Semantic Theory Lecture 1 – Introduction

Noortje Venhuizen

University of Groningen / Universität des Saarlandes

Summer 2015

Information about this course

Contact information:

- Course website: http://noortjejoost.github.io/teaching/ST15/index.html
- My email: noortjev@coli.uni-saarland.de

Prerequisites:

This course assumes basic familiarity with first-order predicate logic

Recommended literature:

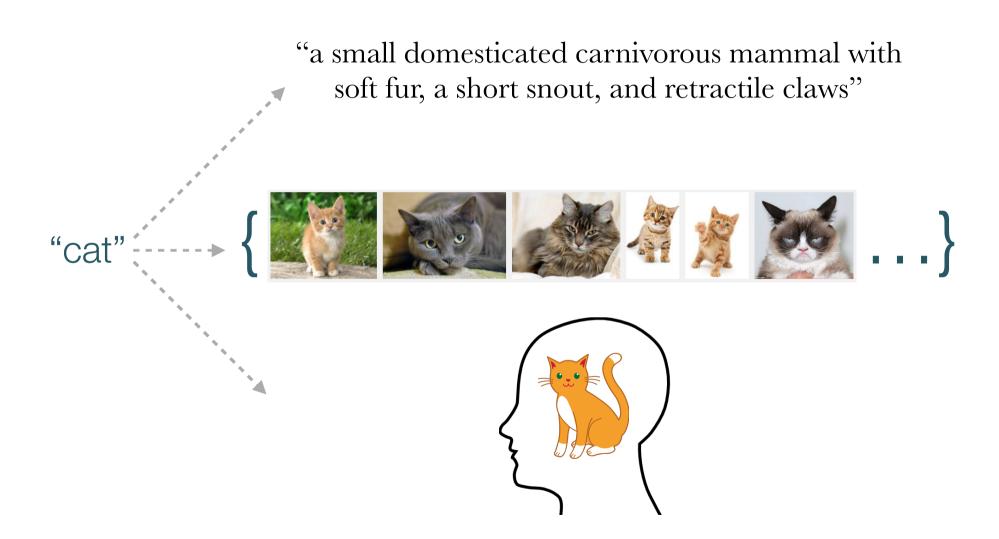
- · Gamut: Logic, Language, and Meaning, Vol. 2, University of Chicago Press, 1991
- Kamp and Reyle: From Discourse to Logic, Kluwer, 1993

Exercises & exam

Final exam:

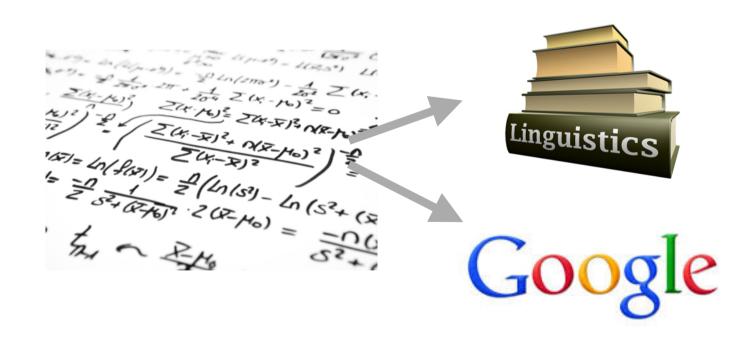
- You have to register: before Wednesday, July 15th
- Exam date to be confirmed

Exercise sheets:


- There will be 10 exercise sheets throughout the weeks
- You have to obtain a 'pass' grade for at least 9 of the 10 exercise sheets
- Exercises can be done in groups (up to 3 students)

Semantic Theory

Semantic Theory is the study of linguistic meaning


A philosophical question: What is 'meaning'?

Formal semantics

The aim of formal semantics:

Capturing linguistic meaning in a formal (mathematical) system

The development of formal semantics

1933 — Bloomfield: "The statement of meanings is [...] the weak point in language-study, and will remain so until human knowledge advances very far beyond its present state."

1957 — Chomsky: "there is little evidence that 'intuition about meaning' is at all useful in the actual investigation of linguistic form"

1970 — Montague: "There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians"

Course Overview

 Part I: Sentence semantics (compositional semantics)

Part II: Lexical semantics

Part III: Discourse semantics

Part I: Sentence semantics

A basic semantic principle

"For two sentences A and B, if in some possible situation A is true and B is false, A and B must have different meanings."

(M. Cresswell, 1975)

Applied to logical representations:

• For a logical formula α and a sentence A: If in some possible situation corresponding to a model structure M, sentence A is true, and α is not, or vice versa, then α is not an appropriate meaning representation for A.

Sentence meaning

Truth-conditional semantics:

to know the meaning of a (declarative) sentence is to know what the world would have to be like for the sentence to be true:

Sentence meaning = truth-conditions

Indirect interpretation:

- Translate sentences into logical formulas:
 Every student works → ∀x(student'(x) → work'(x))
- 2. Interpret these formulas in a logical model: $[\forall x(student'(x) \rightarrow work'(x))]^{M,g} = 1 \text{ iff } V_M(student') \subseteq V_M(work')$

Step 1: from sentence to formula

Propositional logic: Propositions as basic atoms

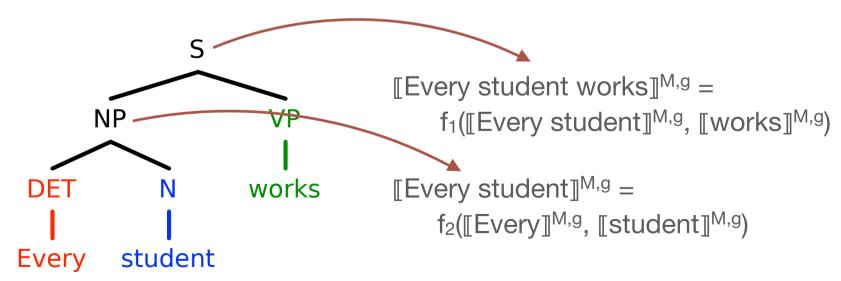
Syntax: propositions (p, q, ..), logical connectives $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$

Semantics: truth tables — truth conditions, entailment

p	9	p & q	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

Predicate logic: Predicates and arguments

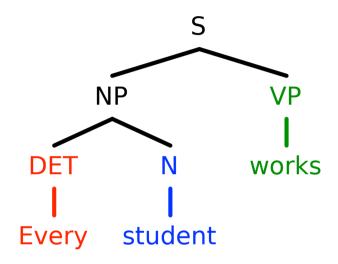
Syntax: predicates & terms (Love(j,m), Mortal(x), ...), quantifiers ($\forall x \varphi$, $\exists x \varphi$), logical connectives (\land , \lor , \neg , \leftrightarrow)


Semantics: model structures and variable assignments

Compositionality

The principle of compositionality:

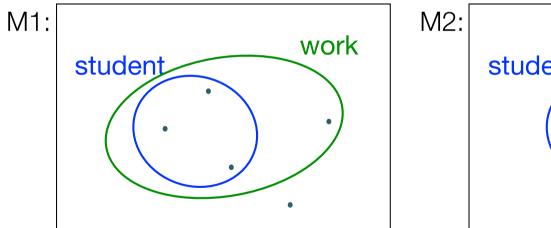
The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined (Partee et al., 1993)


Every student works

Compositional Semantics Construction

Semantic lexicon:

- every $\mapsto \lambda P \lambda Q \forall x (P(x) \rightarrow Q(x))$
- student → student'
- works → work'


Semantics construction:

- · $\lambda P\lambda Q \forall x (P(x) \rightarrow Q(x))(student') \Rightarrow_{\beta} \lambda Q \forall x (student'(x) \rightarrow Q(x))$
- · $\lambda Q \forall x (student'(x) \rightarrow Q(x)) (work') \Rightarrow_{\beta} \forall x (student'(x) \rightarrow work'(x))$

Step 2: from formula to model

Every student works

 $[\![\forall x (student'(x) \rightarrow work'(x))]\!]^{M,g} = 1 \text{ iff } V_M(student') \subseteq V_M(work')$

Issues for sentence semantics

Interpretation of adjectives

- 1. a. Jumbo is a grey elephant → Jumbo is grey

Quantifier scope

- 2. An American flag was hanging in front of every building
- 3. Every student speaks two foreign languages
- 4. A representative of every company saw most samples

Monotonicity and generalised quantifiers

- 5. All children came home late → All children came home

Part II:

Lexical semantics

Zooming in: the meaning of words

Lexical semantics revisited:

student → student' ... what does the 'stand for?

Structured approaches to the lexicon:

Lexical meaning as relations between concepts in a model

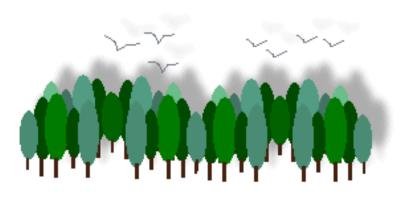
- a "student" is someone who studies
- a "bachelor" is a man who is not married

Issues for lexical semantics

Event-denoting expressions

- 1. a. Bill saw an elephant.
 - Bill saw an accident.
 - c. Bill saw the children play.

Verb alternatives and semantic roles


- 2. a. The window broke.
 - b. A rock broke the window.
 - c. John broke the window with a rock.

Plurals and collective predicates

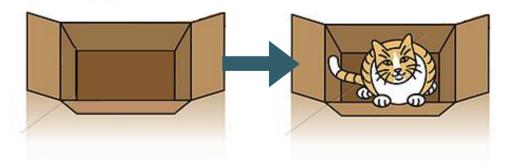
- 3. Bill and Mary met ⊭ Bill met
- 4. Five students carried three pianos upstairs.

Part III:

Discourse semantics

Beyond the sentence boundary

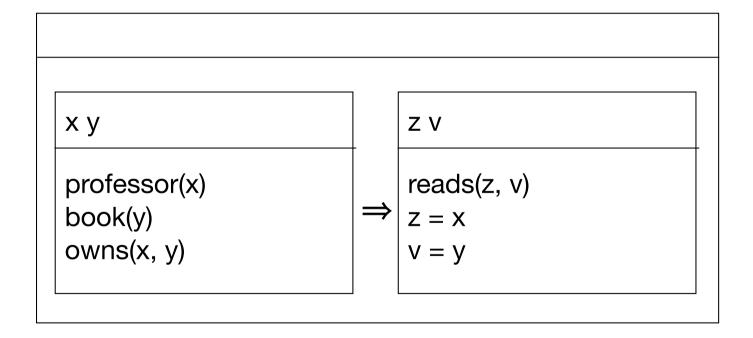
Limitations of sentence-level semantics:

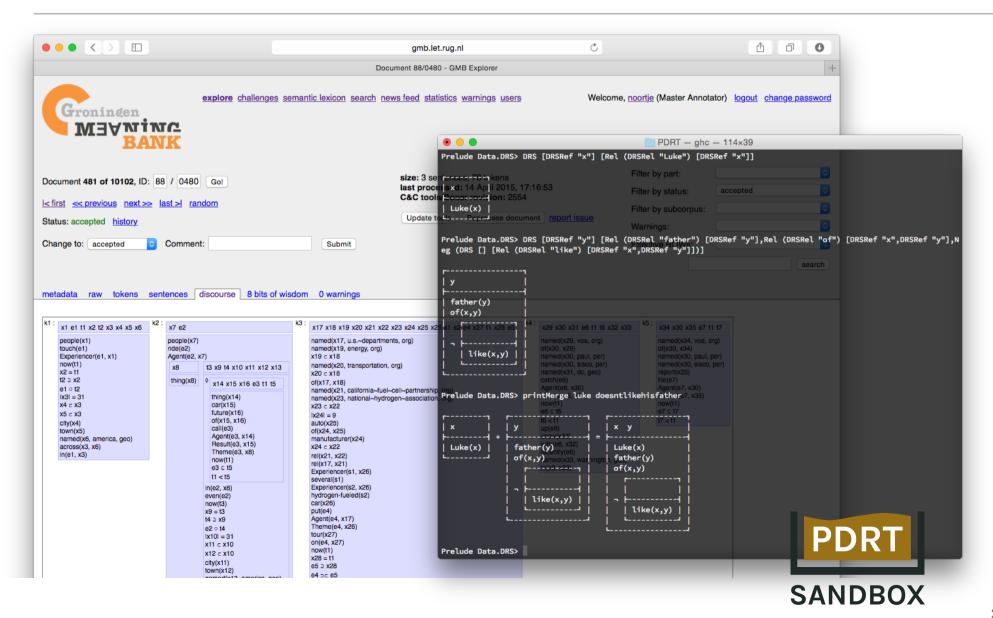

- Anaphora
 - 1. John hit Bill. He hit him back.
 - 2. If a farmer owns a donkey, he feeds it.
- Discourse relations
 - 3. John fell. Mary helped him up.
 - 4. John fell. Mary pushed him.
- Presuppositions
 - 5. a. Bill regrets that his cat has died.
 - b. Bill doesn't regret that his cat has died

Dynamic Semantics

Revisiting the idea of meaning as truth-conditions

- There is more to meaning than truth-conditions
- Meaning is context-dependent
- Meaning is dynamic: it keeps changing


Solution: Meaning = context-change potential


Discourse Representation Theory

If a professor owns a book, he reads it.

• $\forall x \forall y [professor(x) \land book(y) \land own(x,y) \rightarrow read(x,y)]$

Applications of DRT

Current issues in Semantic Theory

- Where is the border between semantics and pragmatics?
- What do (or: can) formal semantic theories say about the way meaning is stored and created in the human brain?
- How can we use formal semantics for practical purposes (for example to improve machine translation)?

Information about this course

Contact information:

- Course website: http://noortjejoost.github.io/teaching/ST15/index.html
- My email: <u>noortjev@coli.uni-saarland.de</u>

Recommended literature:

- · Gamut: Logic, Language, and Meaning, Vol. 2, University of Chicago Press, 1991
- Kamp and Reyle: From Discourse to Logic, Kluwer, 1993

Final exam:

Exam date to be confirmed