
Semantic Theory 
Lecture 3 – Type Theory

Noortje Venhuizen 

University of Groningen/Universität des Saarlandes 

Summer 2015

1



First-order logic

First-order logic talks about: 

• Individual objects  

• Properties of and relations between individual objects 

• Generalization across individual objects (quantification) 
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Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be 
expressed by basic natural language expressions:  

Jumbo is a small elephant. 	 	 	 	 (Predicate modifiers) 

Blond is a hair color.		 	 	 	 	 (Second-order predicates) 

Yesterday, it rained.	 	 	 	 	 	 (Non-logical sentence operators) 

Bill and John have the same hair color. 	 (Higher-order quantification)

3

What logical system can we use to capture this diversity?
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Q: Does the 
barber shave 
himself?

Bertrand 
Russell



Russell's paradox
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What if we extend the FOL interpretation of predicates, and interpret higher-
order predicates as sets of sets of properties?


For every predicate P, we can define a set {x | P(x)} containing all and only those 
entities for which P holds.


Then we can define a set S = {x | x ∉ x} representing the set of all entities that 
are not members of itself.


Q: does S belong to itself?


… we need a more restricted way of talking about 
 properties and relations between properties!



Type Theory

Basic types:  

• e – the type of individual terms (“entities”) 


• t – the type of formulas (“truth-values”) 
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Complex types:  

•  If σ, τ are types, then ⟨σ, τ⟩ is a type  
(representing a functor expression that takes a σ type expression as 
argument and returns a type τ expression; sometimes written as: (σ→ τ) ).



Types & Function Application

Types of first-order expressions:  

• Individual constants (John, Saarbrücken) : e  

• One-place predicates (sleep, walk): ⟨e, t⟩  

• Two-place predicates (read, admire): ⟨e, ⟨e, t⟩⟩  

• Three-place predicates (give, introduce): ⟨e, ⟨e, ⟨e, t⟩⟩⟩  
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Function application: Combining a functor of complex type with an appropriate 
argument, resulting in an expression of a less complex type: ⟨ɑ, β⟩(ɑ) ↦ β 

• sleep’(john’) :: ⟨e, t⟩(e) ⟹ t 

• admire’(john’) :: ⟨e,⟨e, t⟩⟩(e) ⟹ ⟨e, t⟩



More examples of types

Types of higher-order expressions:  

• Predicate modifiers (expensive, poor): ⟨⟨e, t⟩, ⟨e, t⟩⟩  

• Second-order predicates (hair colour): ⟨⟨e, t⟩, t⟩ 

• Sentence operators (yesterday, possibly, unfortunately): ⟨t, t⟩  

• Degree particles (very, too): ⟨⟨⟨e, t⟩, ⟨e, t⟩⟩, ⟨⟨e, t⟩, ⟨e, t⟩⟩⟩  
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Tip: If σ, τ are basic types, ⟨σ, τ⟩ can be abbreviated as στ. Thus, the type of 
predicate modifiers and second-order predicates can be more conveniently written 
as ⟨et, et⟩ and ⟨et, t⟩, respectively. 



Type Theory — Vocabulary 

Non-logical constants:  

• For every type τ a (possibly empty) set of non-logical constants CONτ 
(pairwise disjoint)  

Variables:  

• For every type τ an infinite set of variables VARτ (pairwise disjoint)  

Logical symbols: ∀, ∃, ¬, ∧, ∨, →, ↔, =  

Brackets: (, ) 
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Type Theory — Syntax

For every type τ, the set of well-formed expressions WEτ is defined as follows: 

(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ; 

(ii) If α ∈ WE⟨σ, τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ;	 	  
(function application) 

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B) are in WEt; 

(iv) If A is in WEt and x is a variable of arbitrary type, then ∀xA and ∃xA are in 
WEt; 

(v) If α, β are well-formed expressions of the same type, then α = β ∈ WEt; 

(vi) Nothing else is a well-formed formula.
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(ii) If α ∈ WE⟨σ,τ⟩, and β ∈ WEσ, then α(β) ∈ WEτ 

“John is a talented piano player” 

	 	 	 	 	 	

Function application
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	 	 	 piano_player		 	 	 talented  
 
john	 	 	 	 	 talented(piano_player) 

	 	 talented(piano_player)(john)

:: ⟨e, t⟩ :: ⟨⟨e, t⟩, ⟨e, t⟩⟩

 :: e :: ⟨e, t⟩

:: t



Higher-order predicates

Higher-order quantification: 

• Bill has the same hair colour as John  

	 	 ∃C (hair_colour(C) ∧ C(bill) ∧ C(john))  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⟨⟨e, t⟩,t⟩ ⟨e, t⟩ e

Higher-order equality: 

• For p, q ∈ CONt, “p=q” expresses material equivalence: “p ↔ q”. 

• For F, G ∈ CON⟨e, t⟩, “F=G” expresses co-extensionality: “∀x(Fx↔Gx)” 

• For any formula φ of type t, φ=(x=x) is a representation of “φ is true”. 



Type Theory — Semantics [1]

Let U be a non-empty set of entities. 

The domain of possible denotations Dτ for every type τ is given by: 

• De = U 

• Dt = {0,1} 

• D⟨σ,τ⟩ is the set of all functions from Dσ to Dτ 

Expressions of type τ denote elements of Dτ 
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Characteristic functions

Many natural language expressions have a type ⟨σ, t⟩ 

Expressions with type ⟨σ, t⟩ are functions mapping elements of type σ 
to truth values: {0,1} 

Such functions with a range of {0,1} are called characteristic functions, 
because they uniquely specify a subset of their domain Dσ 
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The characteristic function of set M in a domain U is the function  
FM: U→{0,1} such that for all a ∈ U, FM(a) = 1 iff a ∈ M. 

NB: For first-order predicates, the FOL representation (using sets) and the type-theoretic representation 
(using characteristic functions) are equivalent.



Interpretation with characteristic functions: 
example

For M = ⟨U, V⟩, let U consist of the persons John, Bill, Mary, Paul, and Sally. For 
selected types, we have the following sets of possible denotations: 
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• Dt = {0,1}

• De = U = {j, b, m, p, s}
j →1 
b→0 
m→1 
p→0 
s→1

j →1 
b→1 
m→0 
p→1 
s→1

j →0 
b→1 
m→1 
p→0 
s→0

• D<e,t> ={		   ,	 	 ,	     , …}

Alternative set notation: D<e,t> = {{j,m,s},{j,b,p,s},{b,m},…} 



Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple M = ⟨U, V⟩ 
such that:  

• U is a non-empty domain of individuals  

• V is an interpretation function, which assigns to every α ∈ CONτ 
an element of Dτ (where τ is an arbitrary type) 

The variable assignment function g assigns to every typed variable  
v ∈ VARτ an element of Dτ 
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Type Theory — Interpretation

Interpretation with respect to a model structure M = ⟨U, V⟩ and a variable assignment g: 

• ⟦α⟧
M,g 		 = V(α)	  if α is a constant 

⟦α⟧
M,g 		 = g(α)	  if α is a variable 

• ⟦α(β)⟧M,g 	 = ⟦α⟧
M,g(⟦β⟧

M,g) 

• ⟦¬φ⟧
M,g 	 = 1 	iff 	 ⟦φ⟧

M,g = 0 
⟦φ ∧ ψ⟧

M,g 	= 1 	iff 	 ⟦φ⟧
M,g = 1 and ⟦ψ⟧

M,g = 1  
⟦φ ∨ ψ⟧

M,g 	= 1 	iff 	 ⟦φ⟧
M,g = 1 or ⟦ψ⟧

M,g = 1 
… 

• ⟦α = β⟧
M,g 	 = 1 	iff 	 ⟦α⟧

M,g = ⟦β⟧
M,g 

• ⟦∃vφ⟧
M,g 	 = 1 	iff 	 there is a d ∈ Dτ such that ⟦φ⟧

M,g[v/d] = 1 
⟦∀vφ⟧

M,g	 = 1 	iff 	 for all d ∈ Dτ : ⟦φ⟧
M,g[v/d] = 1 

(where v is a variable of type τ)
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Interpretation: Example

John is a talented piano player  

	 	 	 	 	 	 piano_player :: ⟨e, t⟩		 	 talented:: ⟨⟨e, t⟩, ⟨e, t⟩⟩  
 
	 	 	 john :: e		 	 	 talented(piano_player) :: ⟨e, t⟩ 
 
	 	 	 	 	 	 talented(piano_player)(john) :: t 
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⟦talented(piano_player)(john)⟧M,g  

= ⟦talented(piano_player)⟧M,g (⟦john⟧M,g)  

= ⟦talented⟧M,g(⟦piano_player⟧M,g) (⟦john⟧M,g)  

= VM(talented)(VM(piano_player))(VM(john))



Interpretation: Example (cont.)

⟦John is a talented piano player⟧M,g = VM(talented)(VM(piano_player))(VM(john)) 

VM(john) = j (∈ De) 

VM(piano_player) =	 	    (∈ D⟨e,t⟩) 

VM(talented) =	 	 	 	 	 (∈ D⟨⟨e,t⟩⟨e,t⟩⟩)	 	
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j →1 
b→0 
m→1 
p→0 
s→1

j →1 
b→0 
m→1 
p→0 
s→1

j →1 
b→0 
m→0 
p→0 
s→1

j →0 
b→0 
m→1 
p→1 
s→1

j →0 
b→0 
m→0 
p→0 
s→1

…

→

→

⇔ [      ]{j,m,s} → {j,s} 
{m,p,s}→ {s} 

… 

⇔ {j,m,s}

VM(talented)(VM(piano_player))

VM(talented)(VM(piano_player))(VM(john))


