $e_4$  in order to make  $\exists x(sad'(x))$  true:

#### More formally:

Interpret sentence relative to assignment function g: i.e.,  $[[\exists x(sad'(x))]]^{M,g}$ , such that  $g(x) = e_4$ ; this can be generalised to any g' as follows:  $g'[x/e_4](x) = e_4$ 





 $M_1 = \langle U_1, V_1 \rangle$ , where:

- $U_1 = \{e_1, e_2, e_3, e_4, e_5\}$
- $V_1(john) = e_1; V_1(yoko) = e_2;$  $V_1(ringo) = e_3; V_1(paul) = e_4;$  $V_1(george) = e_5$
- $V_1(song-writer) = \{e_1, e_4, e_5\}$  $V_1(drink\_coffee) = \{e_1, e_2, e_4, e_5\}$  $V_1(Iove) = \{ \langle e_1, e_2 \rangle, \langle e_2, e_1 \rangle, \langle e_4, e_5 \rangle \}$  $V_1(sad) = \{e_4\}$





#### **First-order predicate logic: Semantics Interpretation of formulas**

Well-formed formulas are interpreted with respect to a model structure M and an assignment function g:

| •        | <b>[</b> [ <b>R(t</b> <sub>1</sub> ,, t <sub>n</sub> )]] <sup>M,g</sup> = 1 | iff | <[[t             |
|----------|-----------------------------------------------------------------------------|-----|------------------|
| •        | $\llbracket t_1 = t_2 \rrbracket^{M,g} = 1$                                 | iff | [[t <sub>1</sub> |
| •        | <b>[</b> ¬Φ <b>]</b> <sup>M,g</sup> = <b>1</b>                              | iff | [ф               |
| •        | $\llbracket \phi \land \psi \rrbracket^{M,g} = 1$                           | iff | Įφ               |
| •        | $\llbracket \phi \lor \psi \rrbracket^{M,g} = 1$                            | iff | Įφ               |
| •        | $\llbracket \phi \rightarrow \psi \rrbracket^{M,g} = 1$                     | iff | [ф               |
| •        | $\llbracket \phi \leftrightarrow \psi \rrbracket^{M,g} = 1$                 | iff | [[Ф              |
| •        | [[∃xφ]] <sup>M,g</sup> = 1                                                  | iff | the              |
| •<br>Tät | [[∀xφ]] <sup>M,g</sup> = 1                                                  | iff | for              |
|          |                                                                             |     |                  |





- $t_1 ]\!]^{M,g}, \ldots, [\![t_n]\!]^{M,g} \in V_M(R)$
- $\|M,g\| = \|t_2\|M,g\|$
- $D^{M,g} = 0$
- $b ] M,g = 1 and [ \psi ] M,g = 1$
- þ]]<sup>M,g</sup> = 1 or [[ψ]]<sup>M,g</sup> = 1
- $M_{g} = 0 \text{ or } [\![\psi]\!]^{M,g} = 1$
- $D]]^{\mathsf{M},\mathsf{g}} = \llbracket \Psi ]]^{\mathsf{M},\mathsf{g}}$
- ere is a  $d \in U_M$  such that  $\llbracket \Phi \rrbracket^{M,g[x/d]} = 1$ r all  $d \in U_M$ ,  $\llbracket \Phi \rrbracket^{M,g[x/d]} = 1$

#### Interpretation of formulas **Computing truth conditions and truth values**

- "Every songwriter drinks coffee":  $\forall x (songwriter(x) \rightarrow drink_coffee(x))$
- Truth conditions w.r.t.  $M_1$ :  $[\forall x(songwriter(x) \rightarrow drink\_coffee(x))]^{M,g} = 1$ *iff* for all  $e \in U$ : [songwriter(x)  $\rightarrow$  drink\_coffee(x)]<sup>M,g[x/e]</sup> = 1 iff for all  $e \in U$ : [songwriter(x)]<sup>M,g[x/e]</sup> = 0 or [drink\_coffee(x)]<sup>M,g[x/e]</sup> = 1 iff for all  $e \in U$ :  $[x]^{M,g[x/e]} \notin V_M$ (songwriter) or  $[x]^{M,g[x/e]} \in V_M$ (drink\_coffee) iff for all  $e \in U$ :  $g[x/e](x) \notin V_M(songwriter)$  or  $g[x/e](x) \in V_M(drink\_coffee)$ *iff* for all  $e \in U$ :  $e \notin V_M$ (songwriter) or  $e \in V_M$ (drink\_coffee) *iff*  $V_M$ (songwriter)  $\subseteq$   $V_M$ (drink\_coffee)
- Truth value in M<sub>1</sub>: let  $\phi$  = songwriter(x)  $\rightarrow$  drink\_coffee(x) For  $e = e_1$ ,  $e_2$ ,  $e_4$ ,  $e_5$ ,:  $\llbracket \varphi \rrbracket^{M1,g[x/e]} = 1$  since  $e \in V_M(drink\_coffee)$ ; For  $e = e_3$ :  $[\phi]^{M1,g[x/e]} = 1$  since  $e \notin V_M$ (songwriter). Therefore:  $[\forall x(songwriter(x) \rightarrow drink_coffee(x))]^{M1,g} = 1$  for any g.





 $M_1 = \langle U_1, V_1 \rangle$ , where:

- $U_1 = \{e_1, e_2, e_3, e_4, e_5\}$
- $V_1(john) = e_1; V_1(yoko) = e_2;$  $V_1(ringo) = e_3; V_1(paul) = e_4;$  $V_1(george) = e_5$
- $V_1(song-writer) = \{e_1, e_4, e_5\}$  $V_1(drink\_coffee) = \{e_1, e_2, e_4, e_5\}$



#### Formalizing Natural Language Exercise

- Bill loves Mary. 1.
- 2. Bill reads an interesting book.
- 3. Every student reads a book.
- 4. Bill passed every exam.
- 5. Not every student answered every question.
- 6. Only Mary answered every question.
- 7. Mary is annoyed when someone is noisy.
- 8. Although nobody makes noise, Mary is annoyed.

#### Try translating these sentences!



Semantic Theory 2022: Week 1

Venhuizen & Brouwer



## Truth, validity and entailment

- A formula  $\varphi$  is true in a model M iff:  $[\![\phi]\!]^{M,g}$  = 1 for every variable assignment g
- A formula  $\varphi$  is valid ( $\models \varphi$ ) iff: φ is true in all models
- A formula  $\varphi$  is satisfiable iff: there is at least one model M such that  $\varphi$  is true in M
- A set of formulas  $\Gamma$  entails formula  $\varphi$  ( $\Gamma \models \varphi$ ) iff:  $\phi$  is true in every model in which all formulas in  $\Gamma$  are true • the elements of  $\Gamma$  are called the premises or hypotheses

  - φ is called the conclusion





# Logical Equivalence

- Formula  $\phi$  is logically equivalent to formula  $\psi$  ( $\phi \Leftrightarrow \psi$ ), iff:
- $\llbracket \Phi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$  for all models M and variable assignments g.

- For all *closed* formulas  $\phi$  and  $\psi$ , the following assertions are equivalent: (logical equivalence) **1**. Φ⇔ψ
- 2.  $\phi \models \psi$  and  $\psi \models \phi$ (mutual entailment)
- (validity of "material equivalence") 3.  $\models \varphi \leftrightarrow \psi$





#### **Logical Equivalence Theorems Propositional logic**

| 1) | $\neg \neg \varphi \Leftrightarrow \varphi$                                            | Double negation | 6)  | ¬ <b>(</b> φ∧ψ <b>) ⇔</b> ¬φ∨¬ψ                                         | de Morgan              |
|----|----------------------------------------------------------------------------------------|-----------------|-----|-------------------------------------------------------------------------|------------------------|
| 2) | $\phi \land \psi \Leftrightarrow \psi \land \phi$                                      | Commutativity   | 7)  | ¬(φ∨ψ) ⇔ ¬φ∧¬ψ                                                          | Laws                   |
| 3) | $\phi \lor \psi \Leftrightarrow \psi \lor \phi$                                        | Commutativity   | 8)  | $\phi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \phi$ | Law of<br>Contrapositi |
| 4) | $\phi \land (\psi \lor \chi) \Leftrightarrow (\phi \land \psi) \lor (\phi \land \chi)$ | Distributivity  | 9)  | $\phi \rightarrow \psi \Leftrightarrow \neg \phi \lor \psi$             |                        |
| 5) | $\phi \lor (\psi \land \chi) \Leftrightarrow (\phi \lor \psi) \land (\phi \lor \chi)$  |                 | 10) | ¬(φ → ψ) ⇔ φ∧¬ψ                                                         |                        |









#### **Logical Equivalence Theorems** Quantifiers

| 11) | $\neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$                |  |
|-----|--------------------------------------------------------------------------------|--|
| 12) | $\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$                |  |
| 13) | $\forall x(\phi \land \Psi) \Leftrightarrow \forall x\phi \land \forall x\Psi$ |  |
| 14) | $\Psi x E \lor \varphi x E \Leftrightarrow (\Psi \lor \varphi) x E$            |  |
| 15) | ∀х∀уф ⇔ ∀у∀хф                                                                  |  |
| 16) | ∃х∃уф ⇔ ∃у∃хф                                                                  |  |
| 17) | ∃x∀yφ ⇒ ∀y∃xφ                                                                  |  |





Quantifier negation

Quantifier distribution

Quantifier swap

... but not vice versa!

Semantic Theory 2022: Week 1



#### Logical Equivalence Theorems **Quantifiers and variables**

occur free in  $\phi$ :

Here,  $\phi[x/y]$  is the result of replacing all free occurrences of y in  $\phi$  with x

18) 
$$\exists y \varphi \Leftrightarrow \exists x \varphi[x/y]$$
  
19)  $\forall y \varphi \Leftrightarrow \forall x \varphi[x/y]$   
20)  $\varphi \land \forall x \Psi \Leftrightarrow \forall x(\varphi \land \Psi)$   
21)  $\varphi \land \exists x \Psi \Leftrightarrow \exists x(\varphi \land \Psi)$   
22)  $\varphi \lor \forall x \Psi \Leftrightarrow \forall x(\varphi \lor \Psi)$ 



- The following equivalences are valid theorems of FOL, provided that x does not

23) 
$$\phi \lor \exists x \Psi \Leftrightarrow \exists x (\phi \lor \Psi)$$
  
24)  $\phi \rightarrow \forall x \Psi \Leftrightarrow \forall x (\phi \rightarrow \Psi)$   
25)  $\phi \rightarrow \exists x \Psi \Leftrightarrow \exists x (\phi \rightarrow \Psi)$   
26)  $\exists x \Psi \rightarrow \phi \Leftrightarrow \forall x (\Psi \rightarrow \phi)$   
27)  $\forall x \Psi \rightarrow \phi \Leftrightarrow \exists x (\Psi \rightarrow \phi)$ 



#### **Equivalence Transformations** Example

- 1.  $\neg \exists x \forall y (Py \rightarrow Rxy)$ "Nobody masters every problem" 2.  $\forall x \exists y (Py \land \neg Rxy)$ "Everybody fails to master some problem" We show the equivalence of 1. and 2. as follows:  $\neg \exists x \forall y (Py \rightarrow Rxy)$
- $\Leftrightarrow \forall x \neg \forall y (Py \rightarrow Rxy)$ (12)  $\neg \exists x \varphi \Leftrightarrow \forall x \neg \varphi$  $\Leftrightarrow \forall x \exists y \neg (Py \rightarrow Rxy)$  $(11) \neg \forall x \varphi \Leftrightarrow \exists x \neg \varphi$ (10)  $\neg(\phi \rightarrow \psi) \Leftrightarrow \phi \land \neg \psi$  $\Leftrightarrow \forall x \exists y (Py \land \neg Rxy)$





# **Reading material**

- http://www.logicinaction.org
- http://www.phil.uu.nl/~yoad/efs/main.html



#### Recommended reading: Logic in Action, Chapter 4 (sections 4.5 & 4.6) -

# • Further background: Winter, *Elements of Formal Semantics*, Chapter 2 –

