Semantic Theory Week 3– Some more type theory

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Exercises are due on: Tuesday, May 5th, 10 AM (before class)

Semantic Theory 2015: Exercise sheet 1

Exercise 1

Translate the following sentences into first-order predicate logic. You can freely introduce predicates, but try to retain as much of the structure as possible. Also provide the key to the translation.

- a. Geoffrey is young and mean, but still a king.
- b. Every Lannister pays his debt.
- c. If one family rules the throne, all other families will fight for it.
- d. A dire wolf is not a pet.
- e. If someone is a Stark, (s)he is brave.
- f. Fire-breathing dragons only obey Khaleesi.
- g. Although Jaime lost a hand, he wins every fight unless he loses his other hand.

Exercise 2

Consider the following model $M_1 = \langle U_1, V_1 \rangle$, with $U_1 = \{e_1, e_2, e_3, e_4, e_5, e_6\}$. The interpretation function V_1 is

M1:

 e_1

defined as follows:

• $V_1(j) = e_1$

•
$$V_1(m) =$$

•
$$V_1(b) = e_6$$

- $V_1(A) = \{e_2, e_3\}$
- $V_1(B) = \{e_2, e_4, e_5\}$

 e_4

- $V_1(C) = \{e_2, e_4, e_5, e_6\}$
- $V_1(R) = \{ \langle e_2, e_3 \rangle, \langle e_3, e_2 \rangle \langle e_4, e_1 \rangle, \langle e_4, e_2 \rangle, \langle e_5, e_6 \rangle \}$

Let the assignment function g_1 be defined as follows: $g_1(x_1) = e_4, g_1(x_2) = e_2, g_1(x_3) = e_3$ and for all $n \ge 4$: $g_1(x_n) = e_5$. **2.1** Evaluate the following formulas in model M_1 , with respect to assignment function g_1 , showing the crucial steps.

- a. $[\![R(x_1, x_2) \land R(x_4, b)]\!]^{M_1, g_1} = 1$
- b. $[\exists x_2(B(x_2) \land R(x_2, j))]^{M_1, g_1} = 1$
- c. $[\forall x_1 \exists x_4 (R(x_4, x_1) \lor R(x_1, x_4))]^{M_1, g_1} = 1$
- d. $[\forall x_1(B(x_1) \to (A(x_1) \lor \neg \exists x_3(R(x_3, x_1))))]^{M_1, g_1} = 1$

2.2 Provide the full definition of a model M_2 and assignment function g_2 that satisfy the following formulas (NB: c_1 and c_2 are constants):

- $R(x_1, x_2)$
- $\forall x_1(A(x_1) \lor \exists x_2(R(x_1, x_2)))$
- $\neg \exists x_1(R(x_1,c_1))$
- $\exists x_3(A(x_3) \land \neg \exists x_2(A(x_2) \land R(x_2, x_3)))$
- $\forall x_2(B(x_2) \rightarrow (A(x_2) \lor R(x_2, c_2)))$

2.3 (Bonus) Can you think of a sensible (or: funny) interpretation for the predicates A, B and R, and the constants c_1 and c_2 in your model of the previous exercise? Given this interpretation, what is the translation of the formulas given in exercise 2.2?

Type Theory: Recap

- Basic Types: **e**, **t**
- Complex Types: $\langle \sigma, \tau \rangle$, for any two types σ and τ
- Function application: $\langle \mathbf{a}, \mathbf{\beta} \rangle (\mathbf{a}) \mapsto \mathbf{\beta}$
- Characteristic functions: functions with a *range* of {0,1}
- First-order one-place predicates (Px) are *functions* of type (e, t) (i.e., characteristic functions describing the set of entities that have the property P)

Type Theory — Syntax

For every type τ , the set of well-formed expressions WE_{τ} is defined as follows:

- (i) $CON_{\tau} \subseteq WE_{\tau}$ and $VAR_{\tau} \subseteq WE_{\tau}$;
- (ii) If $\alpha \in WE_{\langle \sigma, \tau \rangle}$, and $\beta \in WE_{\sigma}$, then $\alpha(\beta) \in WE_{\tau}$; (function application)
- (iii) If A, B are in WE_t, then \neg A, (A \land B), (A \lor B), (A \rightarrow B), (A \leftrightarrow B) are in WE_t;
- (iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in WEt;
- (v) If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;

Type inferencing: examples

- 1. Yoda_e is <u>faster than</u> Palpatine_e.
- 2. Yoda_e is <u>much</u> faster than Palpatine_e.
- 3. Wookiee_(e,t) is a <u>hairier</u> species than $Ewok_{(e,t)}$.
- 4. [Han Solo]_e fights <u>because</u> [the Dark Side]_e is rising.
- 5. Anakine <u>believes</u> he will be a Yedi.
- 6. Obi-Wane told [Qui-Gon Jinn]e that he will take [the Yedi-exam]e.
- 7. Obi-Wane expects to pass.
- 8. Yoda_e encouraged Obi-Wan_e to take the exam.

Type Theory — Interpretation

For every type $\mathbf{\tau}$, we can define a domain of interpretation $\mathbf{D}_{\mathbf{\tau}}$

 $D_e = U$; $D_t = \{0,1\}$; $D_{(e,t)} = \{0,1\}^{D_e}$ (that is, the set of functions f: $D_e \rightarrow D_t$); etc.

Type theoretic expressions are interpreted relative to a model structure $\mathbf{M} = \langle \mathbf{U}, \mathbf{V} \rangle$, and assignment function **g**, where:

- **U** is a non-empty domain of individuals
- **V** is an interpretation function, which assigns to every $\mathbf{a} \in \mathbf{CON}_{\tau}$ an element of \mathbf{D}_{τ} (where τ is an arbitrary type)
- g assigns to every typed variable $v \in VAR_\tau$ an element of D_τ

Interpretation in Type Theory

Adjective classes & Meaning postulates

Some valid inferences in natural language:

- Bill is a poor piano player \models Bill is a piano player
- Bill is a blond piano player \models Bill is blond
- Bill is a former professor \models Bill isn't a professor

These entailments do not hold in type theory. Why?

Meaning postulates: restrictions on models which constrain the possible meaning of certain words

Adjective classes & Meaning postulates (cont.)

Restrictive or Subsective adjectives ("poor")

- [[poor N]] ⊆ [[N]]
- Meaning postlate: $\forall G \forall x (poor(G)(x) \rightarrow G(x))$

Intersective adjectives ("blond")

- \llbracket blond N \rrbracket = \llbracket blond $\rrbracket \cap \llbracket$ N \rrbracket
- Meaning postlate: $\forall G \forall x (blond(G)(x) \rightarrow (blond^*(x) \land G(x)))$
- NB: blond $\in WE_{\langle \langle e, t \rangle, \langle e, t \rangle \rangle} \neq blond^* \in WE_{\langle e, t \rangle}$

Privative adjectives ("former")

- Meaning postlate: $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$

Background reading material

Gamut: Logic, Language, and Meaning Vol II
— Chapter 4 (minus 4.3)