Semantic Theory Week 4 – Lambda Calculus

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al., 1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "Not smoking $_{\langle e,t \rangle}$ is healthy $_{\langle \langle e,t \rangle,t \rangle}$ "

Lambda abstraction

 λ -abstraction is an operation that takes an expression and "opens" specific argument positions.

Syntactic definition:

If a is in WE_t, and x is in VAR_{σ} then $\lambda x(\alpha)$ is in WE_(σ, τ)

- The scope of the λ -operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda x.\phi$ indicating that the λ -operator takes widest possible scope (over ϕ).

Interpretation of Lambda-expressions

If $\alpha \in WE_{\tau}$ and $v \in VAR_{\sigma}$, then $[\lambda v \alpha]^{M,g}$ is that function $f : D_{\sigma} \rightarrow D_{\tau}$ such that for all $a \in D_{\sigma}$, $f(a) = [\![\alpha]\!]^{M,g[v/a]}$

If the λ -expression is applied to some argument, we can simplify the interpretation:

• $\llbracket \lambda \lor a \rrbracket^{M,g}(A) = \llbracket a \rrbracket^{M,g[\lor/A]}$

Example: "Bill is a non-smoker"

 $[\![\lambda x(\neg S(x))(b')]\!]^{M,g}=1$

 $\text{iff } \llbracket \lambda x(\neg S(x)) \rrbracket^{M,g}(\llbracket b' \rrbracket^{M,g}) = 1$

 $\text{iff } [\![\neg S(x)]\!]^{M,g[x/\llbracket b']^{M,g]}} = 1$

 $\text{iff } \llbracket S(x) \rrbracket^{M,g[x/\llbracket b']^{M,g]}} = 0$

 $\text{iff } \llbracket S \rrbracket^{M,g[x/\llbracket b']^{M,g]}}(\llbracket x \rrbracket^{M,g[x/\llbracket b']^{M,g]}}) = 0$

 $\text{iff } V_M(S)(V_M(b^{\,\prime}))=0$

β-Reduction

 $\llbracket \lambda v(\alpha)(\beta) \rrbracket^{M,g} = \llbracket \alpha \rrbracket^{M,g[v/\llbracket \beta \rrbracket^{M,g}]}$

 \Rightarrow all (free) occurrences of the λ -variable in α get the interpretation of β as value.

This operation is called β -reduction

- $\lambda v(\alpha)(\beta) \Leftrightarrow [\beta/v]\alpha$
- $[\beta/v]\alpha$ is the result of replacing all free occurrences of v in α with β .

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are $\lambda v(\alpha)(\beta)$ and $[\beta/v]\alpha$ always equivalent?

- $\lambda x(drive'(x) \land drink'(x))(j^*) \Leftrightarrow drive'(j^*) \land drink'(j^*)$
- $\lambda x(drive'(x) \land drink'(x))(y) \Leftrightarrow drive'(y) \land drink'(y)$
- $\lambda x(\forall y \text{ know'}(x)(y))(j^*) \Leftrightarrow \forall y \text{ know}(j^*)(y)$
- NOT: $\lambda x(\forall y \text{ know'}(x)(y))(y) \Leftrightarrow \forall y \text{ know}(y)(y)$

Let v, v' be variables of the same type, α any well-formed expression.

• v is free for v' in a iff no free occurrence of v' in a is in the scope of a quantifier or a λ -operator that binds v.

Conversion rules

- β -conversion: $\lambda v(\alpha)(\beta) \Leftrightarrow [\beta/v]\alpha$ (if all free variables in β are free for v in α)
- a-conversion: $\lambda va \Leftrightarrow \lambda w[w/v]a$ (if w is free for v in a)
- η -conversion: $\lambda v(\alpha(v)) \Leftrightarrow \alpha$

β-Reduction Example

Every student works.

- (2) $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) : \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle$
- (3) student' : $\langle e, t \rangle$
- (1) $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) (student')$ $\Rightarrow^{\beta} \lambda Q \forall x (student'(x) \rightarrow Q(x)) : \langle \langle e, t \rangle, t \rangle$

(4)/(5) work' : $\langle e, t \rangle$

 $\begin{array}{ll} \text{(0)} & \lambda Q \forall x(\text{student'}(x) \rightarrow Q(x))(\text{work'}) \\ \Rightarrow^{\beta} \forall x(\text{student'}(x) \rightarrow \text{work'}(x)) : t \end{array}$

Type inferencing: revisited

5. Anakine <u>believes</u> $\langle\langle e, t \rangle, \langle e, t \rangle\rangle$ he will be a Jedi $\langle e, t \rangle$.

 $(\lambda P_{\langle e, t \rangle} \lambda x_e(believes(P(x))(x))(J))(a^*) \Rightarrow^{\beta} \lambda x(believes(J(x))(x))(a^*) \Rightarrow^{\beta} believes(J(a^*))(a^*)$

7. Obi-Wan_e <u>expects</u> $\langle\langle e, \langle e, t \rangle \rangle \langle e, \langle e, t \rangle \rangle$ to pass $\langle e, \langle e, t \rangle \rangle$.

 $(\lambda Q_{\langle e, \langle e, t \rangle} \lambda x_e \lambda y_e (expects(Q(y)(x))(x))(P))(o^*) \Rightarrow^{\beta^*} \lambda y.expects(P(y)(o^*))(o^*)$

8. Yoda_e <u>encouraged</u> $\langle e, \langle \langle e, t \rangle, \langle e, t \rangle \rangle$ Obi-Wan_e to take $\langle e, \langle e, t \rangle \rangle$ the exam_e.

 $\begin{array}{l} ((\lambda x_e \lambda P_{\langle e, t \rangle} \lambda y_e(encourage(x)(P(x))(y))(o^*))(\lambda x_e \lambda y_e(T(x)(y))(e^*)))(y^*) \\ \Rightarrow^{(\beta, \alpha)^*} encourage(o^*)(T(e^*)(o^*))(y^*) \end{array}$

Background reading material

Gamut: Logic, Language, and Meaning Vol II
— Chapter 4 (minus 4.3)