Semantic Theory
Week 3 — Type Theory

Noortje Venhuizen
Universitat des Saarlandes

Summer 2016

First-order logic

First-order logic talks about:
- Individual objects
- Properties of and relations between individual objects

-+ Generalization across individual objects (quantification)

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be
expressed by basic natural language expressions:

Jumbo is a small elephant. (Predicate modifiers)
Blond is a hair color. (Second-order predicates)
Yestergay, it rained. (Non-logical sentence operators)

Bill and John have the same hair color. (Higher-order quantification)

What logical system can we use to capture this diversity?

n wy life fodafe, | have written cloeens

of books and hundreds of orfices.. | ve

gven thousands
of lectures.

wFor a confouncied paradox
discovered that veor.

But | suspect my
nowe will survive,

Bertrand
Russell

wagne a town
| with a strict low
on showning.

LOGIGOMIX %iw”‘”” Al N Q: Does the

4) ¥) 5 | barber shave
S &N VRN - himself?

In fact, the low decress:
"Those who don't shave
tremsthves ore shaved
by the barber.”

ANEPIC SEARCH FOR TRUTH

Russell's paradox

What if we extend the FOL interpretation of predicates, and interpret higher-
order predicates as sets of sets of properties?

For every predicate P, we can define a set {x | P(x)} containing all and only those
entities for which P holds.

Then we can define a set S = {X | X ¢ X} representing the set of all sets that are
not members of itself.

Q: does S belong to itself?

... We need a more restricted way of talking about
properties and relations between properties!

Type Theory

Basic types:

- e — the type of individual terms (“entities™) Ty ” a (A \ 4

‘,’"' F 33 i 48A) s
-t - the type of formulas (“truth-values™) b AL

TEARLEE I N B2 8
| .HQT?H.‘..

Complex types:

If o, T are types, then (o, T) Is a type
(representing a functor expression that takes a o type expression as
argument and returns a type T expression; sometimes written as: (60— T)).

Types & Function Application

Types of first-order expressions:

- Individual constants (Luke, Saarbriicken) : e

- One-place predicates (sleep, walk): <e, t)

- Two-place predicates (read, admire): <{e, <e, t))

- Three-place predicates (give, introduce): <e, <e, <e, t)))

Function application: Combining a functor of complex type with an appropriate
argument, resulting in an expression of a less complex type: <a,)(@) » 3

- sleep’(john’) :: (e, t)(e) =t

- admire’(john’) :: (e,{e, tH)(e) = (e, t)

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, poor): e, 1), <e, t))

- Second-order predicates (hair colour): (e, t), t)

- Sentence operators (yesterday, possibly, unfortunately): <, t

- Degree particles (very, too): (KKe, D), <e, 1)), e, D, (e, H)))

Tip: If o, T are basic types, (0, T) can be abbreviated as ot. Thus, the type of

predicate modifiers and second-order predicates can be more conveniently
written as (et, et) and (et, t), respectively.

Type Theory — Vocabulary

Non-logical constants:

- For every type T a (possibly empty) set of non-logical constants CON-
(pairwise disjoint)

Variables:

- For every type T an infinite set of variables VAR- (pairwise disjoint)

Logical symbols: v, 3, 1, A, v, 2, <, =

Brackets: (,)

Type Theory — Syntax

For every type T, the set of well-formed expressions WE- is defined as follows:
() CON: ¢ WE: and VAR ¢ WE;

(i) If a € WE«, v, and B € WE, then a(B) € WEx;
(function application)

(iii) If A, B are in WEt, then -A, (A A B), (A v B), (A — B), (A < B) are in WE;;

(iv) If Ais in WEt and x is a variable of arbitrary type, then vxA and axA are
in WE;;

(v) If a, B are well-formed expressions of the same type, then a = 3 € WE;;

(vi) Nothing else is a well-formed formula.

10

Function application

(i) If a e WEw, and B e WEg, then a(B) € WE:

“*John Is a talented piano player”

piano_player :: (e, t) talented :: (e, D), <e, t))

john:: e talented(piano_player) :: <,)

talented(piano_player)(john) :: t

11

Higher-order predicates

Higher-order quantification:

- Bill has the same hair colour as John

3C (hair_colour(C) A C(bill) A G(john))
4 M T .
e, Dt e, t

Higher-order equality:

- For p, g e CON, “p=q” expresses material equivalence: “p « q’.
+ For F, G € CONe, v, “F=G” expresses co-extensionality: “vx(Fx—Gx)”

- For any formula ¢ of type t, d=(x=X) is a representation of “¢ is true”.

12

Type Theory — Semantics [1]

Let U be a non-empty set of entities.

The domain of possible denotations D+ for every type T Is given by:
De = U
Dt = {0,1}
Dw.o IS the set of all functions from Dg to Dy

Expressions of type o denote elements of Dg

13

Characteristic functions

Many natural language expressions have a type <o, t)

Expressions with type (o, t) are functions mapping elements of type o
to truth values: {0,1}

Such functions with a range of {O,1} are called characteristic functions,
because they uniquely specify a subset of their domain De

The characteristic function of set M In a domain U iIs the function

Fvm: U—{0,1} such that for alla € U, Fm(a) = 1 iff a € M.

NB: For first-order predicates, the FOL representation (using sets) and the type-theoretic representation
(using characteristic functions) are equivalent.

14

Interpretation with characteristic functions:
example

For M = <U, V), let U consist of the persons John, Bill, Mary, Paul, and Sally. For
selected types, we have the following sets of possible denotations:

Dy = {0O,1}
* De=U={, b,m, p, s}
=1 [i—=1] [i-0
b—0 b—1 b—1
* D<e,t> I{ m—1 |, | m—=0|, m—1 |, }
p—0| | p=1| | p—0
s—1 Shadl s—0

Alternative set notation: Dt = {{J,m,s},{j,0,p,s},{b,m},...}

15

Type Theory — Semantics (2]

A model structure for a type theoretic language is a tuple M = U, V)
such that:

U is a non-empty domain of individuals

-V is an interpretation function, which assigns to every a € CON«
an element of Dt (where T is an arbitrary type)

The variable assignment function g assigns to every typed variable
v € VAR an element of D+

16

Type Theory — Interpretation

Interpretation with respect to a model structure M = (U, V) and a variable
assignment g:

. [ag™e =\V(a) if ais a constant
[a]™e =g(a) ifaisavariable

c [a@1™® = [ar™ o™

o1 =1 iff [91M9=0
(o APl =1 iff [$1"9=1and [I" = 1
[v 1™ = ff 11 =1 or [PI™9 = 1

- [a=p1"? =1 iff [a]"?=[BT"

- For any variable v of type o:
[3vp]™ =1 iff thereis a d € Do such that [p]"9 = 1

[wol™ =1 iff foralldeDo: [p]" " = 1

Interpretation: Example

John Is a talented piano player

piano_player :: <e, t) talented:: (e, 1), (e, t))

john:: e talented(piano_player) :: <e, 1)

talented(piano_player)(john) :: t

[talented(piano_player)(john) ™9
— [talented(piano_playen ™9 (Tjohn]“:9)
= [talented]M9([piano_player]™9) ([john]™-9)

= Vu(talented)(Vm(piano_player))(Vm(john))

18

Interpretation: Example (cont.)

[John is a talented piano playerTV9 = Vu(talented)(Vu(piano_player))(Vm(ohn))

Vm(ohn) = j(€ De)

D<e,t>) @ {J I, S}

VM(piano_pIaye‘ \ ‘

{i,m,s} = {j,s}

| [\ @ m,p,s}— {s
Vu(talented) =t|| M1 m—0 Ye Diebiet) {{ p,s}— {s} }
p—»() p—»O \ N
S—1 s—1 4 W\

j~o| [-0 |
b—0 b—0 \ R
m—=1| = | m—=0 A, Vwm(talented)(Vm(piano_player))
_so1] Ls—1l Vu(talented)(Vm(piano_player))(Vm(john))

Defining the right model

Consider the following Model M: M: Anakin
Darth Vader
De — UM — {e1; 62’ 63’ e4! e5} ez. \ e5)
// \ .
Vm(Anakine) = Vu(Darth Vadere) = e2 V e \,e \ |
°C3 e
| ot | o Luke\ y 4 | Palpatine
Vm(Yedie) = . Vm(Dark_Sideren) = o1]
e3— 1 e3—0 Leia Yoda
es— 1 es—0
e5—0 | - ~|Les—1]
e1—1 | 61—0
eo— 1 ex— 1
es—1 | & | es—0
Vm(Powerfule e ty) = | | €471 €41
es5—0 | e5s—0
- --> Powerful Xen E Xet
e1—0 e1—0
e 1 eo— 1
e300 | = | e3—0
es—0 es—0
es—1 | es—1

Adjective classes & Meaning postulates

Some valid inferences in natural language:
- Bill is a poor piano player = Bill is a piano player
- Bill is a blond piano player = Bill is blond

- Bill is a former professor = Bill isn’t a professor

These entailments do not hold in type theory. Why*?

Meaning postulates: restrictions on models which constrain the
possible meaning of certain words

21

Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives (“poor”)
- [poorNJTCINTI

- Meaning postulate: vGvx(poor(G)(x) = G(X))

Intersective adjectives (“blond”)
- [blondNJ= [blond]n[NT
- Meaning postlate: vGvx(blond(G)(x) = (blond*(x) A G(x))

- NB: blond € WE, vy, 6, 1y # blond™ € Wk, 1

Privative adjectives (“former”)
- [formerNInI[N]=2

- Meaning postlate: vGvx(former(G)(x) = —G(X))

22

Background reading material

+ Gamut: Logic, Language, and Meaning Vol |l
— Chapter 4 (minus 4.3)

23

