Semantic Theory week 6 - Event semantics

Noortje Venhuizen
University of Groningen/Universität des Saarlandes
Summer 2015

A problem with verbs and adjuncts

(1) The gardener killed the baron $\quad \mapsto$ kill $_{1}\left(g^{\prime}, b^{\prime}\right) \quad$ kill $1::\langle e,\langle e, t\rangle\rangle$
(2) The gardener killed the baron in the park \mapsto kill $_{2}\left(g^{\prime}, b^{\prime}, p^{\prime}\right) \quad$ kill $2::\langle e,\langle e,\langle e, t\rangle\rangle$
(3) The gardener killed the baron at midnight \mapsto kill $_{3}\left(\mathrm{~g}^{\prime}, \mathrm{b}, \mathrm{m}^{\prime}\right) \quad$ kill $3::\langle\mathrm{e},\langle\mathrm{e},\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
(4) The gardener killed the baron at midnight in the park \mapsto kill $\left(\mathrm{g}^{\prime}, \mathrm{b}, \mathrm{m}^{\prime}, \mathrm{p}{ }^{\prime}\right)$ kill $4::$...
(5) The gardener killed the baron in the park at midnight \mapsto kill4(g',b',p’, m’) kills :: ...

Q: How to explain the systematic logical entailment relations between the different uses of "kill"?

Davidson's solution: verbs introduce events.

Verbs expressing events have an additional event argument, which is not realised at linguistic surface:

- kill $\mapsto \lambda y \lambda x \lambda e(k i l l \prime(e, x, y))::\langle e,\langle e,\langle e, t\rangle\rangle\rangle$ arity $=n+1$

Sentences denote sets of events:

- $\lambda y \lambda x \lambda e(k i l l \prime(e, x, y))\left(b^{\prime}\right)\left(g^{\prime}\right) \Rightarrow^{\beta} \lambda e\left(k i l l^{\prime}\left(e, g^{\prime}, b^{\prime}\right)\right)::\langle e, t\rangle$

Existential closure turns sets of events into truth conditions

- λ Pョe($\mathrm{P}(\mathrm{e}))::\langle\langle\mathrm{e}, \mathrm{t}\rangle, \mathrm{t}\rangle$
- λ Pョe(P(e))($\left.\lambda e\left(k i l l{ }^{\prime}\left(e, g^{\prime}, b^{\prime}\right)\right)\right) \Rightarrow^{\beta} \exists e\left(k i l l^{\prime}\left(e, g^{\prime}, b^{\prime}\right)\right):: t$

Davisonian events and adjuncts

Adjuncts express two-place relations between events and the respective "circumstantial information": time, location, ...

- at midnight $\mapsto \lambda P \lambda e(P(e) \wedge$ time $(e, m))::\langle\langle e, t\rangle,\langle e, t\rangle\rangle$
- at midnight $\mapsto \lambda P \lambda e(P(e) \wedge$ Iocation $(e, p))::\langle\langle e, t\rangle,\langle e, t\rangle\rangle$

The gardener killed the baron at midnight in the park

$$
\left.\begin{array}{rl}
\mapsto \exists e\left(\text { kill }\left(e, g^{\prime}, b^{\prime}\right) \wedge \text { time }(e, m) \wedge \operatorname{location}(e, p)\right) \\
\Leftrightarrow \exists e\left(k i l l\left(e, g^{\prime}, b^{\prime}\right) \wedge \operatorname{location}(e, p) \wedge \operatorname{time}(e, m)\right)
\end{array}\right\} \begin{aligned}
& \vDash \exists e\left(k i l l\left(e, g^{\prime}, b^{\prime}\right) \wedge \text { time }(e, m)\right) \\
& \\
& \vDash \exists e\left(k i l l\left(e, g^{\prime}, b^{\prime}\right) \wedge\right. \text { location(e, p)) } \\
& \\
& \left.\left.\vDash \exists g^{\prime}, b^{\prime}\right)\right)
\end{aligned}
$$

Compositional derivation of event-semantic representations

the gardener killed the baron

$$
\lambda x_{e} \lambda y_{e} \lambda e_{e}[\operatorname{kill}(e, y, x)]\left(b^{\prime}\right)\left(g^{\prime}\right) \Rightarrow^{\beta} \lambda e\left[\operatorname{kill}\left(e, g^{\prime}, b^{\prime}\right)\right]
$$

... at midnight

$\lambda F_{\langle e, t\rangle} \lambda e_{e}\left[F(e) \wedge \operatorname{time}\left(e, m^{\prime}\right)\right]\left(\lambda e^{\prime}\left[\operatorname{kill}\left(e^{\prime}, g^{\prime}, b^{\prime}\right)\right]\right) \Rightarrow^{\beta} \lambda e\left[\operatorname{kill}(e, g, b) \wedge\right.$ time $\left.\left(e, m^{\prime}\right)\right]$
... in the park
$\lambda F_{\langle e, t\rangle} \lambda e_{e}\left[F(e) \wedge\right.$ location $\left.\left(e, p^{\prime}\right)\right]\left(\lambda e^{\prime}\left[k i l l\left(e^{\prime}, g^{\prime}, b^{\prime}\right) \wedge\right.\right.$ time $\left.\left.\left(e^{\prime}, m^{\prime}\right)\right]\right) \Rightarrow \beta$
$\lambda e\left[k i l l\left(e, g^{\prime}, b^{\prime}\right) \wedge\right.$ time $\left(e, m^{\prime}\right) \wedge$ location $\left.\left(e, p^{\prime}\right)\right]$
Existential closure
$\lambda P_{\langle e, t\rangle} \exists e(P(e))\left(\lambda e^{\prime}(K \wedge T \wedge L) \Rightarrow^{\beta} \exists e\left[\operatorname{kill}\left(e, g^{\prime}, b^{\prime}\right) \wedge\right.\right.$ time $\left(e, m^{\prime}\right) \wedge$ location $\left.\left(e, p^{\prime}\right)\right]$

Model structures with events

To interpret events, we need enriched ontological information
Ontology: The area of philosophy identifying and describing the basic "categories of being" and their relations.

A model structure with events is a triple $\mathrm{M}=\langle\mathrm{U}, \mathrm{E}, \mathrm{V}\rangle$, where

- U is a set of "standard individuals" or "objects"
- E is a set of events
- $U \cap E=\varnothing$,
- V is an interpretation function like in first order logic

Sorted (first-order) logic

A variable assignment g assigns individuals (of the correct sortspecific domain) to variables:

- $g(x) \in U$ for $x \in \operatorname{VAR} u \quad V A R u=\left\{x, y, z, \ldots, x_{1}, x_{2}, \ldots\right\} \quad$ (Object variables)
- $g(e) \in E$ for $e \in \operatorname{VAR}_{E} \quad \operatorname{VAR}_{E}=\left\{e, e^{\prime}, e^{\prime \prime}, \ldots, e_{1}, e_{2}, \ldots\right\}$ (Event variables)

Quantification ranges over sort-specific domains:

- $\llbracket \exists x \Phi \rrbracket^{M, g}=1 \quad$ iff there is an $a \in U$ such that $\llbracket \Phi \rrbracket^{M, g[x / a]}=1$
- $\llbracket \exists e \Phi \rrbracket^{\mathrm{M}, \mathrm{g}}=1 \quad$ iff there is an $\mathrm{a} \in \mathrm{E}$ such that $\llbracket \Phi \rrbracket^{\mathrm{M}, g[e / 2]}=1$
- (universal quantification analogous)

Advantages of Davidsonian events

■ Intuitive representation and semantic construction for adjuncts

- Uniform treatment of verb complements
- Uniform treatment of adjuncts and post-nominal modifiers
- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Uniform treatment of verb complements

（1）Bill saw an elephant


```
see ::〈e,\langlee,\langlee,t\rangle\rangle
```

（2）Bill saw an accident
$\mapsto \exists \mathrm{e} \exists e^{\prime}\left(\right.$ see $\left(\mathrm{e}, \mathrm{b}, \mathrm{e}^{\prime}\right) \wedge$ accident（e＇）） see ：：〈e，〈e，$\langle\mathrm{e}, \mathrm{t}\rangle\rangle$
（3）Bill saw the children play
$\mapsto \exists \mathrm{\exists} \mathrm{e}^{\prime}($ see（e，b，e’）\wedge play（e＇，the－children））

```
see:: \langlee,\langlee,\langlee,t\rangle\rangle
```


Uniform treatment of adjuncts and post-nominal modifiers

Treatment of adjuncts as predicate modifiers, analogous to attributive adjectives:

- $\operatorname{red} \mapsto \lambda F \lambda x\left[F(x) \wedge \operatorname{red}^{*}(x)\right]$
$\langle\langle e, t\rangle,\langle e, t\rangle\rangle$
- in the park $\mapsto \lambda F \lambda e[F(e) \wedge$ location $(e$, park $)]$
$\langle\langle e, t\rangle,\langle e, t\rangle\rangle$
(1) The murder in the park...
$\mapsto \lambda F \lambda e[F(e) \wedge$ location(e, park)] ($\lambda e[$ murder (e)])
(2) The fountain in the park
$\mapsto \lambda F \lambda x[F(x) \wedge$ location $(x$, park $]]$ ($\lambda y[f f o u n t a i n(y)])$

Advantages of Davidsonian events

■ Intuitive representation and semantic construction for adjuncts

■ Uniform treatment of verb complements

■ Uniform treatment of adjuncts and post-nominal modifiers

- Coherent treatment of tense information
- Highly compatible with analysis of semantic roles

Classical Tense Logic

- John walks walk(john)
- John walked P(walk(john))
- John will walk

F(walk(john))

Syntax like in first-order logic, plus

- if Φ is a well-formed formula, then PФ, FФ, HФ, GФ are also well-formed formulae.

Ф will happen in the future

Classical Tense Logic (cont.)

Tense model structures are quadruples $\mathrm{M}=\langle\mathrm{U}, \mathrm{T},\langle, \mathrm{V}\rangle$ where

- U is a non-empty set of individuals (the "universe")
- T is a non-empty sets of points in time
- $U \cap T=\varnothing$
- < is a linear order on T
- V is a value assignment function, which assigns to every non-logical constant a a function from T to appropriate denotations of a

$$
\begin{aligned}
& \llbracket P \Phi \rrbracket^{\mathrm{M}, \mathrm{t}, \mathrm{~g}}=1 \text { iff there is a } \mathrm{t}^{\prime}<\mathrm{t} \text { such that } \llbracket \Phi \rrbracket^{\mathrm{M}, \mathrm{t}^{\prime}, \mathrm{g}}=1 \\
& \llbracket \mathrm{~F} \rrbracket^{\mathrm{M}, \mathrm{t}, \mathrm{~g}}=1 \text { iff there is a } \mathrm{t}^{\prime}>\mathrm{t} \text { such that } \llbracket \Phi \rrbracket^{\mathrm{M}, \mathrm{t}^{\prime}, g}=1
\end{aligned}
$$

Temporal Relations and Events

(1) The door opened, and Mary entered the room.
(2) John arrived. Then Mary left.
(3) Mary left, before John arrived.
(4) John arrived. Mary had left already.

Q: How to formalize temporal relations between events?

Temporal Event Structure

A model structure with events and temporal precedence is defined as $\mathrm{M}=\left\langle\mathrm{U}, \mathrm{E},<, \mathrm{e}_{\mathrm{u}}, \mathrm{V}\right\rangle$, where

- $U \cap E=\varnothing$,
- $<\subseteq E \times E$ is an asymmetric relation (temporal precedence)
- $\mathrm{e}_{u} \in \mathrm{E}$ is the utterance event
- V is an interpretation function like in standard FOL
- Overlapping events: e • e’ iff neither e < e' nor e' <e

Tense in Semantic Construction

We can represent inflection as an abstract tense operator reflecting the temporal location of the reported event relative to the utterance event.

$$
\text { PAST } \mapsto \lambda P . \exists e\left[P(e) \wedge e<e_{u}\right]:\langle\langle e, t\rangle, t\rangle
$$

"Bill walked"

PRES $\mapsto \lambda$ P. ヨe $\left[P(e) \wedge e \cdot e_{u}\right]:\langle\langle e, t\rangle, t\rangle$

Tense in Semantic Construction

Standard function application results in integration of temporal information and binding of the event variable (i.e., replacing e-clos):

- walk $\mapsto \lambda \times \lambda e$ [walk(e, x)]
- Bill walk $\mapsto \lambda \times \lambda e[$ walk $(e, x)]\left(b^{\prime}\right) \Rightarrow^{\beta} \lambda e\left[w a l k\left(e, b^{\prime}\right)\right]$
- Bill walk PAST

$$
\begin{aligned}
& \mapsto \lambda E \exists e\left[E(e) \wedge e<e_{u}\right]\left(\lambda e^{\prime}\left[\text { walk }\left(e^{\prime}, b\right)\right]\right) \\
& \Rightarrow^{\beta} \exists e\left[\lambda e^{\prime}\left[\text { walk }\left(e^{\prime}, b\right)\right](e) \wedge e<e_{u}\right] \\
& \Rightarrow^{\beta} \exists e\left[\text { walk }(e, b) \wedge e<e_{u}\right]
\end{aligned}
$$

"Bill walked"

