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Recap: Type Theory — Syntax

For every type τ, the set of well-formed expressions WEτ is defined as follows: 

(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ; 

(ii) If α ∈ WE⟨σ, τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ;	 	     (function application) 

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WEt; 

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in 
WEt; 

(v) If α, β are well-formed expressions of the same type, then α = β ∈ WEt; 

(vi) Nothing else is a well-formed expression.
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(ii) If α ∈ WE⟨σ,τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ 

“John is a talented piano player” 

	 	 	 	 	 	

Recap: Type Theory —Function application
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	 	 	 piano_player		 	 	 talented  
 
john	 	 	 	 	 talented(piano_player) 

	 	 talented(piano_player)(john)

:: ⟨e, t⟩ :: ⟨⟨e, t⟩, ⟨e, t⟩⟩

 :: e :: ⟨e, t⟩

:: t



Recap: Type Theory — Semantics

Interpretation relative to a model structure M = ⟨U, V⟩ and an assignment function g, 
where: 

• U is a non-empty set of entities and V is an interpretation function, which assigns 
to every α ∈ CONτ an element of Dτ  

• g assigns to every typed variable v ∈ VARτ an element of Dτ 

 The domain of possible denotations Dτ for every type τ is given by: 

• De = U 

• Dt = {0,1} 

• D⟨σ,τ⟩ is the set of all functions from Dσ to Dτ
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Recap: Type Theory — Model

De = UM = {e1, e2, e3, e4, e5} 

VM(Anakine) = VM(Darth Vadere) = e2 

VM(Yedi⟨e,t⟩) = 	 	 VM(Dark_Sider⟨e,t⟩) =  
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…
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→

→
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VM(Powerful⟨⟨e,t⟩⟨e,t⟩⟩) = 

Consider the following Model M:



Recap: Type Theory — Interpretation

Given a model structure M = ⟨U, V⟩ and a variable assignment g: 
⟦α⟧M,g 	 	 = V(α)	  if α is a constant  
	 	 	 = g(α)	  if α is a variable 
⟦α(β)⟧M,g 	 = ⟦α⟧M,g(⟦β⟧M,g) 
⟦α = β⟧M,g 	 = 1 	iff 	 ⟦α⟧M,g = ⟦β⟧M,g 
⟦¬φ⟧M,g 		 = 1 	iff 	 ⟦φ⟧M,g = 0 
⟦φ ∧ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1 
⟦φ ∨ ψ⟧M,g 	 = 1 	iff 	 ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 
… 
For any variable v of type σ: 
⟦∃vφ⟧M,g 	 	 = 1 	iff 	 there is a d ∈ Dσ such that ⟦φ⟧M,g[v/d] = 1 
⟦∀vφ⟧M,g	 	 = 1 	iff 	 for all d ∈ Dσ : ⟦φ⟧M,g[v/d] = 1
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Compositionality

The principle of compositionality: “The meaning of a complex 
expression is a function of the meanings of its parts and of the syntactic 
rules by which they are combined” (Partee et al.,1993) 

Compositional semantics construction: 

• compute meaning representations for sub-expressions 

• combine them to obtain a meaning representation for a complex 
expression. 
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!
Problematic case: “Not smoking⟨e,t⟩ is healthy⟨⟨e,t⟩,t⟩”



Lambda abstraction

λ-abstraction is an operation that takes an expression and “opens” 
specific argument positions. 
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If α is in WEτ, and x is in VARσ then λx(α) is in WE⟨σ, τ⟩

Syntactic definition:

• The scope of the λ-operator is the smallest WE to its right. Wider scope must be 
indicated by brackets.  

• We often use the “dot notation” λx.φ indicating that the λ-operator takes widest 
possible scope (over φ).



Interpretation of Lambda-expressions

If the λ-expression is applied to some argument, we can simplify the interpretation:  

• ⟦λvα⟧M,g(x) = ⟦α⟧M,g[v/x] 
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Example: “Bill is a non-smoker” 

⟦λx(¬S(x))(b’)⟧M,g = 1 

iff ⟦λx(¬S(x))⟧M,g(⟦b’⟧M,g) = 1 

iff  ⟦¬S(x)⟧M,g[x/⟦b’⟧M,g] = 1 

iff ⟦S(x)⟧M,g[x/⟦b’⟧M,g] = 0 

iff ⟦S⟧M,g[x/⟦b’⟧M,g](⟦x⟧M,g[x/⟦b’⟧M,g]) = 0  

iff VM(S)(VM(b’)) = 0

If α ∈ WEτ and v ∈ VARσ, then ⟦λvα⟧M,g is that function f : Dσ → Dτ 
such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]



β-Reduction

⟦λv(α)(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]  

⇒ all (free) occurrences of the λ-variable in α get the interpretation of β 
as value. 

This operation is called β-reduction


• λv(α)(β) ⇔ [β/v]α 

• [β/v]α is the result of replacing all free occurrences of v in α with β. 
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Achtung: The equivalence is not unconditionally valid!



Variable capturing

Q: Are λv(α)(β) and [β/v]α always equivalent? 

• λx(drive’(x) ∧ drink’(x))(j’) ⇔ drive’(j’) ∧ drink’(j’)  

• λx(drive’(x) ∧ drink’(x))(y) ⇔ drive’(y) ∧ drink’(y) 

• λx(∀y know’(x)(y))(j’) ⇔ ∀y know(j’)(y) 

• NOT: λx(∀y know’(x)(y))(y) ⇔ ∀y know(y)(y)
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Let v, v’ be variables of the same type, and let α be any well-formed 
expression. 

• v is free for v’ in α iff no free occurrence of v’ in α is in the scope of a 
quantifier or a λ-operator that binds v. 



Conversion rules

• β-conversion: 		 λv(α)(β) ⇔ [β/v]α  
(if all free variables in β are free for v in α) 

• α-conversion: 		 λvα ⇔ λw[w/v]α  
(if w is free for v in α) 

• η-conversion: 		 λv(α(v)) ⇔ α 
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Determiners as lambda-expressions

• a student works ➔ ∃x(student’(x) ∧ work’(x)) :: t 

• a student ➔ λP∃x(student’(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩ 

• a, some ➔ λQλP∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

• every student ➔ λP∀x(student’(x) → P(x)) :: ⟨⟨e,t⟩,t⟩ 

• every ➔ λQλP∀x(Q(x) → P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

• no student ➔ λP¬∃x(student(x) ∧ P(x)) :: ⟨⟨e,t⟩,t⟩ 

• no ➔ λQλP¬∃x(Q(x) ∧ P(x)) :: ⟨⟨e,t⟩,⟨⟨e,t⟩,t⟩⟩ 

• someone ➔ λF∃xF(x) :: ⟨⟨e,t⟩,t⟩
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NL Quantifier Expressions: Interpretation 

• someone’∈ CON⟨⟨e,t⟩,t⟩, so VM(someone’) ∈ D⟨⟨e,t⟩,t⟩  

• D⟨⟨e,t⟩,t⟩ is the set of functions from D⟨e,t⟩ to Dt , i.e.,  
	 	 the set of functions from P(UM) to {0,1}, 
	 	 which in turn is equivalent to P(P(UM)).  

• Thus, VM(someone’) ⊆ P(UM). More specifically:  

• VM(someone’) = {S ⊆ UM | S ≠ ∅}, if UM is a domain of persons
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Every student works. 

(2) 	λPλQ∀x(P(x) → Q(x)) : ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩ 

(3) 	student’ : ⟨e, t⟩ 

(1) 	λPλQ∀x(P(x) → Q(x))(student’)  
	 ⇔β λQ∀x(student’(x) → Q(x)) : ⟨⟨e, t⟩, t⟩ 

(4)/(5) work’ : ⟨e, t⟩ 

(0) 	λQ∀x(student’(x) → Q(x))(work’) 
	 ⇔β ∀x(student’(x) → work’(x)) : t

β-Reduction Example
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Transitive Verbs: Type Clash

• Someone reads a book
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		 	 	     read	 	 	 	      a book  
 
someone	 	 	 	 	 	     ?? 

	 	 	 	 	 	 	 ??

:: ⟨e,⟨e, t⟩⟩ :: ⟨⟨e, t⟩,t⟩

:: ⟨⟨e, t⟩,t⟩ :: ??

:: t

Solution: reverse functor-argument relation (again)  

read⟨⟨⟨e, t⟩,t⟩,⟨e, t⟩⟩	 	 (Type Raising)



Type Raising

It’s not enough to just change the type of the transitive verb: 

• read ➔ read’ ∈ CON⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 

	 someone reads a book: 
	 λF∃xF(x)(read’(λP∃y(book’(y) ∧ P(y)))  
	 ⇔β ∃x(read’(λP∃y(book’(y) ∧ P(y)))(x) 

	 …but this does not support the following entailment: 
	 someone reads a book ⊨ there exists a book 

We need a more explicit λ-term: 

• read ➔ λQλz.Q(λx(read*(x)(z))) ∈ WE⟨⟨⟨e,t⟩, t⟩, ⟨e, t⟩⟩ 

	 	 where: read* ∈ WE⟨e, ⟨e, t⟩⟩ is the “underlying” first-order relation 
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Transitive Verbs: example

someone reads a book  

λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λRλP.∃y(R(y) ∧ P(y)) (book’))) 

⇔β λF∃xF(x)(λQλz.Q(λx(read*(x)(z)))(λP.∃y(book’(y) ∧ P(y))))  

⇔β λF∃xF(x)(λz.(λP.∃y(book’(y) ∧ P(y)))(λx(read*(x)(z)))) 

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ λx(read*(x)(z))(y))) 

⇔β λF∃xF(x)(λz.∃y(book’(y) ∧ read*(y)(z))) 

⇔β ∃x(λz.∃y(book’(y) ∧ read*(y)(z)))(x) 

⇔β ∃x∃y(book’(y) ∧ read*(y)(x))
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Type inferencing examples: revisited
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We could take a similar approach for expects in: 

5. Obi-Wane expects to pass⟨e, t⟩.

6. Yodae encouraged Obi-Wane to take⟨e,⟨e, t⟩⟩ the exame. 
 
LF1: encourage(o)(T(e))(y*) 
encourage⟨e,⟨⟨e, t⟩,⟨e, t⟩⟩ = λxλPλy(encourage(x)(P)(y))  
 
LF2: encourage(o)(T(e)(o))(y*) 
encourage⟨e,⟨⟨e, t⟩,⟨e, t⟩⟩ = λxλPλy(encourage(x)(P(x))(y))



Background reading material

• Gamut: Logic, Language, and Meaning Vol II  
— Chapter 4 (minus 4.3)
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