Semantic Theory week 8 – DRT: Syntax and Interpretation

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Mass nous again (exercise sheet 5, ex. 2)

To interpret mass nouns, we use the model $M = \langle \langle U, \leq_i \rangle, \langle M, \leq_m \rangle, V \rangle$, where:

- $U \cap M = \emptyset$
- + $\langle U, \leq_i \rangle$ is an atomic join semi-lattice
- $\langle M, \leq_m \rangle$ is a non-atomic and dense join semi-lattice
- V is a value assignment function
- Variables referring to matters: *x*, *y*, *z*, ...
- A material fusion operation ⊕_m and a material part relation ⊲_m (to be distinguished from ⊕_i and ⊲_i, respectively)
- $[m(\alpha)]^{M, g} = h([\alpha]^{M, g})$, where $\alpha \in WE_e$ is a well-formed expression denoting an individual entity

DRS Syntax

A discourse representation structure (DRS) K is a pair $\langle U_K, C_K \rangle$, where:

- $U_K \subseteq U_D$ and U_D is a set of discourse referents, and
- C_{K} is a set of well-formed DRS conditions

Well-formed DRS conditions:

• $R(u_1, ..., u_n)$ where: R is an n-place relation, $u_i \in U_D$

 $u, v \in U_D$

K₁ is a DRS

 $u \in U_D$, a is a constant

- U = V
- u = a
- ¬K1
- $K_1 \Rightarrow K_2$ K_1 and K_2 are DRSs
- $K_1 \vee K_2$ K_1 and K_2 are DRSs

Anaphora and accessibility

Mary knows a professor. If she owns a book, he reads it.? It fascinates him.

Non-accessible discourse referents

Cases of non-accessibility:

- (1) If a professor owns a book, he reads it. It has 300 pages.
- (2) It is not the case that a professor owns a book. He reads it.
- (3) Every professor owns a book. He reads it.
- (4) If every professor owns a book, he reads it.
- (5) Peter owns a book, or Mary reads it.
- (6) Peter reads a book, or Mary reads a newpaper article. It is interesting.

Accessible discourse referents

The following discourse referents are accessible for a condition:

- DRs in the same local DRS
- DRs in a superordinate DRS
- DRs in the universe of an antecedent DRS, if the condition occurs in the consequent DRS.

We need a formal notion of DRS subordination

Subordination

A DRS K₁ is an immediate sub-DRS of a DRS K = $\langle U_K, C_K \rangle$ iff C_K contains a condition of the form

• $\neg K_1, K_1 \Rightarrow K_2, K_2 \Rightarrow K_1, K_1 \lor K_2 \text{ or } K_2 \lor K_1.$

 K_1 is a sub-DRS of K (notation: $K_1 \leq K$) iff

- $K_1 = K$, or
- K₁ is an immediate sub-DRS of K, or
- there is a DRS K_2 such that $K_2 \le K_1$ and K_1 is an immediate sub-DRS of K (i.e. reflexive, transitive closure)

 K_1 is a proper sub-DRS of K iff $K_1 \leq K$ and $K_1 \neq K$.

Let K, K₁, K₂ be DRSs such that K₁, K₂ \leq K, x \in U_{K1}, $\gamma \in$ C_{K2}

 \boldsymbol{x} is accessible from $\boldsymbol{\gamma}$ in \boldsymbol{K} iff

- $K_2 \leq K_1$ or
- there are K₃, K₄ \leq K such that K₁ \Rightarrow K₃ \in C_{K4} and K₂ \leq K₃

Free and bound variables in DRT

A DRS variable x, introduced in DRS K₁, is bound in global DRS K iff there exists a DRS $K_j \le K$, such that:

 $(i) \quad K_i \leq K_j;$

 $(ii) \ \ x\in U(K_j).$

Properness: A DRS is *proper* iff it does not contain any free variables

Purity: A DRS is *pure* iff it does not contain any *otiose declarations* of variables

 $x \in U(K_1)$ and $x \in U(K_2)$ and $K_1 \leq K_2$

Playing in the sandbox

PDRT-SANDBOX is a Haskell library that implements Discourse Representation Theory (and its extension Projective Discourse Representation Theory)

http://hbrouwer.github.io/pdrt-sandbox/

- · Define your own DRSs, using the internal syntax or the set-theoretic notation
- Show the DRSs in different output formats (boxes, linear boxes, set-theoretic, internal syntax)
- Composition of DRSs (more on that next week)
- Translate DRSs to FOL formulas
- ... and more!

DRS Syntax in PDRT-SANDBOX

DRS: DRS [...] [...] referents conditions Referents: DRSRef "x", DRSRef "Mary"

Conditions:

Rel	ation:	Rel	(DRSRel "man") [DRSRef "x"]
lde	ntity:	Rel	(DRSRel "=") [DRSRef "x",DRSRef "y"]
Ne	gation:	Neg	(DRS [] [])
Imp	olication:	Imp	(DRS [] []) (DRS [] [])
Dis	junction:	Or	(DRS [] []) (DRS [] [])
Properties: isPure(DRS [] []), isProper(DRS [] [])			

This week's take-home assignment:

Download and install PDRT-SANDBOX

http://hbrouwer.github.io/pdrt-sandbox/

• Get familiar with the software by trying out the DRS tutorial

https://github.com/hbrouwer/pdrt-sandbox/blob/master/tutorials/ DRSTutorial.hs

(you can skip the part about "Combining DRSs" for now)

 Playing in the sandbox: create your own DRSs, and see what else you can do with it.