Semantic Theory
Week 4 — Typed Lambda Calculus

Noortje Venhuizen
Universitat des Saarlandes

Summer 2017

Recap: Type Theory — Syntax

For every type T, the set of well-formed expressions WE: is defined as follows:
(l) CONT C WET and VART C WET,
(i) If a e WEw, v, and B € WEg, then a(3) e WEx; (function application)

(i) If A, B are in WE, then —A, (A A B), (A v B), (A = B), (A < B) are in WE;;

(iv) If Alis in WE: and x is a variable of arbitrary type, then vxA and 3xA are in
WEt;

(v) If a, B are well-formed expressions of the same type, then a =3 € Wk

(Vi) Nothing else is a well-formed expression.

Recap: lype Theory —Function application

(i) If a e WEw, and B € WEg, then a(lB) € WE:

“*John Is a talented piano player”

piano_player :: (e, t) talented :: (e, D), <e, t))

john:: e talented(piano_player) :: <,)

talented(piano_player)(john) :: t

Recap: Type Theory — Semantics

Interpretation relative to a model structure M = (U, V) and an assignment function g,
where:

- U is a non-empty set of entities and V is an interpretation function, which assigns
to every a € CON; an element of Dy

g assigns to every typed variable v e VAR an element of Dy

The domain of possible denotations D¢ for every type T is given by:
De = U
Dy = {0,1}

D1 IS the set of all functions from Dy to Dy

Recap: Type Theory — Model

Anakin
/" _ Darth Vader

(/e/z'\ N ?5\)

Consider the following Model M: M:

De = Um = {€e1, €2, e3, €4, €5}

Vm(Anakineg) = Vm(Darth Vadere) = e V o1 \,e
%3 es) Palpatine
- - Luke y
Vm(Yedien) = 2;_’1 Vm(Dark_Sidere) = 2;_’? \ T ’<
N =0 Leia
e 10 Yoda
es—0 es—1 |

Vm(Powerfulie tye 1) =

e1—1
ex— 1
Simdl
e4— 1

eo— 1
e3—0
es—0

e1—0

es5—0 | e5s—0

e1—0 e1—0

es—1 | es—1

eo— 1
e3—0
es— 1

eo— 1
e3—0
es—0

Recap: Type Theory — Interpretation

Given a model structure M = <U, V) and a variable assignment Q:

[ag™e =V(a) if ais a constant
=g(a) ifaisa variable

[a@®1"° = a1 e1™

[a=B1" =1iff [a]"=[BI"

—1iff [o]"9=0

[0 AQI™Y =10 [¢1"=1and [WI"° = 1
[O v eI™? =1iff [¢1"9 =1 or [PI"? =1

For any variable v of type o:
[av]™e —1iff thereisad e Dy such that [d®]
[vvo]™e —1iff foralldeDy: [p]"o = 1

M,glv/d] 1

Compositionality

The principle of compositionality: “The meaning of a complex

expression is a function of the meanings of its parts and of the syntactic
rules by which they are combined” (Partee et al.,1993)

Compositional semantics construction:
+ compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex

expression.

Problematic case: “Not smokinge,t Is healthy«e vt
N

Lambda abstraction

A-abstraction is an operation that takes an expression and “opens”
specific argument positions.

Syntactic definition:

If ais in WEr, and x is in VARG then Ax() is in WE, v

e The scope of the A-operator is the smallest WE to its right. Wider scope must be
iIndicated by brackets.

« \We often use the “dot notation” Ax.¢ indicating that the A-operator takes widest
possible scope (over).

Interpretation of Lambda-expressions

If a e WErand v € VAR, then [Ava]™9 is that function f : Dg = D+

such that for all a € Do, f(a) = [a]\elval

If the A-expression is applied to some argument, we can simplify the interpretation:

- [vaIMe(x) = [a]*evA

Example: “Bill is @ non-smoker”
[AX(=S(X))(0")IM9 = 1

iff [AX(=S(X))IM9([b’TM9) = 1

Iii [[_IS(X)]]M’Q[X/[[b’]]M’g] _

iff [S(x) Moo = O

iff [[S]]M,g[x/[[b’]]“/"g]([[x]]M,g[x/[[b’]]M’g]) =0

iff Vm(S)(Vm()) = 0

3-Reduction

[Av()(B)IM9 = [aMelvier]

= all (free) occurrences of the A-variable in a get the interpretation of 3

as value.

This operation is called [-reduction

© AV(Q)(B) & [B/V]a
- [B/v]a is the result of replacing all free occurrences of v in a with 3.

Achtung: The equivalence is not unconditionally valid!

10

Variable capturing

Q: Are \v(0)(B) and [B/v]a always equivalent?

- Ax(drive’(X) A drink’(x))(j') < drive’(]’) A drink’(}’)
- Ax(drive’(x) A drink’(x))(y) < drive’(y) A drink’(y)
- AX(Vy know'(x)(y))(’) & vy know()(y)

- NOT: Ax(vy know’(X)(y))(y) & vy know(y)(y)

Let v, v’ be variables of the same type, and let a be any well-formed
expression.

- Vv Is free for v’ In a iff no free occurrence of v’ In a is in the scope of a
quantifier or a A-operator that binds v.

11

Conversion rules

+ [3-conversion: AV(Q)(B) < [B/V]a

(if all free variables in 3 are free for v in Q)

+@-conversion: Ava < Aw|w/v]a

(if w is free for v in Q)

* N-conversion: Av(a(Vv)) & a

12

Determiners as lambda-expressions

- a student works = 3Ix(student’(x) A work’(x)) :: t
- a student = APax(student’(x) A P(x)) :: <{e,t>,1)
- a, some =2 NQAPax(Q(x) A P(x)) :: e,t),e,), b))
- every student = APvx(student’(x) = P(x)) :: «e,b),t)
- every = AQAPvX(Q(X) = P(x)) :: e, t), e, Dt
- no student = AP—-3ax(student(x) A P(x)) :: <{e,t),1)
- No = AQAP-3x(Q(X) A P(X)) :: (e, t),e, b))

- someone = AFaxF(x) :: (e,b),t)

13

NL Quantifier Expressions: Interpretation

- someone’e CONwe v vy, SO Vm(someone’) € Dwe bt

- Dwepp IS the set of functions from Dep to Dy, 1.e.,
the set of functions from P(Uw) to {0,1},

which in turn is equivalent to P(P(Uw)).
- Thus, Vm(someone’) ¢ P(Uwm). More specifically:

- Vm(someone’) = {S ¢ Uw | S # @}, if Uu is a domain of persons

3-Reduction Example

Every student works.
(2) APAQVX(P(x) = QX)) : (e, D, Ke, D, D
(3) student’ : (e, 1)

(1) APAQwWX(P(x) = Q(x))(student’)
B ANQwx(student’(x) = QX)) : (e, D), t)

(4)/(5) work’ : <e, t

(0) AQwx(student’(x) = Q(x))(work’)
&b wx(student’(x) = work’(x)) : t

S (0)

T

NP (1) VP (4)

N

DET (2) N (3) IV (5)
I I

Every student works

15

Transitive Verbs: Type Clash

- Someone reads a book

read ::<{e[le, t)) a book :: e, t),t)

someone :: e, D, 27?77

77 1

Solution: reverse functor-argument relation (again)

read<<<e,) t),<e,) (Ty,oe Ra/s/ng)

16

Type Raising

It’s not enough to just change the type of the transitive verb:

- read = read’ € CONuet. v, e t

someone reads a book:
AF3axF(x)(read’ (AP3ay(book’(y) A P(y)))

=P ax(read’(\Pay(book’(y) A P(y))(X)

...but this does not support the following entailment:
someone reads a book & there exists a book

We need a more explicit A-term:

- read = NQAz.Q(A\x(read*(X)(2))) € WE«ewn, v, @t
where: read™ € WEe, , 1y IS the “underlying” first-order relation

17

Transitive Verbs: example

someone reads a book

AF3xXF(x)(AQAz. Q(Ax(read™(x)(2)) (ARAR.3y(R(y) A P(y)) (book’)))
=B AFaxF(X)AQAz.Q\x(read*(x)(2))) \P.3y(book’(y) A P(y)))
&p AFaxF(x)(\z.(\P.3y(book’(y) A P(y)))Ax(read*(x)(2))))

&p AFIxF(x)(\z.3y(book’(y) A Ax(read*(X)(2))(y))

«p AFaxF(x)(\z.3y(book’(y) A read*(y)(2)))

=B Ix(Az.3y(book'(y) A read”(y)(2)))(x)

eB Ix3Ay(book’(y) A read*(y)(X))

18

Type inferencing examples: revisited

6. Yodae encouraged Obi-Wane 10 takee, e, 1y the exame.

LF1: encourage(o)(T(e))(y*)
encouragece,«e, v, t» = AXAPAy(encourage(X)(P)(y))

LF2: encourage(o)(T(e)(0))(y)
encouragee,«e, v, v = AXAPAy(encourage(x)(P(x))(y))

We could take a similar approach for expects in:

5. Obi-Wane expects to passe. .

19

Background reading material

-+ Gamut: Logic, Language, and Meaning Vol |l
— Chapter 4 (minus 4.3)

20

