Semantic Theory
 week 5 - Generalised Quantifiers

Noortje Venhuizen
University of Groningen/Universität des Saarlandes
Summer 2015

Exercises due on: Tuesday, May 19th, 10 AM (before class)

Semantic Theory 2015: Exercise sheet 2

Exercise 1

1.1 Derive the types of the underlined expressions in the following sentences. The subscripts indicate the types of the relevant expressions. All complete sentences must be of type t.
a. [Darth Vader] $]_{e}$ is the father of Luke $_{e}$.
b. Every Jedi ${ }_{\langle e, t\rangle}$ has [a lightsaber] $]_{e}$.
c. $[\text { Padmé Amidala }]_{e}$ is the most beautiful $\operatorname{woman}_{\langle e, t\rangle}$ on Naboo_{e}.
1.2 Is it possible to have type theoretic expressions A and B such that both $A(B)$ and $B(A)$ are well-formed? Motivate your claim.

Exercise 2

The diagram graphically represents a model structure $M=\langle U, V\rangle$ with a universe consisting of three entities. The green circle indicates the set of Jedi, the arrow indicates the helping relation.
2.1 Give the interpretation function V_{M} for the following non-logical constants:

a. anakin', yoda', padmé' $\in \mathrm{CON}_{e}$
b. jedi' $\in \operatorname{CON}_{\langle e, t\rangle}$
c. help' $\in \operatorname{CON}_{\langle e,\langle e, t\rangle\rangle}$
2.2 Compute the denotations of the following expressions relative to the model structure M and some arbitrary variable assignment g. Here, x is a variable of type e, and F is a variable of type $\langle e, t\rangle$.
a. $\llbracket h e l p \prime($ padmé $) \rrbracket^{M, g}=$?
b. $\llbracket \forall x\left(\right.$ help $\left.^{\prime}(x)(x) \rightarrow \neg j e d i^{\prime}(x)\right) \rrbracket^{M, g}=$?
c. $\llbracket \forall F \exists x(F(x)) \rrbracket^{M, g}=$?

Exercise 3

3.1 Translate the following English words into lambda expressions:
a. blond ${ }_{\langle\langle e, t\rangle,\langle e, t\rangle\rangle}$ (use blond* as the underlying first-order predicate; the translation should show the intersective character of the modifier explained in the lecture slides)
b. on ${ }_{\langle e,\langle\langle e, t\rangle,\langle e, t\rangle\rangle\rangle}$ (As in the sentence: "Padmé lives on Naboo")
c. only $\langle e,\langle\langle e, t\rangle, t\rangle\rangle$ (As in the sentence: "Only Luke defeated Darth Vader")
3.2 Translate the following sentences into expressions of Typed Lambda Calculus, assuming the syntactic structure indicated by the brackets. Use function application and lambda conversions to arrive at the simplest possible expressions.
a. Padmé lives [on Naboo].
b. [Only Luke] [is a [blond Jedi]].
c. Darth Vader [fights [and destroys]].
d. [Luke [and Darth Vader]] fight.

Use the translations for blond, on, and only from exercise 3.1. In addition, use the following lexical entries (NB. there are two different translations for and, depending on its function!):

- Padmée, Naboo $_{e}$, Luke $_{e}$, Darth $\operatorname{Vader}_{e} \mapsto \mathrm{p}^{\prime}, \mathrm{n}^{\prime}$, l', d'
- $\operatorname{live}_{\langle e, t\rangle}, \operatorname{Jedi}_{\langle e, t\rangle}$, fight $_{\langle e, t\rangle}$, destroy $_{\langle e, t\rangle} \mapsto$ live', jedi', fight', destroy $^{\prime}$
- is- $\mathrm{a}_{\langle\langle e, t\rangle,\langle e, t\rangle\rangle} \mapsto \lambda F . F$
- and $_{\langle\langle e, t\rangle,\langle\langle e, t\rangle,\langle e, t\rangle\rangle\rangle} \mapsto \lambda P \cdot \lambda Q \cdot \lambda x(P(x) \wedge Q(x))$
- $\operatorname{and}_{\langle e,\langle e,\langle\langle e, t\rangle, t\rangle\rangle\rangle} \mapsto \lambda x \cdot \lambda y \cdot \lambda P(P(x) \wedge P(y))$

From NPs to Determiners

Every man walked $\mapsto \forall x\left(\right.$ man' $^{\prime}(\mathrm{x}) \rightarrow$ walk' $\left.^{\prime}(\mathrm{x})\right)$

- Every $\Rightarrow \lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))$
- \llbracket Every $\rrbracket(A)(B)=1$ iff $A \subseteq B$

Syntactically, determiners are expressions that take a noun and a verb phrase to form a sentence.

Semantically, the interpretation of a determiner can be seen as:

- a function from sets of entities to sets of properties: $\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle\rangle$
- a relation between two sets A and B, denoted by the NP and VP, respectively

Persistence

A determiner D is persistent in M iff: for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$:

- if $D(X, Z)$ and $X \subseteq_{M} Y$, then $D(Y, Z)$

Persistence test: If $\llbracket N_{1} \rrbracket \subseteq_{M} \llbracket N_{2} \rrbracket$, then DET N_{1} VP $\vDash D E T N_{2} V P$

- Some men walked \vDash Some human beings walked
- At least four girls were smoking \vDash At least four women were smoking.

Antipersistence

A determiner D is antipersistent in M iff: for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$:

- if $D(X, Z)$ and $Y \subseteq X$, then $D(Y, Z)$

Antipersistence test: If $\llbracket N 2 \rrbracket \subseteq \llbracket N 1 \rrbracket$, then DET N1 VP \vDash DET N2 VP

- All children walked \vDash All toddlers walked
- No woman was smoking \vDash No girl was smoking
- At most three Englishmen agreed \vDash At most three Londoners agreed.

Persistence and Monotonicity

$$
\begin{aligned}
& \text { Persistence (antipersistence) } \quad \Leftrightarrow \text { upward (downward) monotonicity of } \\
& \text { the first argument. } \\
& \text { left-monotonicity (Tmon and } \downarrow \text { mon) }
\end{aligned}
$$

Upward (downward) monotonicity \Leftrightarrow upward (downward) monotonicity of of noun phrases the second argument of the determiner in the NP.
right-monotonicity (mon \uparrow and monl)

Left and Right Monotonicity of Determiners

$\uparrow m o n \uparrow$ some
\downarrow mon \uparrow all
$\downarrow m o n \downarrow$ no

个mon \downarrow not all

Literature

- L.T.F. Gamut. Logic, Language, and Meaning. Vol 2. Chapter 7.
- Partee, ter Meulen, Wall. Mathematical Methods for Linguists. Chapter 14.
- Jon Barwise \& Robin Cooper. Generalized Quantifiers. Linguistics and Philosophy. 1981.

