Semantic Theory week 10 – Presuppositions in DRT

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Summary: Presuppositions (Recap)

- Presuppositions are triggered by a number of different words and linguistic constructions, including definite noun phrases.
- Presuppositions behave differently than assertions in semantics construction: They are typically projected unchanged, rather than used in functional application.
- Projected presuppositions can be filtered in the semantic composition process, and can be cancelled by contextual knowledge.

Presuppositions in DRT

Presupposition Projection as Anaphora Resolution Rob van der Sandt (1992)

- Presuppositions are anaphora with semantic content.
- Presupposition filtering is modelled as anaphora binding within a local context (sub-DRS).
- If a presupposition is not bound, it is *accommodated* (usually in the top-level DRS).

Presupposition as Anaphora

- (1) If a farmer owns a donkey, he feeds it.
- (2) If France has a king, the king of France is bald.
- (3) # If a farmer doesn't own a donkey, he feeds it.
- (4) # If France doesn't have a king, the king of France is bald.
- (5) # The farmer feeds it.
- (6) The king of France is bald.

Van der Sandt – Basic Principles

Introduce "a-DRSs" as a new type of complex condition

DRS construction proceeds in two steps:

- I. The construction rules for definite noun phrases introduce α-DRSs. This yields a "proto-DRS."
- II. In a second step, the α-DRSs are resolved (translation of a proto-DRS into a standard DRS)

Resolution: presuppositions can be either **bound** or **accommodated**

• A student works.

x			
student(x) works(x)			

• A student works. The student is successful.

x					
student(x) works(x)					
ay y					
student(y)					
successful(y)					

• A student works. The student is successful.

• A student works. The student is successful.

ху	
student(x) works(x) student(y) x = y successful(y)	

Expressions that trigger presuppositions can often be used even if the context does not satisfy the presupposition:

(1) The king of Buganda is 43

- (2) The movie I saw yesterday was really interesting
- (3) We regret that we have no free rooms available

The missing information is silently added to the context as we interpret the sentence: it is *accommodated*

• The King of Buganda is visiting.

x	
King-of-Buganda(x)	

• The King of Buganda is visiting.

• The King of Buganda is visiting.

X
King-of-Buganda(x) visit(x)

Syntax for proto-DRSs

A proto-DRS is a triple $\langle U_{K},\,C_{K},\,A_{K}\rangle$ such that

- U_K is a set of discourse referents
- C_{K} is a set of (atomic or complex) conditions
- A_K is a set of "anaphoric" (a-) DRSs of the form azK', where z is a discourse referent and K' is a proto-DRS.

A DRS is a proto-DRS $\langle U_{K},\,C_{K},\,A_{K}\rangle$ such that $A_{K}=\varnothing$

Definite Noun Phrases in DRT

The DRS construction rules for all definite noun phrases introduce a-DRSs:

• Definite descriptions ("the woman")

• Pronouns ("he")

Definite Noun Phrases in DRT (cont.)

The DRS construction rules for all definite noun phrases introduce a-DRSs:

Proper names ("Maria")

Possessives ("his book")

Back to: DRS Subordination

 K_1 is an immediate sub-DRS of a DRS $K=\langle U_K, C_K, A_K \rangle$ iff

- C_K contains a condition of the form $\neg K_1$, $K_1 \Rightarrow K_2$, $K_2 \Rightarrow K_1$, $K_1 \lor K_2$, $K_2 \lor K_1$
- or $axK_1 \in A_K$

 K_1 is a sub-DRS of K (notation: $K_1 \leq K$) iff

- $K_1 = K \text{ or }$
- K_1 is an immediate sub-DRS of K or
- there is a DRS K₂ such that $K_1 \le K_2$ and K_2 is an immediate sub-DRS of K.

 K_1 is a proper sub-DRS of K iff $K_1 \leq K$ and $K_1 \neq K$.

Resolution by binding

Let K, K', K_t be some DRSs such that K' \leq K, K_t \leq K and

- $\cdot \quad \gamma = \alpha x K_s \in \mathsf{K}', \ \mathsf{K}_s \text{ is } \alpha \text{-free}$
- $y \in U_{Kt}$ is a DR that is accessible and suitable for γ

Binding: Remove γ from K' and extend K_t with U_{Ks}, C_{Ks}, and the condition x = y.

Note: Because K_s must be α -free, complex Alpha-DRSs are always resolved from the inside out.

٠

If Pedro owns a donkey, he beats his donkey. NB: we here use the standard DRT treatment for names Χ x = Pedroy donkey(y) au u azzz owns(x, y) donkey(u) of(u,w) beats(z, u) awiw

• If Pedro owns a donkey, he beats his donkey.

• If Pedro owns a donkey, he beats his donkey.

• If Pedro owns a donkey, he beats his donkey.

Resolution by accommodation

Let K, K' be DRSs such that K' \leq K, K_t \leq K and

- $\gamma = \alpha x K_s \in K'$, K_s is a-free
- K_t a DRS that is accessible for γ .

Accommodation: Remove γ from K' and extend K_t with U_{Ks} and C_{Ks}.

Resolution by accommodation: example

• If Pedro works, he beats his donkey.

Resolution by accommodation: example

• If Pedro works, he beats his donkey.

Resolution by accommodation: example

• If Pedro works, he beats his donkey.

Preference principles for presupposition resolution

- Binding is preferred over accommodation.
- Binding works "upwards" along the accessibility relation: The "closest" possible antecedent is preferred.
- Accommodation works "downwards" along the accessibility relation. It is preferred to accommodate into the highest possible DRS.

Constraints on projection

Free variable constraint:

The resolved DRS may not contain any free discourse referents.

Consistency and informativity constraints:

The resolved DRS must be consistent and informative

• Every man loves his wife.

• Every man loves his wife.

• Every man loves his wife.

Further constraints on projection

The resolved DRS must be consistent and informative.

- Consistency: The resolved DRS must be satisfiable (taking background knowledge into account).
- Informativity: The resolved DRS may not be entailed by our background knowledge.
- Local consistency: No sub-DRS must be inconsistent with any superordinate DRS.
- Local informativity: No sub-DRS must be entailed by any superordinate DRS.

• If John is out of town, his wife is unhappy. >> John is married

» John is married If John is out of town, his wife is unhappy. •

	x w u					
	X =	John w=x wife	e(u) of(u	I, W) Г		
		out-of-town(x)		\Rightarrow	αu wife(u) of(u,w)	
The resolv John has	/ed a wi [:]	DRS entails that fe.			unhappy(u)	

• If John is married, his wife is unhappy.

✗ John is married

	x w u					
	x = John w = x wife(u) of	(u, w)				
	married(x)		au u			
		\Rightarrow	wife(u) of(u,w)			
Accommodation of "his wife" at the top						
level woul	d enduce an entailment					
relation between the main DRS and the						
anteceder	nt of the conditional, thus		unnappy(u)			
violating local informativity.						

• If John is married, his wife is unhappy.

✗ John is married

Literature

 Rob van der Sandt (1992). Presupposition Projection as Anaphora Resolution, Journal of Semantics 9: 333–377