Semantic Theory week 9 – DRT: Interpretation and Composition

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Subordination

A DRS K₁ is an immediate sub-DRS of a DRS K = $\langle U_K, C_K \rangle$ iff C_K contains a condition of the form

• $\neg K_1, K_1 \Rightarrow K_2, K_2 \Rightarrow K_1, K_1 \lor K_2 \text{ or } K_2 \lor K_1.$

 K_1 is a sub-DRS of K (notation: $K_1 \leq K$) iff

- $K_1 = K$, or
- K₁ is an immediate sub-DRS of K, or
- there is a DRS K₂ such that $K_2 \le K$ and K_1 is an immediate sub-DRS of K_2 (i.e. reflexive, transitive closure)

 K_1 is a proper sub-DRS of K iff $K_1 \leq K$ and $K_1 \neq K$.

Accessibility

Let K, K₁, K₂ be DRSs such that K₁, K₂ \leq K, x \in U_{K1}, $\gamma \in$ C_{K2} x is accessible from γ in K iff

- $K_2 \leq K_1$ or
- there are K₃, K₄ \leq K such that K₁ \Rightarrow K₃ \in C_{K4} and K₂ \leq K₃

Free and bound variables in DRT

A DRS variable x introduced in condition γ in DRS K₁ \leq K, is *free* in global DRS K iff there is no K₂ \leq K such that x' \in U(K₂), and x' = x and x' is accessible from γ in K.

Properness: A DRS is *proper* iff it does not contain any free variables

Purity: A DRS is *pure* iff it does not contain any *otiose declarations* of variables $x \in U(K_1)$ and $x \in U(K_2)$ and $K_1 \leq K_2$

From text to DRS

Text $\Sigma = \langle S_1,$ S₂, S_n > . . . , \mathbf{V} Syntactic Analysis $P(S_2)$ $P(S_1)$ $P(S_n)$. . . \mathbf{V} \mathbf{V} K_2 **DRS** Construction K_1 Kn $\rightarrow \dots \rightarrow$ \rightarrow

DRS Construction Algorithm

Let the following be a well-formed, *reducible* DRS condition:

• Conditions of form a or a(x1, ..., xn), where a is a context-free parse tree.

DRS construction algorithm:

- Given a text $\Sigma = \langle S_1, ..., S_n \rangle$, and a DRS K₀ (= $\langle \emptyset, \emptyset \rangle$, by default)
- Repeat for i = 1, ..., n:
 - Add parse tree $P(S_i)$ to the conditions of K_{i-1} .
 - Apply DRS construction rules to reducible conditions of K_{i-1}, until no reduction steps are possible any more.
 - The resulting DRS is K_i , the discourse representation of text $\langle S_1,\,...,\,S_i\rangle.$

ху	
farmer(x)	
donkey(y)	
owns(x, y)	

x y z u	
farmer(x) donkey(y) owns(x, y)	
z = x	
u = y	
beat(z, u)	

Construction Rules: Examples

Indefinite NPs

- Given a reducible condition α in DRS K, with [S [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure, and β is $\varepsilon\delta$, where ε is an indefinite article
- Action: (i) Add a new DR x to U_{K} ; (ii) Replace β in α by x; (iii) Add $\delta(x)$ to C_{K} .

Personal Pronouns

- Given a global DRS K*, and some K \leq K*, such that α is a reducible condition in DRS K, with [S [NP β] [VP γ]] or [VP [V γ] [NP β]] as a substructure, and β is a personal pronoun
- Action: (i) Add a new DR x to U_{K} ; (ii) Replace β in α by x; (iii) Select an appropriate DR y that is accessible from α in K^{*} and add x = y to C_K

From text to DRS

Text

Syntactic Analysis

DRS Construction

Interpretation by model embedding: Truth-conditions of Σ

DRS Interpretation

Given a DRS K = $\langle U_K, C_K \rangle$, with $U_K \subseteq U_D$

Let $M = \langle U_M, V_M \rangle$ be a FOL model structure appropriate for K, i.e. a model structure that provides interpretations for all predicates and relations occurring in K

DRS K is *true* in model M *iff*

 there is an embedding function for K in M which verifies all conditions in K

... where: an embedding of K into M is a (partial) function **f** from U_D to U_M such that $U_K \subseteq \text{Dom}(\mathbf{f})$.

Verifying embedding

An embedding **f** of K in M verifies K in M (**f** \models_M K) iff **f** verifies every condition $\alpha \in C_K$

- $\boldsymbol{\cdot} \quad \boldsymbol{f} \models_M R(x_1, \ \ldots, \ x_n) \quad \text{ iff } \quad \langle \boldsymbol{f}(x_1), \ \ldots, \ \boldsymbol{f}(x_n) \rangle \in V_M(R)$
- $\mathbf{f} \models_M x = y$ iff $\mathbf{f}(x) = \mathbf{f}(y)$
- $\mathbf{f} \models_M x = a$ iff $\mathbf{f}(x) = V_M(a)$
- $\mathbf{f} \models_M \neg K_1$ iff there is no $\mathbf{g} \supseteq_{U_{K_1}} \mathbf{f}$ such that $g \models_M K_1$
- $\mathbf{f} \models_{M} K_{1} \Rightarrow K_{2}$ iff for all $\mathbf{g} \supseteq_{U_{K1}} \mathbf{f}$ such that $\mathbf{g} \models_{M} K_{1}$

there is a $\mathbf{h} \supseteq_{U_{K_2}} \mathbf{g}$ such that $\mathbf{h} \models_M K_2$

• $\mathbf{f} \models_{\mathsf{M}} \mathsf{K}_1 \lor \mathsf{K}_2$ iff there is a $\mathbf{g_1} \supseteq_{\mathsf{U}_{\mathsf{K}_1}} \mathbf{f}$ such that $\mathbf{g_1} \models_{\mathsf{M}} \mathsf{K}_1$ or there is a $\mathbf{g_2} \supseteq_{\mathsf{U}_{\mathsf{K}_2}} \mathbf{f}$ such that $\mathbf{g_2} \models_{\mathsf{M}} \mathsf{K}_2$

Verifying embedding: example

Mary knows a professor. If he owns a book, he gives it to a student.

...is **true** in $M = \langle U_M, V_M \rangle$ *iff* there is an $\mathbf{f} :: U_D \rightarrow U_M$, (with $\{s, u\} \subseteq \text{Dom}(\mathbf{f})$) such that: $\mathbf{f}(s) = V_M(\text{Mary}) \& \mathbf{f}(u) \in V_M(\text{prof'}) \& \langle \mathbf{f}(s), \mathbf{f}(u) \rangle \in V_M(\text{know})$, and for all $\mathbf{g} \supseteq_{\{x,y\}} \mathbf{f}$ s.t. $\mathbf{g}(x) = \mathbf{g}(u) (=\mathbf{f}(u)) \& \mathbf{g}(y) \in V_M(\text{book}) \& \langle \mathbf{g}(x), \mathbf{g}(y) \rangle \in V_M(\text{own})$, there is a $\mathbf{h} \supseteq_{\{z, y, w\}} \mathbf{g}$ s.t. $\langle \mathbf{h}(z), \mathbf{h}(y), \mathbf{h}(w) \rangle \in V_M(\text{give}) \& \mathbf{h}(z) = \mathbf{h}(x) (=\mathbf{g}(x)) \& \dots$ etc.

Translation of DRSs to FOL

Consider DRS K = $\langle \{x_1, \ \ldots, \ x_n\}, \ \{c_1, \ \ldots, \ c_k\} \rangle$

X ₁ X _n		
C1		
•		
Cn		

K is truth-conditionally equivalent to the following FOL formula:

 $\exists X_1 \dots \exists X_n [C_1 \land \dots \land C_k]$

DRT is non-compositional

- DRT is non-compositional on truth conditions: The difference in discourse-semantic status of the text pairs is not predictable through the (identical) truth conditions of its component sentences.
- Since structural information which cannot be reduced to truth conditions is required to compute the semantic value of texts, DRT is called a *representational* theory of meaning.

However...

- Why can't we just combine type theoretic semantics and DRT?
- Use λ -abstraction and reduction as we did before, but:
- Assume that the target representations which we want to arrive at are not First-Order Logic formulas, but DRSs.
- The result is called λ -DRT.

λ -DRSs

An expression in λ -DRT consists of a lambda prefix and a partially instantiated DRS.

• every student :: $\langle\langle e, t \rangle, t \rangle \mapsto$

Alternative notation: $\lambda G [\varnothing | [z | student(z)] \Rightarrow G(z)]$

• works :: $\langle e, t \rangle \mapsto \lambda x [\emptyset | work(x)]$

λ -DRT: β -reduction

Every student works

 $\mapsto \lambda G[\varnothing \mid [z \mid student(z)] \Rightarrow G(z)]](\lambda x [\varnothing \mid work(x)])$

 $\Rightarrow^{\beta} [\emptyset \mid [z \mid student(z)] \Rightarrow (\lambda x [\emptyset \mid work(x)])(z)]$

 $\Rightarrow^{\beta} [\emptyset \mid [z \mid student(z)] \Rightarrow [\emptyset \mid work(z)]]$

(Naïve) Merge

The "merge" operation on DRSs combines two DRSs (conditions and universes).

• Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$.

Merge: $K_1 + K_2 = [U_1 \cup U_2 | C_1 \cup C_2]$

Merge: An example

• a student $\mapsto \lambda G([z | student(z)] + G(z))$

• works
$$\mapsto \lambda x [\emptyset | work(x)]$$

A student works $\mapsto \lambda G([z \mid student(z)] + G(z)) (\lambda x[\emptyset \mid work(x)])$

 $\Rightarrow^{\beta} [z | student(z)] + \lambda x[\emptyset | work(x)](z)$

 $\Rightarrow^{\beta} [z | student(z)] + [\emptyset | work(z)]$

 $\Rightarrow^{\beta} [z | student(z), work(z)]$

Compositional analysis

- Mary $\mapsto \lambda G([z | z = Mary] + G(z))$
- she $\mapsto \lambda G.G(z)$

Mary works. She is successful.

 $\mapsto \lambda K \lambda K'(K + K')([z | z = Mary, work(z)])([successful(z)])$

 $\Rightarrow^{\beta} \lambda K'([z | z = Mary, work(z)] + K')([successful(z)])$

 $\Rightarrow^{\beta} [z | z = Mary, work(z)] + ([successful(z)])$

$$\Rightarrow^{\beta} [z \mid z = Mary, work(z), successful(z)]$$

Merge again

The "merge" operation on DRSs combines two DRSs (conditions and universes).

• Let $K_1 = [U_1 | C_1]$ and $K_2 = [U_2 | C_2]$.

Merge: $K_1 + K_2 \Rightarrow [U_1 \cup U_2 | C_1 \cup C_2]$

under the assumption that no discourse referent $u \in U_2$ occurs free in a condition $\gamma \in C_1$.

Variable capturing

In λ -DRT, discourse referents are captured via the interaction of β -reduction and DRS-binding:

λK'([z | student(z), work(z)] + K')([| successful(z)])

 $\Rightarrow^{\beta} [z \mid student(z), work(z)] + [\mid successful(z)]$

 $\Rightarrow^{\beta} [z \mid student(z), work(z), successful(z)]$

But the β -reduced DRS must still be *equivalent* to the original DRS!

So, the potential for capturing discourse referents must be captured into the interpretation of a λ -DRS. Possible, but tricky.