Semantic Theory Lecture 2 – Predicate Logic

Noortje Venhuizen

University of Groningen/Universität des Saarlandes

Summer 2015

Part I: Sentence semantics

Sentence meaning

Truth-conditional semantics:

to know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

Indirect interpretation:

- 1. Translate sentences into logical formulas: Every student works $\mapsto \forall x(student'(x) \rightarrow work'(x))$
- 2. Interpret these formulas in a logical model: $[∀x(student'(x) → work'(x))]^{M,g} = 1$ iff V_M(student') ⊆ V_M(work')

Step 1: Translation

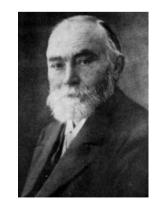
Limits of propositional logic: propositions with internal structure

Every man is mortal.

Socrates is a man.

Therefore, Socrates is mortal.

Solution: first-order predicate logic predicates are expressions that contain *arguments* (that can be quantified over)



Gottlob Frege

Predicate Logic: Vocabulary

Non-logical expressions:

Individual constants: CON

n-place relation constants: PREDⁿ, for all $n \ge 0$

Infinite set of individual variables: VAR

Logical connectives: \land , \lor , \neg , \rightarrow , \leftrightarrow , \forall , \exists

Brackets: (,)

Predicate Logic: Syntax

Terms: TERM = VAR \cup CON

Atomic formulas:

- $\label{eq:relation} \bullet \quad R(t_1,\ldots,\,t_n) \qquad \text{for } R \in PRED^n \text{ and } t_1,\,\ldots,\,t_n \in TERM$
- $\label{eq:t1} \bullet \ t_1 = t_2 \qquad \qquad \text{for } t_1, \, t_2 \in \mathsf{TERM}$

Well-formed formula (WFF):

- 1. All atomic formulas are WFFs;
- 2. If ϕ and ψ are WFFs, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are WFFs;
- 3. If $x \in VAR$, and ϕ is a WFF, then $\forall x \phi$ and $\exists x \phi$ are WFFs;
- 4. Nothing else is a WFF.

Variable binding

- Given a quantified formula ∀xφ (or ∃xφ), we say that φ (and every part of φ) is in the **scope** of the quantifier ∀x (or ∃x);
- A variable x is **bound** in formula ψ if x occurs in the scope of $\forall x$ or $\exists x$ in ψ ;
- If a variable is not bound in formula ψ , it occurs **free** in ψ ;
- A **closed formula** is a formula without free variables.

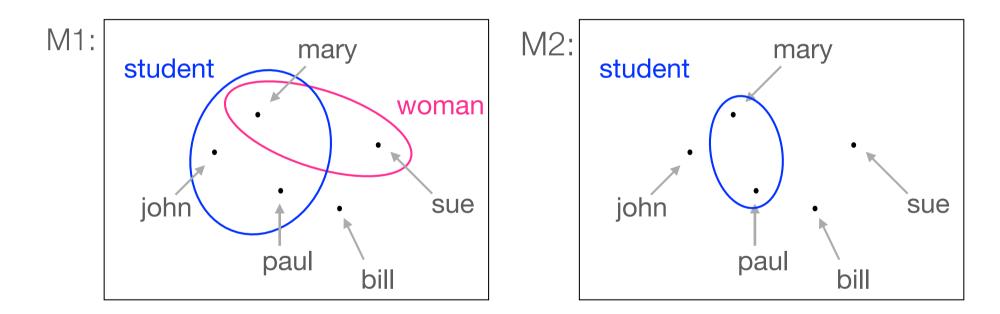
Formalizing Natural Language

- 1. Bill loves Mary.
- 2. Bill reads a book.
- 3. Bill reads an interesting book.
- 4. Every student reads a book.
- 5. Bill passed every exam.
- 6. Not every student passed the exam.
- 7. Not every student answered every question.
- 8. Only Bill answered every question.
- 9. Mary is annoyed if someone is noisy.

10. Although nobody makes noise, Mary is annoyed.

Step 2: Interpretation

Logical models are simplified representations of the state of affairs in the world



John is a student : $[student'(john)]^M = 1$ iff $V_M(john) \in V_M(student')$

 $V_{M1}(john) \in V_{M1}(student')$ therefore: [[student'(john)]]^M = 1 $V_{M2}(john) \notin V_{M2}(student')$ therefore: [[student'(john)]]^M = 0

A formal description of a model

Model M = $\langle U_M, V_M \rangle$, with:

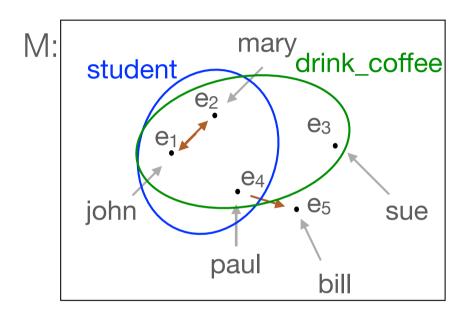
- $\cdot \ U_M$ is the universe of M and
- + V_M is an interpretation function

 $U_M = \{e1, e2, e3, e4, e5\}$ **universe**

 $V_M(john) = e1$... constants $V_M(bill) = e5$

 $V_M(student) = \{e1, e2, e4\}$ $V_M(drink_coffee) = \{e1, e2, e3, e4\}$

 $V_{M}(love) = \{ \langle e1, e2 \rangle, \langle e2, e1 \rangle, \langle e4, e5 \rangle \}$



1-place predicates

2-place predicates

Interpretation in the model

 V_M is an interpretation function assigning individuals ($\in U_M$) to individual constants and n-ary relations over U_M to n-place predicate symbols:

- $\label{eq:VM} \bullet \ V_M(c) \in U_M \qquad \text{ if c is an individual constant}$
- $V_M(P) \subseteq U_M^n$ if P is an n-place predicate symbol
- $V_M(P) \in \{0,1\}$ if P is an 0-place predicate symbol

Variables and quantifiers

How to interpret the following sentence in our model M:

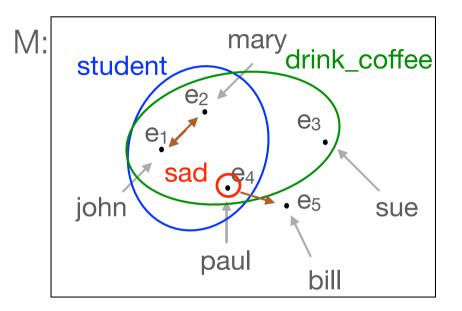
• Someone is sad $\mapsto \exists x(sad'(x))$

Intuition:

- find an entity in the universe for which the statement holds: V_M(sad') = e₄
- replace x in by e₄ in order to make ∃x(sad'(x)) true

More formally:

 Interpret sentence relative to assignment function g: [∃x(sad'(x))]^{M,g} such that g(x) = e₄ or g[x/e₄]



Assignment functions

An assignment function g assigns values to all variables

- g :: VAR \rightarrow U_M
- We write g[x/d] for the assignment function g' that assigns d to x and assigns the same values as g to all other variables.

	Х	У	Z	u	
g	e1	e ₂	e ₃	e 4	
g[y/e ₁]	e1	e1	e ₃	e 4	
g[x/e ₁]	e1	e ₂	e ₃	e 4	
g[y/g(z)]	e1	e ₃	e ₃	e 4	
g[y/e1][u/e1]	e1	e ₁	e ₃	e1	
g[y/e ₁][y/e ₂]	e1	e ₂	e ₃	e 4	

Interpretation of terms

Interpretation of terms with respect to a model *M* and a variable assignment *g*:

 $\llbracket \alpha \rrbracket^{M,g} = V_M(\alpha)$ if α is an individual constant

 $g(\alpha)$ if α is a variable

Interpretation of formulas

Interpretation of formulas with respect to a model M and variable assignment g:

- $[R(t_1, ..., t_n)]^{M,g} = 1$ iff $\langle [t_1]^{M,g}, ..., [t_n]^{M,g} \rangle \in V_M(R)$
- $[t_1 = t_2]^{M,g} = 1$ iff $[t_1]^{M,g} = [t_2]^{M,g}$
- $\llbracket \neg \Phi \rrbracket^{M,g} = 1$ iff $\llbracket \Phi \rrbracket^{M,g} = 0$
- $\llbracket \phi \land \psi \rrbracket^{M,g} = 1$ iff $\llbracket \Phi \rrbracket^{M,g} = 1$ and $\llbracket \Psi \rrbracket^{M,g} = 1$
- $\llbracket \Phi \lor \Psi \rrbracket^{M,g} = 1$ iff $[\![\Phi]\!]^{M,g} = 1 \text{ or } [\![\Psi]\!]^{M,g} = 1$
- $\llbracket \phi \rightarrow \psi \rrbracket^{M,g} = 1$ iff $\llbracket \phi \rrbracket^{M,g} = 0$ or $\llbracket \psi \rrbracket^{M,g} = 1$
- $\llbracket \Phi \leftrightarrow \Psi \rrbracket^{M,g} = 1$ iff $\llbracket \Phi \rrbracket^{M,g} = \llbracket \Psi \rrbracket^{M,g}$
- $\llbracket \exists x \Phi \rrbracket^{M,g} = 1$
- iff there is a $d \in U_M$ such that $\llbracket \Phi \rrbracket^{M,g[x/d]} = 1$
- $\llbracket \forall x \Phi \rrbracket^{M,g} = 1$ iff for all $d \in U_M$, $\llbracket \Phi \rrbracket^{M,g[x/d]} = 1$

Truth, Validity and Entailment

A formula ϕ is true in a model M iff: $[\![\phi]\!]^{M,g} = 1$ for every variable assignment g

A formula φ is valid (⊨ φ) iff: φ is true in all models

A formula ϕ is satisfiable iff:

there is at least one model M such that $\boldsymbol{\varphi}$ is true in model M

A set of formulas Γ is (simultaneously) satisfiable iff: there is a model M such that every formula in Γ is true in M ("M satisfies Γ," or "M is a model of Γ")

 Γ entails a formula ϕ ($\Gamma \vDash \phi$) iff:

 ϕ is true in every model structure that satisfies Γ

Background reading material

- Gamut: Logic, Language, and Meaning Vol I/II Chapter 2
- For a more basic introduction, see: <u>http://www.logicinaction.org</u> — Chapter 4