Exercises are due on: Tuesday, May 5th, 10 AM (before class)

Semantic Theory 2015: Exercise sheet 1

Exercise 1

Translate the following sentences into first-order predicate logic. You can freely introduce predicates, but try to retain as much of the structure as possible. Also provide the key to the translation.
a. Geoffrey is young and mean, but still a king.
b. Every Lannister pays his debt.
c. If one family rules the throne, all other families will fight for it.
d. A dire wolf is not a pet.
e. If someone is a Stark, (s)he is brave.
f. Fire-breathing dragons only obey Khaleesi.
g. Although Jaime lost a hand, he wins every fight unless he loses his other hand.

Exercise 2

Consider the following model $M_{1}=\left\langle U_{1}, V_{1}\right\rangle$, with $U_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$. The interpretation function V_{1} is defined as follows:

- $V_{1}(j)=e_{1}$
- $V_{1}(m)=e_{4}$
- $V_{1}(b)=e_{6}$
- $V_{1}(A)=\left\{e_{2}, e_{3}\right\}$
- $V_{1}(B)=\left\{e_{2}, e_{4}, e_{5}\right\}$
- $V_{1}(C)=\left\{e_{2}, e_{4}, e_{5}, e_{6}\right\}$

- $V_{1}(R)=\left\{\left\langle e_{2}, e_{3}\right\rangle,\left\langle e_{3}, e_{2}\right\rangle\left\langle e_{4}, e_{1}\right\rangle,\left\langle e_{4}, e_{2}\right\rangle,\left\langle e_{5}, e_{6}\right\rangle\right\}$

Let the assignment function g_{1} be defined as follows:
$g_{1}\left(x_{1}\right)=e_{4}, g_{1}\left(x_{2}\right)=e_{2}, g_{1}\left(x_{3}\right)=e_{3}$ and for all $n \geq 4: g_{1}\left(x_{n}\right)=e_{5}$.
2.1 Evaluate the following formulas in model M_{1}, with respect to assignment function g_{1}, showing the crucial steps.
a. $\llbracket R\left(x_{1}, x_{2}\right) \wedge R\left(x_{4}, b\right) \rrbracket^{M_{1}, g_{1}}=1$
b. $\llbracket \exists x_{2}\left(B\left(x_{2}\right) \wedge R\left(x_{2}, j\right)\right) \rrbracket^{M_{1}, g_{1}}=1$
c. $\llbracket \forall x_{1} \exists x_{4}\left(R\left(x_{4}, x_{1}\right) \vee R\left(x_{1}, x_{4}\right)\right) \rrbracket^{M_{1}, g_{1}}=1$
d. $\llbracket \forall x_{1}\left(B\left(x_{1}\right) \rightarrow\left(A\left(x_{1}\right) \vee \neg \exists x_{3}\left(R\left(x_{3}, x_{1}\right)\right)\right)\right) \rrbracket^{M_{1}, g_{1}}=1$
2.2 Provide the full definition of a model M_{2} and assignment function g_{2} that satisfy the following formulas (NB: c_{1} and c_{2} are constants):

- $R\left(x_{1}, x_{2}\right)$
- $\forall x_{1}\left(A\left(x_{1}\right) \vee \exists x_{2}\left(R\left(x_{1}, x_{2}\right)\right)\right)$
- $\neg \exists x_{1}\left(R\left(x_{1}, c_{1}\right)\right)$
- $\exists x_{3}\left(A\left(x_{3}\right) \wedge \neg \exists x_{2}\left(A\left(x_{2}\right) \wedge R\left(x_{2}, x_{3}\right)\right)\right)$
- $\forall x_{2}\left(B\left(x_{2}\right) \rightarrow\left(A\left(x_{2}\right) \vee R\left(x_{2}, c_{2}\right)\right)\right)$
2.3 (Bonus) Can you think of a sensible (or: funny) interpretation for the predicates A, B and R, and the constants c_{1} and c_{2} in your model of the previous exercise? Given this interpretation, what is the translation of the formulas given in exercise 2.2?

