
Semantic Theory
Week 4 – Typed Lambda Calculus

Noortje Venhuizen

Universität des Saarlandes

Summer 2017

1

Recap: Type Theory — Syntax

For every type τ, the set of well-formed expressions WEτ is defined as follows:

(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ;

(ii) If α ∈ WE⟨σ, τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ;	 	 (function application)

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WEt;

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in
WEt;

(v) If α, β are well-formed expressions of the same type, then α = β ∈ WEt;

(vi) Nothing else is a well-formed expression.

2

(ii) If α ∈ WE⟨σ,τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ

“John is a talented piano player”

	 	 	 	 	 	

Recap: Type Theory —Function application

3

	 	 	 piano_player		 	 	 talented  
 
john	 	 	 	 	 talented(piano_player)

	 	 talented(piano_player)(john)

:: ⟨e, t⟩ :: ⟨⟨e, t⟩, ⟨e, t⟩⟩

 :: e :: ⟨e, t⟩

:: t

Recap: Type Theory — Semantics

Interpretation relative to a model structure M = ⟨U, V⟩ and an assignment function g,
where:

• U is a non-empty set of entities and V is an interpretation function, which assigns
to every α ∈ CONτ an element of Dτ

• g assigns to every typed variable v ∈ VARτ an element of Dτ

 The domain of possible denotations Dτ for every type τ is given by:

• De = U

• Dt = {0,1}

• D⟨σ,τ⟩ is the set of all functions from Dσ to Dτ

4

Recap: Type Theory — Model

De = UM = {e1, e2, e3, e4, e5}

VM(Anakine) = VM(Darth Vadere) = e2

VM(Yedi⟨e,t⟩) = 	 	 VM(Dark_Sider⟨e,t⟩) =

5

Luke

Anakin

Leia

Palpatine

Yoda

 M:
Darth Vader

e1

e2

e3 e4

e5

e1→1 
e2→1 
e3→1 
e4→1 
e5→0

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

…

e1→1 
e2→1 
e3→1 
e4→1 
e5→0

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

e1→0 
e2→1 
e3→0 
e4→0 
e5→1

→

→

e1→0 
e2→1 
e3→0 
e4→1 
e5→0

VM(Powerful⟨⟨e,t⟩⟨e,t⟩⟩) =

Consider the following Model M:

Recap: Type Theory — Interpretation

Given a model structure M = ⟨U, V⟩ and a variable assignment g:
⟦α⟧M,g 	 	 = V(α)	 if α is a constant  
	 	 	 = g(α)	 if α is a variable
⟦α(β)⟧M,g 	 = ⟦α⟧M,g(⟦β⟧M,g)
⟦α = β⟧M,g 	 = 1 	iff 	 ⟦α⟧M,g = ⟦β⟧M,g
⟦¬φ⟧M,g 		 = 1 	iff 	 ⟦φ⟧M,g = 0
⟦φ ∧ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1
⟦φ ∨ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 
…
For any variable v of type σ:
⟦∃vφ⟧M,g 	 	 = 1 	iff 	 there is a d ∈ Dσ such that ⟦φ⟧M,g[v/d] = 1
⟦∀vφ⟧M,g	 	 = 1 	iff 	 for all d ∈ Dσ : ⟦φ⟧M,g[v/d] = 1

6

Compositionality

The principle of compositionality: “The meaning of a complex
expression is a function of the meanings of its parts and of the syntactic
rules by which they are combined” (Partee et al.,1993)

Compositional semantics construction:

• compute meaning representations for sub-expressions

• combine them to obtain a meaning representation for a complex
expression.

7

!
Problematic case: “Not smoking⟨e,t⟩ is healthy⟨⟨e,t⟩,t⟩”

Lambda abstraction

λ-abstraction is an operation that takes an expression and “opens”
specific argument positions.

8

If α is in WEτ, and x is in VARσ then λx(α) is in WE⟨σ, τ⟩

Syntactic definition:

• The scope of the λ-operator is the smallest WE to its right. Wider scope must be
indicated by brackets.

• We often use the “dot notation” λx.φ indicating that the λ-operator takes widest
possible scope (over φ).

Interpretation of Lambda-expressions

If the λ-expression is applied to some argument, we can simplify the interpretation:

• ⟦λvα⟧M,g(x) = ⟦α⟧M,g[v/x]

9

Example: “Bill is a non-smoker”

⟦λx(¬S(x))(b’)⟧M,g = 1

iff ⟦λx(¬S(x))⟧M,g(⟦b’⟧M,g) = 1

iff ⟦¬S(x)⟧M,g[x/⟦b’⟧M,g] = 1

iff ⟦S(x)⟧M,g[x/⟦b’⟧M,g] = 0

iff ⟦S⟧M,g[x/⟦b’⟧M,g](⟦x⟧M,g[x/⟦b’⟧M,g]) = 0

iff VM(S)(VM(b’)) = 0

If α ∈ WEτ and v ∈ VARσ, then ⟦λvα⟧M,g is that function f : Dσ → Dτ
such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]

β-Reduction

⟦λv(α)(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

⇒ all (free) occurrences of the λ-variable in α get the interpretation of β
as value.

This operation is called β-reduction

• λv(α)(β) ⇔ [β/v]α

• [β/v]α is the result of replacing all free occurrences of v in α with β.

10

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are λv(α)(β) and [β/v]α always equivalent?

• λx(drive’(x) ∧ drink’(x))(j’) ⇔ drive’(j’) ∧ drink’(j’)

• λx(drive’(x) ∧ drink’(x))(y) ⇔ drive’(y) ∧ drink’(y)

• λx(∀y know’(x)(y))(j’) ⇔ ∀y know(j’)(y)

• NOT: λx(∀y know’(x)(y))(y) ⇔ ∀y know(y)(y)

11

Let v, v’ be variables of the same type, and let α be any well-formed
expression.

• v is free for v’ in α iff no free occurrence of v’ in α is in the scope of a
quantifier or a λ-operator that binds v.

Conversion rules

• β-conversion: 		 λv(α)(β) ⇔ [β/v]α  
(if all free variables in β are free for v in α)

• α-conversion: 		 λvα ⇔ λw[w/v]α  
(if w is free for v in α)

• η-conversion: 		 λv(α(v)) ⇔ α

12

Determiners as lambda-expressions

• a student works ➔ ∃x(student’(x) ∧ work’(x)) :: t

• a student ➔ λP∃x(student’(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩

• a, some ➔ λQλP∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• every student ➔ λP∀x(student’(x) → P(x)) :: ⟨⟨e,t⟩,t⟩

• every ➔ λQλP∀x(Q(x) → P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• no student ➔ λP¬∃x(student(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩

• no ➔ λQλP¬∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩

• someone ➔ λF∃xF(x) :: ⟨⟨e,t⟩,t⟩

13

NL Quantifier Expressions: Interpretation

• someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩

• D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e.,  
	 	 the set of functions from P(UM) to {0,1}, 
	 	 which in turn is equivalent to P(P(UM)).

• Thus, VM(someone’) ⊆ P(UM). More specifically:

• VM(someone’) = {S ⊆ UM | S ≠ ∅}, if UM is a domain of persons

14

Every student works.

(2) 	λPλQ∀x(P(x) → Q(x)) : ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩

(3) 	student’ : ⟨e, t⟩

(1) 	λPλQ∀x(P(x) → Q(x))(student’)  
	 ⇔β λQ∀x(student’(x) → Q(x)) : ⟨⟨e, t⟩, t⟩

(4)/(5) work’ : ⟨e, t⟩

(0) 	λQ∀x(student’(x) → Q(x))(work’) 
	 ⇔β ∀x(student’(x) → work’(x)) : t

β-Reduction Example

15

NP (1)

S (0)

VP (4)

IV (5)DET (2)

worksEvery

N (3)

student

Transitive Verbs: Type Clash

• Someone reads a book

16

		 	 	 read	 	 	 	 a book  
 
someone	 	 	 	 	 	 ??

	 	 	 	 	 	 	 ??

:: ⟨e,⟨e, t⟩⟩ :: ⟨⟨e, t⟩,t⟩

:: ⟨⟨e, t⟩,t⟩ :: ??

:: t

Solution: reverse functor-argument relation (again)

read⟨⟨⟨e, t⟩,t⟩,⟨e, t⟩⟩	 	 (Type Raising)

Type Raising

It’s not enough to just change the type of the transitive verb:

• read ➔ read’ ∈ CON⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩

	 someone reads a book: 
	 λF∃xF(x)(read’(λP∃y(book’(y) ∧ P(y)))  
	 ⇔β ∃x(read’(λP∃y(book’(y) ∧ P(y)))(x)

	 …but this does not support the following entailment: 
	 someone reads a book ⊨ there exists a book

We need a more explicit λ-term:

• read ➔ λQλz.Q(λx(read*(x)(z))) ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 

	 	 where: read* ∈ WE⟨e, ⟨e, t⟩⟩ is the “underlying” first-order relation

17

Transitive Verbs: example

someone reads a book

λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λRλP.∃y(R(y) ∧ P(y)) (book’)))

⇔β λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λP.∃y(book’(y) ∧ P(y))))

⇔β λF∃xF(x)(λz.(λP.∃y(book’(y) ∧ P(y)))(λx(read*(x)(z))))

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ λx(read*(x)(z))(y)))

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ read*(y)(z)))

⇔β ∃x(λz.∃y(book’(y) ∧ read*(y)(z)))(x)

⇔β ∃x∃y(book’(y) ∧ read*(y)(x))

18

Type inferencing examples: revisited

19

We could take a similar approach for expects in:

5. Obi-Wane expects to pass⟨e, t⟩.

6. Yodae encouraged Obi-Wane to take⟨e,⟨e, t⟩⟩ the exame. 
 
LF1: encourage(o)(T(e))(y*) 
encourage⟨e,⟨⟨e, t⟩,⟨e, t⟩⟩ = λxλPλy(encourage(x)(P)(y))  
 
LF2: encourage(o)(T(e)(o))(y*) 
encourage⟨e,⟨⟨e, t⟩,⟨e, t⟩⟩ = λxλPλy(encourage(x)(P(x))(y))

Background reading material

• Gamut: Logic, Language, and Meaning Vol II  
— Chapter 4 (minus 4.3)

20

