Semantic Theory
 Week 4 - Lambda Calculus

Noortje Venhuizen
University of Groningen/Universität des Saarlandes
Summer 2015

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al.,1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "Not smoking ${ }_{\langle e, t\rangle}$ is healthy $y_{\langle\langle e, t\rangle, t\rangle}$ "

Lambda abstraction

λ-abstraction is an operation that takes an expression and "opens" specific argument positions.

Syntactic definition:

$$
\text { If } a \text { is in } W E_{T} \text {, and } x \text { is in } V A R_{\sigma} \text { then } \lambda x(a) \text { is in } W E_{(\sigma, \tau\rangle}
$$

- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda x . \phi$ indicating that the λ-operator takes widest possible scope (over Φ).

Interpretation of Lambda-expressions

If $a \in \mathrm{WE}_{\tau}$ and $v \in V A R_{\sigma}$, then $\llbracket \lambda v a \rrbracket^{\mathrm{M}, \mathrm{g}}$ is that function $\mathrm{f}: \mathrm{D}_{\sigma} \rightarrow \mathrm{D}_{\mathrm{T}}$ such that for all $a \in D_{0}, f(a)=\left[a \rrbracket^{M, g[v / a]}\right.$

If the λ-expression is applied to some argument, we can simplify the interpretation:

- $\llbracket \lambda v a \rrbracket^{\mathrm{M}, \mathrm{g}}(\mathrm{A})=\llbracket a \rrbracket^{\mathrm{M}, g[\mathrm{l} / \mathrm{A}]}$

Example: "Bill is a non-smoker"
$\llbracket \lambda x(\neg S(x))\left(b^{\prime}\right) \rrbracket^{M, 9}=1$
iff $\llbracket \lambda x(\neg S(x)]^{M, 9\left(\left[\mathbb{L} b^{\prime} \mathbb{I}^{M, g}\right)\right.}=1$

iff $\mathbb{[S}(x) \mathbb{I}^{\mathrm{M}, 9\left[\mid\left[\mathbb{I}\left[b^{\prime}\right] \mathrm{M}, 9\right]\right.}=0$

iff $V_{M}(S)\left(V_{M}\left(b^{\prime}\right)\right)=0$

β-Reduction

$\llbracket \lambda v(a)(\beta) \rrbracket^{M, g}=\llbracket a \rrbracket^{M, g\left[v / \llbracket \beta \rrbracket^{M, g}\right]}$
\Rightarrow all (free) occurrences of the λ-variable in a get the interpretation of β as value.

This operation is called β-reduction

- $\lambda v(a)(\beta) \Leftrightarrow[\beta / v] a$
- $[\beta / v] a$ is the result of replacing all free occurrences of v in a with β.

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $[\beta / v] a$ always equivalent?

- $\lambda x\left(\operatorname{drive}^{\prime}(x) \wedge \operatorname{drink}^{\prime}(x)\right)\left(j^{*}\right) \Leftrightarrow \operatorname{drive}^{\prime}\left(j^{*}\right) \wedge \operatorname{drink}^{\prime}\left(\mathrm{j}^{*}\right)$
- $\lambda x\left(\operatorname{drive}^{\prime}(\mathrm{x}) \wedge \operatorname{drink}^{\prime}(\mathrm{x})\right)(\mathrm{y}) \Leftrightarrow \operatorname{drive}^{\prime}(\mathrm{y}) \wedge \operatorname{drink}^{\prime}(\mathrm{y})$
- $\lambda x\left(\forall y\right.$ know $\left.{ }^{\prime}(x)(y)\right)\left(j^{*}\right) \Leftrightarrow \forall y \operatorname{know}\left(j^{*}\right)(y)$
- NOT: $\lambda x\left(\forall y\right.$ know $\left.{ }^{\prime}(x)(y)\right)(y) \Leftrightarrow \forall y \operatorname{know}(y)(y)$

Let v, v' be variables of the same type, a any well-formed expression.

- v is free for v^{\prime} in a iff no free occurrence of v^{\prime} in a is in the scope of a quantifier or a λ-operator that binds v.

Conversion rules

- β-conversion: $\lambda v(a)(\beta) \Leftrightarrow[\beta / v] a$ (if all free variables in β are free for vin a)
- a-conversion: $\quad \lambda v a \Leftrightarrow \lambda w[w / v] a$
(if w is free for v in a)
- η-conversion: $\lambda v(a(v)) \Leftrightarrow a$

β-Reduction Example

Every student works.
(2) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x)):\langle\langle e, t\rangle,\langle\langle e, t\rangle, t\rangle$
(3) student' : $\langle\mathrm{e}, \mathrm{t}\rangle$
(1) $\lambda P \lambda Q \forall x(P(x) \rightarrow Q(x))($ student')

$$
\Rightarrow^{\beta} \lambda Q \forall x\left(\text { student }{ }^{\prime}(x) \rightarrow Q(x)\right):\langle\langle e, t\rangle, t\rangle
$$

(4)/(5) work' : 〈e, t〉
(0) $\lambda Q \forall x\left(\right.$ student $\left.^{\prime}(x) \rightarrow Q(x)\right)\left(\right.$ work' $\left.^{\prime}\right)$
$\Rightarrow{ }^{\beta} \forall x\left(\right.$ student $^{\prime}(x) \rightarrow$ work $\left.^{\prime}(x)\right): t$

Type inferencing: revisited

5. Anakine believes $\langle\langle e, t\rangle,\langle e, t\rangle\rangle$ he will be a Jedik $\langle e, t\rangle$.
$\left(\lambda P_{\langle e, t\rangle} \lambda x_{e}(\operatorname{believes}(P(x))(x))(J)\right)\left(a^{*}\right) \Rightarrow^{\beta} \lambda x(\operatorname{believes}(J(x))(x))\left(a^{*}\right) \Rightarrow^{\beta}$ believes $\left(J\left(a^{*}\right)\right)\left(a^{*}\right)$
6. Obi-Wane expects $\langle\langle e,\langle e, ~ t\rangle\langle e,\langle e, t\rangle\rangle$ to pass $\langle e,\langle e, t\rangle\rangle$.
$\left.\left(\lambda Q_{\langle e,\langle e, ~ t\rangle}\right\rangle x_{e} \lambda y_{e}(\operatorname{expects}(Q(y)(x))(x))(P)\right)\left(o^{*}\right) \Rightarrow \beta^{\beta^{*}} \lambda y \cdot \operatorname{expects}\left(P(y)\left(O^{*}\right)\right)\left(0^{*}\right)$
7. Yodae encouraged $\langle e,\langle\langle e, t\rangle,\langle e, t\rangle\rangle$ Obi-Wane to take $\langle e,\langle e, t\rangle\rangle$ the exame.

$$
\begin{aligned}
& \left.\left(\left(\lambda x_{e} \lambda P_{P}^{*}, t\right\rangle \lambda y_{e}(e n c o u r a g e(x)(P(x))(y))\left(o^{*}\right)\right)\left(\lambda x_{e} \lambda y_{e}(T(x)(y))\left(e^{*}\right)\right)\right)\left(y^{*}\right) \\
& \Rightarrow(\beta, a)^{*} \text { encourage }\left(o^{*}\right)\left(T\left(e^{*}\right)\left(o^{*}\right)\right)\left(y^{*}\right)
\end{aligned}
$$

Background reading material

- Gamut: Logic, Language, and Meaning Vol II - Chapter 4 (minus 4.3)

