Semantic Theory Week 3- Some more type theory

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Exercises are due on: Tuesday, May 5th, 10 AM (before class)

Semantic Theory 2015: Exercise sheet 1

Exercise 1

Translate the following sentences into first-order predicate logic. You can freely introduce predicates, but try to retain as much of the structure as possible. Also provide the key to the translation.
a. Geoffrey is young and mean, but still a king.
b. Every Lannister pays his debt.
c. If one family rules the throne, all other families will fight for it.
d. A dire wolf is not a pet
e. If someone is a Stark, (s)he is brave
f. Fire-breathing dragons only obey Khaleesi.
g. Although Jaime lost a hand, he wins every fight unless he loses his other hand.

Exercise 2

Consider the following model $M_{1}=\left\langle U_{1}, V_{1}\right\rangle$, with $U_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ The interpretation function V_{1} is defined as follows:

- $V_{1}(j)=e_{1}$
- $V_{1}(m)=e_{4}$
- $V_{1}(b)=e_{6}$
- $V_{1}(A)=\left\{e_{2}, e_{3}\right\}$
- $V_{1}(B)=\left\{e_{2}, e_{4}, e_{5}\right\}$
- $V_{1}(C)=\left\{e_{2}, e_{4}, e_{5}, e_{6}\right\}$

- $V_{1}(R)=\left\{\left\langle e_{2}, e_{3}\right\rangle,\left\langle e_{3}, e_{2}\right\rangle\left\langle e_{4}, e_{1}\right\rangle,\left\langle e_{4}, e_{2}\right\rangle,\left\langle e_{5}, e_{6}\right\rangle\right\}$

Let the assignment function g_{1} be defined as follows:
$g_{1}\left(x_{1}\right)=e_{4}, g_{1}\left(x_{2}\right)=e_{2}, g_{1}\left(x_{3}\right)=e_{3}$ and for all $n \geq 4: g_{1}\left(x_{n}\right)=e_{5}$.
2.1 Evaluate the following formulas in model M_{1}, with respect to assignment function g_{1}, showing the crucial steps.
a. $\llbracket R\left(x_{1}, x_{2}\right) \wedge R\left(x_{4}, b\right) \rrbracket^{M_{1}, g_{1}}=1$
b. $\llbracket \exists x_{2}\left(B\left(x_{2}\right) \wedge R\left(x_{2}, j\right)\right) \rrbracket^{M_{1}, g_{1}}=1$
c. $\llbracket \forall x_{1} \exists x_{4}\left(R\left(x_{4}, x_{1}\right) \vee R\left(x_{1}, x_{4}\right)\right) \rrbracket^{M_{1}, g_{1}}=1$
d. $\llbracket \forall x_{1}\left(B\left(x_{1}\right) \rightarrow\left(A\left(x_{1}\right) \vee \neg \exists x_{3}\left(R\left(x_{3}, x_{1}\right)\right)\right)\right) \rrbracket^{M_{1}, g_{1}}=1$
2.2 Provide the full definition of a model M_{2} and assignment function g_{2} that satisfy the following formulas (NB: c_{1} and c_{2} are constants):

- $R\left(x_{1}, x_{2}\right)$
- $\forall x_{1}\left(A\left(x_{1}\right) \vee \exists x_{2}\left(R\left(x_{1}, x_{2}\right)\right)\right)$
- $\neg \exists x_{1}\left(R\left(x_{1}, c_{1}\right)\right)$
- $\exists x_{3}\left(A\left(x_{3}\right) \wedge \neg \exists x_{2}\left(A\left(x_{2}\right) \wedge R\left(x_{2}, x_{3}\right)\right)\right)$
- $\forall x_{2}\left(B\left(x_{2}\right) \rightarrow\left(A\left(x_{2}\right) \vee R\left(x_{2}, c_{2}\right)\right)\right)$
2.3 (Bonus) Can you think of a sensible (or: funny) interpretation for the predicates A, B and R, and the constants c_{1} and c_{2} in your model of the previous exercise? Given this interpretation, what is the translation of the formulas given in exercise 2.2?

Type Theory: Recap

- Basic Types: e, t
- Complex Types: $\langle\boldsymbol{\sigma}, \mathbf{\tau}\rangle$, for any two types $\boldsymbol{\sigma}$ and $\mathbf{\tau}$
- Function application: $\langle\mathbf{a}, \boldsymbol{\beta}\rangle(\mathbf{a}) \mapsto \boldsymbol{\beta}$
- Characteristic functions: functions with a range of $\{0,1\}$
- First-order one-place predicates (Px) are functions of type 〈e, t> (i.e., characteristic functions describing the set of entities that have the property P)

Type Theory - Syntax

For every type τ, the set of well-formed expressions WE_{T} is defined as follows:
(i) $\mathrm{CON}_{T} \subseteq \mathrm{WE}_{T}$ and $\mathrm{VAR}_{T} \subseteq \mathrm{WE}_{T}$;
(ii) If $a \in W E_{\langle\sigma, \tau\rangle}$, and $\beta \in W E_{\sigma}$, then $a(\beta) \in W E_{\tau}$; (function application)
(iii) If A, B are in $W E_{t}$, then $\neg A,(A \wedge B),(A \vee B),(A \rightarrow B),(A \leftrightarrow B)$ are in $W E_{t}$;
(iv) If A is in $W E_{t}$ and x is a variable of arbitrary type, then $\forall x A$ and $\exists x A$ are in W_{E};
(v) If a, β are well-formed expressions of the same type, then $a=\beta \in \mathrm{WE}_{t}$;

Type inferencing: examples

1. Yodae is faster than Palpatinee.
2. Yodae is much faster than Palpatine e_{e}.
3. Wookiee $\langle e, t\rangle$ is a hairier species than Ewok $\langle e, t\rangle$.
4. [Han Solo]e fights because [the Dark Side]e is rising.
5. Anakine believes he will be a Yedi.
6. Obi-Wane told [Qui-Gon Jinn]e that he will take [the Yedi-exam]e.
7. Obi-Wane expects to pass.
8. Yodae encouraged Obi-Wane to take the exam.

Type Theory - Interpretation

For every type $\mathbf{\tau}$, we can define a domain of interpretation $\mathbf{D}_{\boldsymbol{\tau}}$
$\left.D_{e}=U ; D_{t}=\{0,1\} ; D_{(e, t)}=\{0,1\}\right]^{D_{e}}$ (that is, the set of functions f: $\left.D_{e} \rightarrow D_{t}\right)$; etc.

Type theoretic expressions are interpreted relative to a model structure $\mathbf{M}=\langle\mathbf{U}, \mathbf{V}\rangle$, and assignment function \mathbf{g}, where:

- \mathbf{U} is a non-empty domain of individuals
- \mathbf{V} is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{C O N} \mathbf{T}_{\boldsymbol{\tau}}$ an element of $\boldsymbol{D}_{\boldsymbol{\tau}}$ (where $\boldsymbol{\tau}$ is an arbitrary type)
- \mathbf{g} assigns to every typed variable $\mathbf{v} \in \mathbf{V A R}_{\boldsymbol{\tau}}$ an element of $\mathbf{D}_{\boldsymbol{\tau}}$

Interpretation in Type Theory

Consider the following Model M :
$D_{e}=U_{M}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$
$\mathrm{V}_{\mathrm{M}}\left(\right.$ Anakine $\left._{e}\right)=\mathrm{V}_{\mathrm{M}}\left(\right.$ Darth $\left.^{\text {Vader }}{ }_{\mathrm{e}}\right)=\mathrm{e}_{2}$
$V_{M}\left(\right.$ Yedi $\left._{\langle<, t, t}\right)=\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] V_{M}\left(\right.$ Dark_Sider $\langle\langle,, t\rangle)=\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]$

$V_{M}($ Powerful $\langle\langle e, t\rangle\langle e, t\rangle\rangle)=\left[\begin{array}{l}{\left[\begin{array}{l}e_{1} \rightarrow 1 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 1 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right] \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 1 \\ e_{5} \rightarrow 0\end{array}\right]} \\ {\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right] \rightarrow\left[\begin{array}{l}e_{1} \rightarrow 0 \\ e_{2} \rightarrow 1 \\ e_{3} \rightarrow 0 \\ e_{4} \rightarrow 0 \\ e_{5} \rightarrow 1\end{array}\right]}\end{array}\right]$
NB: Powerful $X_{\langle e, t\rangle} \vDash X_{\langle e, t\rangle}$

Adjective classes \& Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player \vDash Bill is a piano player
- Bill is a blond piano player \vDash Bill is blond
- Bill is a former professor \vDash Bill isn't a professor

These entailments do not hold in type theory. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes \& Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- $\llbracket \operatorname{poor} N \rrbracket \subseteq \llbracket N \rrbracket$
- Meaning postlate: $\forall G \forall x(\operatorname{poor}(\mathrm{G})(x) \rightarrow G(x))$

Intersective adjectives ("blond")

- \llbracket blond $N \rrbracket=\llbracket$ blond $\rrbracket \cap \llbracket N \rrbracket$
- Meaning postlate: $\forall G \forall x(b l o n d(G)(x) \rightarrow(b l o n d *(x) \wedge G(x))$
- NB: blond $\in \mathrm{WE}_{\langle\langle e, t\rangle,\langle e, t\rangle\rangle} \neq$ blond $^{*} \in \mathrm{WE}_{\langle e, t\rangle}$

Privative adjectives ("former")

- 【former N】 $\mathbb{I} \mathbb{N} \mathbb{N}=\varnothing$
- Meaning postlate: $\forall G \forall x($ former $(G)(x) \rightarrow \neg G(x))$

Background reading material

- Gamut: Logic, Language, and Meaning Vol II - Chapter 4 (minus 4.3)

