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Sentence semantics




Sentence meaning

Truth-conditional semantics:

to know the meaning of a (declarative) sentence is to know what the world
would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

Indirect interpretation:

1. Translate sentences into logical formulas:
Every student works ~ vx(student’(x) = work’(x))

2. Interpret these formulas in a logical model:
[vx(student’(x) = work’(x))]M-9 = 1 iff Vm(student’) ¢ Vm(work’)



Step 1: Translation

Limits of propositional logic: propositions with internal structure
Every man is mortal.
Socrates is a man.

Therefore, Socrates is mortal.

Solution: first-order predicate logic

predicates are expressions predication & quantification
that contain arguments over individuals

(that can be quantified over)

Gottlob Frege
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Predicate Logic: Vocabulary

Non-logical expressions:

Individual constants: CON

n-place relation constants: PRED", foralln =0

Infinite set of individual variables: VAR

Logical connectives: A, v, 7, =, <, V, 3

Brackets: (, )



Predicate Logic: Syntax

Terms: TERM = VAR u CON

Atomic formulas:

- Rut4,..., tn) forRe PRED"and ty, ..., thn € TERM
- 1 =1 for t1, to € TERM

Well-formed formula (WFF):

1. All atomic formulas are WFFs;

2. If & and Y are WFFs, then =®, (p A ), (d v V), (® = V), (P < P) are WFFs;

3. If x e VAR, and ¢ is a WFF, then vx¢$ and ax¢ are WFFs;
4. Nothing else is a WFF.



Variable binding

- Given a quantified formula vx¢ (or ax¢), we say that ¢ (and every
part of @) is in the scope of the quantifier vx (or 3x);

- A variable x is bound in formula  if X occurs in the scope of vx
or IxX in Y

- |f a variable is not bound in formula ¢, it occurs free in ;

- A closed formula is a formula without free variables.



Formalizing Natural Language

1. Bill loves Mary.

2. Bill reads an interesting book.

3. Every student reads a book.

4. Bill passed every exam.

5. Not every student answered every question.
6. Only Mary answered every question.

/. Mary is annoyed when someone Is noisy.

8. Although nobody makes noise, Mary is annoyed.



Step 2: Interpretation

Logical models are simplified representations of the state of
affairs in the world

M1 : M2:
student nary student nary

woman

john\/° sue john . sue

paul paul

bill

bill

John is a student : for any M, [student’(john)IM = 1 iff Vm(john) € Vm(student’)

Vmi(john) e Vmi(student’) therefore: [student’(john)JMT = 1
Vmz(john) ¢ Vwve(student’) therefore: [student’(john)]M? = 0



A formal description of a model

Model M = (Uwm, Vm), with:
- Uwm is the universe of M and

-V Is an interpretation function

Uwm = {e1, €2, e3, e4, e5} Universe
Vm(john) = e

constants
Vwm(bill) = 5

Vm(student) = {el, e2, e4}
Vm(drink_coffee) = {el, e2, €3, e4}

Vm(love) = {<(el1,e2), (e2,e1), <e4,e5)}

M: mary

student
/ e

e.1/

john

paul

drink_coffee

sue

bill

1-place predicates

2-place predicates
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Interpretation in the model

Vm IS an interpretation function assigning individuals (eUw) to

iIndividual constants and n-ary relations over Um to n-place
predicate symbols:

- Vm(c) € Um if ¢ is an individual constant
- Vm(P) € Uu"  if Pis an n-place predicate symbol

- Vm(P) € {0,1} if P is an 0-place predicate symbol
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Variables and quantifiers

How to interpret the following M mary .
, drink_coffee
sentence in our model M:

- Someone is sad ~ 3ax(sad’(x))

Intuition: sue

- find an entity in the universe for which bill
the statement holds: Vm(sad’) = eq4

- replace x by e4 in order to make 3ax(sad’(x)) true
More formally:

- Interpret sentence relative to assignment function g: i.e., [3x(sad’(x))1M-9, such
that g(x) = es; this can be generalised to any g’ as follows: g’[x/e4](X) = e4



Assignment functions

An assignment function g assigns values to all variables
* g:: VAR — Um

- We write g[x/d] for the assignment function g’ that assigns d to x and assigns
the same values as g to all other variables.

X y Z u

9 e1 €2 es e4
aly/e] e1 e1 e3 e
g[x/e] e e es €4
aly/g(z)] e1 e3 e3 e4
aly/e]u/e] e e1 e3 e1
aly/e1]ly/ez] e1 e es e4




Interpretation of terms

Interpretation of terms with respect to a model M and a variable assignment g:
[a]M9 =  Vwm(a) if ais an individual constant

g(a) if ais avariable
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Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g:

- [R(ty, ..., tn)IM9 = 1
[t =tIM9 =1

© [-pIMo =1

[P A PIM9 =1

- [ v PpIM9 = 1

[ > PIM =1
[ o YIMo =1
. [axpIMo = 1

© [vxpIMo = 1

Iff
Iff
Iff
Iff
Iff
Iff
Iff
Iff
Iff

[t1IM9, ..., [tnIM9) € VMm(R)
[t1]M9 = [t2]M-

[pIM9 =0

[pIM9 =1 and [YIMe =1
[pIM9 =1 or [PIM9 = 1

[bIM9 = 0 or [PIM9 = 1
[dIM9 = [PpIM9

there is a d € Um such that []M-9x/dl = 1

for all d € Uwm, [pIMedl = 1
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Truth, Validity and Entailment

A formula ¢ is true in a model M iff:
[®IM9 = 1 for every variable assignment g

A formula ¢ is valid (= ¢) iff:
¢ Is true in all models

A formula ¢ is satisfiable iff:
there is at least one model M such that ¢ is true in model M

A set of formulas I is (simultaneously) satisfiable iff:
there is a model M such that every formula in I is true in M
(“M satisfies I',” or “M is a model of ")

[ entails a formula ¢ (I = @) iff:
¢ is true in every model structure that satisfies I'

17



Logical Equivalence

Formula ¢ is logically equivalent to formula | (o<), iff:

- [pIM9 = [PIM9 for all models M and variable assignments g.

For all closed formulas ¢ and (), the following assertions are equivalent:

1. dey (logical equivalence)

2. P=pand =0 (mutual entailment)

3. Edpey (validity of “material equivalence”)
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Logical Equivalence Theorems: Propositions

1) e
2)  PAY o PP
3) ¢V e Yvo

4)  PAPvX) & (@AP)V(dAX)
5)  Pv(PAxX) & (GV)A(PVX)
6) ~(PAY) & ~dvy

/) (PvY) & Ay

8 ¢ ey —d

9 ¢ e dvyY

10) (= V) = oAy

Double negation

Commutativity of A, v

Distributivity of A and v

de Morgan’s Laws

Law of Contraposition
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Logical Equivalence Theorems: Quantifiers

11)
12)
13)
14)
15)
16)

17)

VXD & IXP Quantifier negation
—3IXP & VXP

vX(d A W) & vxdp A vxW Quantifier distribution
Ix(p v W) & axep v axy

VXVYD & VYVXD Quantifier Swap

IXIYP & Iyaxo

IXVyP = vyaxop ... but not vice versa !
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Logical Equivalence Theorems: Quantifiers (cont.)

The following equivalences are valid theorems of FOL, provided that x does not
occur free in ¢:

Here, ¢[x/y] is the result of replacing all free occurrences of y in ¢ with x

18) 3Iyd & IXP[X/Y] 23) ® v IxW & ax(p v W)

19) vy} & IXP[X/V] 24) ¢ = vxW < vx(p = V)
20) d A VXV & vx(p A W) 25) ¢ = xW & ax(p - V)
21) ® A IXW < Ix(d A W) 26) IxXW — ¢ < vx(W — o)

22) ® v vxW < vx(p v W) 27) vxW = o & ax(W - o)
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—guivalence Transformations

(1) -axvy(Py = Rxy) “Nobody masters every problem”

(2) vx3ay(Py A =Rxy) “Everybody fails to master some problem”

We show the equivalence of (1) and (2) as follows:

-3xvy(Py = Rxy) <& vxavy(Py — Rxy) (-3IXD & VXD )

& vxay-(Py — Rxy) (VXD & IXP )

& vxay(Py A —Rxy) (=(d = ) © drY)
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Background reading material

- Gamut: Logic, Language, and Meaning Vol I/Il — Chapter 2

» For a more basic introduction, see:
http://www.logicinaction.org — Chapter 4
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