Semantic Theory
Week 4 — Typed Lambda Calculus

Noortje Venhuizen
Universitat des Saarlandes

Summer 2016

Type Theory — Syntax

For every type T, the set of well-formed expressions WE- is defined as follows:
() CON: ¢ WE: and VAR ¢ WE;

(i) If a € WE«, v, and B € WE, then a(B) € WEx;
(function application)

(iii) If A, B are in WEt, then -A, (A A B), (A v B), (A — B), (A < B) are in WE;;

(iv) If Ais in WEt and x is a variable of arbitrary type, then vxA and axA are
in WE;;

(v) If a, B are well-formed expressions of the same type, then a = 3 € WE;;

(vi) Nothing else is a well-formed formula.

Function application

(i) If a e WEw, and B e WEg, then a(B) € WE:

“*John Is a talented piano player”

piano_player :: (e, t) talented :: (e, D), <e, t))

john:: e talented(piano_player) :: <,)

talented(piano_player)(john) :: t

Type Theory — Model

Consider the following Model M: M: Anakin
Darth Vader
De — UM — {e1; 62’ 63’ e4! 65} ez. \ e5)
// \ .
Vm(Anakine) = Vu(Darth Vadere) = e2 V e \,e \ |
°C3 e
| ot | o Luke\ y 4 | Palpatine
Vm(Yedie) = . Vm(Dark_Sideren) = o1]
e3— 1 e3—0 Leia Yoda
es— 1 es—0
e5—0 | - ~|Les—1]
e1—1 | 61—0
eo— 1 ex— 1
es—1 | & | es—0
Vm(Powerfule e ty) = | | €471 €41
es5—0 | e5s—0
- --> Powerful Xen E Xet
e1—0 e1—0
e 1 eo— 1
e300 | = | e3—0
es—0 es—0
es—1 | es—1

Type Theory — Interpretation

Interpretation with respect to a model structure M = (U, V) and a variable
assignment g:

. [ag™e =\V(a) if ais a constant
[a]™e =g(a) ifaisavariable

c [a@1™® = [ar™ o™

o1 =1 iff [91M9=0
(o APl =1 iff [$1"9=1and [I" = 1
[v 1™ = ff 11 =1 or [PI™9 = 1

- [a=p1"? =1 iff [a]"?=[BT"

- For any variable v of type o:
[3vp]™ =1 iff thereis a d € Do such that [p]"9 = 1

[wol™ =1 iff foralldeDo: [p]" " = 1

Compositionality

The principle of compositionality: “The meaning of a complex expression is a
function of the meanings of its parts and of the syntactic rules by which they are
combined” (Partee et al.,1993)

Compositional semantics construction:
- compute meaning representations for sub-expressions

- combine them to obtain a meaning representation for a complex expression.

Problematic case: “Not smoking 1 Is healthyet t”
\/

Lambda abstraction

A-abstraction is an operation that takes an expression and “opens”
specific argument positions.

Syntactic definition:

If ais in WEr, and x is in VARG then Ax() is in WE, v

e The scope of the A-operator is the smallest WE to its right. Wider scope must be
iIndicated by brackets.

« \We often use the “dot notation” Ax.¢ indicating that the A-operator takes widest
possible scope (over).

Interpretation of Lambda-expressions

If a e WErand v € VAR, then [Ava]™9 is that function f : Dg = D+

such that for all a € Do, f(a) = [a]\elval

If the A-expression is applied to some argument, we can simplify the interpretation:

+ [Aval"9(x) = [a]*ov

Example: “Bill is @ non-smoker”
[AX(=S(X))(0")IM9 = 1

iff [AX(=S(X))IM9([b’TM9) = 1

Iii [[_IS(X)]]M’Q[X/[[b’]]M’g] _

iff [S(x) Moo = O

iff [[S]]M,g[x/[[b’]]“/"g]([[x]]M,g[x/[[b’]]M’g]) =0

iff Vm(S)(Vm()) = 0

3-Reduction

[AV(0)(B)IM9 = [a]MoV/IrT™)

= all (free) occurrences of the A-variable in a get the interpretation of 3 as value.

This operation is called B-reduction

* AV(Q)(P) & [B/V]a

- [B/v]a is the result of replacing all free occurrences of v in a with 3.

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are Av(0)(B) and [B/v]a always equivalent?

+ Ax(drive’(x) A drink’(x))(’) & drive’ (") A drink’(’)
+ Ax(drive’(x) A drink’(x))(y) & drive’(y) A drink’(y)
© AX(vy know’(x)(y))(") < vy know(’)(y)

+ NOT: Ax(vy know'(x)(y))ly) < vy know(y)(y)

Let v, V' be variables of the same type, and let a be any well-formed expression.

- vis free for v’ In a iff no free occurrence of v’ in ais in the scope of a quantifier or
a A-operator that binds v.

10

Conversion rules

+ [3-conversion: AV(Q)(B) < [B/V]a

(if all free variables in 3 are free for v in Q)

+@-conversion: Ava < Aw|w/v]a

(if w is free for v in Q)

* N-conversion: Av(a(Vv)) & a

11

3-Reduction Example

Every student works.
(2) APAQWX(P(X) = Q(X)) : e,), e, t), D
(3) student’ : <e, t)

(1) APAQwx(P(x) = Q(x))(student’)
=P AQvx(student’(x) = QX)) : «e, t),)

(4)/(5) work’ : <e, t)

(0) AQwx(student’(x) = Q(x))(work’)
=P vx(student’(x) = work’(x)) : t

S (0)

T

NP (1) VP (4)

N

DET (2) N (3) IV (5)
I I

Every student works

12

Background reading material

+ Gamut: Logic, Language, and Meaning Vol |l
— Chapter 4 (minus 4.3)

13

