Semantic Theory
Lecture 3 — Type Theory

Noortje Venhuizen
University of Groningen/Universitat des Saarlandes

Summer 2015

First-order logic

First-order logic talks about:
- Individual objects
- Properties of and relations between individual objects

- Generalization across individual objects (quantification)

Limitations of first-order logic

FOL is not expressive enough to capture all meanings that can be
expressed by basic natural language expressions:

Jumbo is a small elephant. (Predicate modifiers)
Blond is a hair color. (Second-order predicates)
Yesterday, it rained. (Non-logical sentence operators)

Bill and John have the same hair color. (Higher-order quantification)

What logical system can we use to capture this diversity?

Bertrand
Russell

LOGICOMIX
¢

AN EPIC SEARCH FOR TRUTH

ADIMITRION

n wy life to date, | have written clozens
of books and hunclreds of orticks.. ['ve
given thousancls
O‘F luf\xw_

wFor a confoundied paradox
iscovered that veor.

But | suspect wy
nowe will survive,
if it coes at all...

with o strict law
on ’m;ﬂg <

But iﬂs not obli
To shove you ’3‘#9,?_' Y

Q: Does the

barber shave
himself?

.
\\\\\

In fact, the low d
Hm m don.+
Hhemsehves ore swm
by the borber.

Russell's paradox

What if we extend the FOL interpretation of predicates, and interpret higher-
order predicates as sets of sets of properties?

For every predicate P, we can define a set {x | P(x)} containing all and only those
entities for which P holds.

Then we can define a set S = {x | x ¢ x} representing the set of all entities that
are not members of itself.

Q: does S belong to itself?

... We need a more restricted way of talking about
properties and relations between properties!

Type Theory

Basic types:
- e —the type of individual terms (“entities”)

-t - the type of formulas (“truth-values”)

Complex types:

If o, T are types, then (g, T) is a type
(representing a functor expression that takes a ¢ type expression as
argument and returns a type T expression; sometimes written as: (06— 1)).

Types & Function Application

Types of first-order expressions:

- Individual constants (John, Saarbrucken) : e

- One-place predicates (sleep, walk): <e, t)

- Two-place predicates (read, admire): <e, <e, t))

- Three-place predicates (give, introduce): <e, <e, <e, t)))

Function application: Combining a functor of complex type with an appropriate
argument, resulting in an expression of a less complex type: <a, 3>(a) » 3

- sleep’(john’) :: (e, tH(e) = t

- admire’(john’) :: <e,<e, tHH(e) = (e, 1)

More examples of types

Types of higher-order expressions:

- Predicate modifiers (expensive, poor): e, 1), <e, t)

- Second-order predicates (hair colour): e, 1), t)

- Sentence operators (yesterday, possibly, unfortunately): <, t)

- Degree particles (very, 100): (e, 1), (e, 1)), e, 1), (e, H))

Tip: If 0, T are basic types, <o, T) can be abbreviated as ot. Thus, the type of
predicate modifiers and second-order predicates can lbe more conveniently written
as <et, et) and (et, t), respectively.

Type Theory — Vocabulary

Non-logical constants:

- For every type T a (possibly empty) set of non-logical constants CON«
(pairwise disjoint)

Variables:

- For every type T an infinite set of variables VAR (pairwise disjoint)
Logical symbols: v, 3, =, A, v, =, <, =

Brackets: (,)

Type Theory — Syntax

For every type T, the set of well-formed expressions WE: is defined as follows:

() CON: € WEr and VARr ¢ WE;

(i) If ae WEw, v, and 3 € WEg, then a(3) € WEg;
(function application)

(i) If A, B are in WEy, then -A, (A A B), (A v B), (A = B), (A « B) are in WE;;

(iv) If Ais in WE: and x is a variable of arbitrary type, then vxA and 3axA are in
WEt;

(v) If a, B are well-formed expressions of the same type, then a = 3 € WEg;

(Vi) Nothing else is a well-formed formula.

10

Function application

(i) Ifae WEwn, and b € WEs, then a(b) e WE:

“John is a talented piano player”

piano_player :: (e, t) talented :: (e,), <e, 1))

john:: e talented(piano_player) :: (e, t)

talented(piano_player)(john) :: t

11

Higher-order predicates

Higher-order quantification:

- Bill has the same hair colour as John

3C (hair_colour(C) A C(bill) A C(john))
X N T .
(e, 1,0 €, b
Higher-order equality:
- For p, g € CONt, “p=qg” expresses material equivalence: “p < q”.

- For F, G € CONg, v, “F=G” expresses co-extensionality: “vx(Fx«Gx)”

- For any formula ¢ of type t, d=(x=x) is a representation of “¢ is true”.

12

Type Theory — Semantics [1]

Let U be a non-empty set of entities.

The domain of possible denotations D+ for every type T is given by:
* De=U
- Dt ={0,1}
- Do is the set of all functions from Dg to D+

Expressions of type T denote elements of D+

13

Characteristic functions

Many natural language expressions have a type <o, t)

Expressions with type <o, t) are functions mapping elements of type o
to truth values: {0,1}

Such functions with a range of {0,1} are called characteristic functions,
because they uniquely specify a subset of their domain Dg

The characteristic function of set M in a domain U is the function

Fm: U—{0,1} such that for alla e U, Fu(@) = 1 iff a € M.

NB: For first-order predicates, the FOL representation (using sets) and the type-theoretic representation
(using characteristic functions) are equivalent.

14

Interpretation with characteristic functions:
example

For M = <(U, V), let U consist of the persons John, Bill, Mary, Paul, and Sally. For
selected types, we have the following sets of possible denotations:

- Dt ={0,1}
- De=U={, b,m, p, s}
j~>1] [1-1] [1-0
b—0 b—1| | b—1
¢ D<e,t> 2{ m—11{,|m—=0|, iIm—1 |, }
p—=0| | p=1| | PO
s—1 s—1 s—0

Alternative set notation: Dt = {{j,m,s},{j,b,p,s},{b,m},...}

15

Type Theory — Semantics [2]

A model structure for a type theoretic language is a tuple M = (U, V)
such that:

U is a non-empty domain of individuals

-V is an interpretation function, which assigns to every a € CON«
an element of D¢ (where T is an arbitrary type)

The variable assignment function g assigns to every typed variable
v € VAR an element of D¢

16

Type Theory — Interpretation

Interpretation with respect to a model structure M = <U, V) and a variable assignment g:

y [[Q]]x’g =V(a) if ais a constant
[a] >’ =g(a) ifaisavariable
[a@®1 ° =[al “IR1)
101 C = 1 it 193"
[P A L|)]] iff [[cp]] = 1 and [[Lk}] 1
[[ORY LI)]] iff [[cb]] =1or V]

- [[a=B]1M’9 =1 iff [a] P =1R] "

. [[EIVCI)]] =1 iff thereisade Dy such that [[cp]] A _

ol =1 iff forallde D, : o] 0 =1
(where v is a variable of type 1)

17

Interpretation: Example

John Is a talented piano player

piano_player :: (e, t) talented:: {<e,), <e, t))

john:: e talented(piano_player) :: (e, t)

talented(piano_player)(john) :: t

[talented(piano_player)(john)]™-9

= [talented(piano_player)]™¢ ([john]™9)

= [talentedM9([piano_player]™9) ([john]™9)
= Vu(talented)(Vm(piano_player))(Vm(john))

18

Interpretation: Example (cont.)

[John is a talented piano player]V9 = Vm(talented)(Vm(piano_player))(Vm(john))

Vm(piano_playe

{,m,s} = {J,S}}

Vu(talented) ={ : Deepest) = {{m’p’?}._’ .

| \, Vum(talented)(Vu(piano_player))

| s s—1 Vu(talented)(Vm(piano_player))(Vm(john))

19

