Exercises are due on: Tuesday 26 April, 10 AM (before class)

Semantic Theory 2022: Exercise sheet 1

Exercise 1

Translate the following sentences into first-order predicate logic. You can freely introduce predicates, but try to retain as much of the structure as possible. Also provide the key to the translation.
a. Link is scared of nothing.
b. Every princess loves her saviour.
c. The Master Sword is the only sword that can defeat Agahnim.
d. If the leader of the Dark World is defeated, the Light World is free.

Exercise 2

Consider the following model $M_{1}=\left\langle U_{1}, V_{1}\right\rangle$, with $U_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$. The interpretation function V_{1} is defined as follows:

- $V_{1}(j)=e_{1}$
- $V_{1}(m)=e_{4}$
- $V_{1}(b)=e_{6}$
- $V_{1}(A)=\left\{e_{2}, e_{3}\right\}$
- $V_{1}(B)=\left\{e_{2}, e_{4}, e_{5}\right\}$
- $V_{1}(C)=\left\{e_{2}, e_{4}, e_{5}, e_{6}\right\}$

- $V_{1}(R)=\left\{\left\langle e_{2}, e_{3}\right\rangle,\left\langle e_{3}, e_{2}\right\rangle\left\langle e_{4}, e_{1}\right\rangle,\left\langle e_{4}, e_{2}\right\rangle,\left\langle e_{5}, e_{6}\right\rangle\right\}$

Let the assignment function g_{1} be defined as follows: $g_{1}(x)=e_{4}, g_{1}\left(x^{\prime}\right)=e_{2}, g_{1}\left(x^{\prime \prime}\right)=e_{3}$ and for all other variables $x^{\prime *}: g_{1}\left(x^{\prime *}\right)=e_{5}$.
2.1 Evaluate the following formulas in model M_{1}, with respect to assignment function g_{1}. First, derive the truth conditions (showing all relevant steps of the derivation) and then evaluate these truth conditions with respect to M_{1} and g_{1}.
a. $\llbracket R\left(x^{\prime}, x^{\prime \prime}\right) \wedge R\left(x^{\prime \prime \prime}, b\right) \rrbracket^{M_{1}, g_{1}}=$?
b. $\llbracket \exists x^{\prime \prime}\left(A\left(x^{\prime \prime}\right) \rightarrow R\left(x^{\prime \prime}, j\right)\right) \rrbracket^{M_{1}, g_{1}}=$?
c. $\llbracket \forall x\left(B(x) \rightarrow\left(A(x) \vee \neg \exists x^{\prime \prime}\left(R\left(x^{\prime \prime}, x\right)\right)\right)\right) \rrbracket^{M_{1}, g_{1}}=$?
2.2 Provide a graphical representation of a model that satisfies the following formulas (NB: c_{1} and c_{2} are constants):

- $R\left(x, x^{\prime}\right)$
- $\forall x\left(A(x) \vee \exists x^{\prime}\left(R\left(x, x^{\prime}\right)\right)\right)$
- $\neg \exists x\left(R\left(x, c_{1}\right)\right)$
- $\exists x^{\prime \prime}\left(A\left(x^{\prime \prime}\right) \wedge \neg \exists x^{\prime}\left(A\left(x^{\prime}\right) \wedge R\left(x^{\prime}, x^{\prime \prime}\right)\right)\right)$
- $\forall x^{\prime}\left(B\left(x^{\prime}\right) \rightarrow\left(A\left(x^{\prime}\right) \vee R\left(x^{\prime}, c_{2}\right)\right)\right)$
2.3 (Bonus) Can you think of a sensible (or: funny) interpretation for the predicates A, B and R, and the constants c_{1} and c_{2} in your model of the previous exercise? Given this interpretation, what is the natural language translation of the formulas given in exercise 2.2 ?

