Semantic Theory
Lecture 4: Cooper Storage

Manfred Pinkal & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universitat des Saarlandes

Summer 2012

Semantics Sonstruction (recap)

m Semantic lexicon

B maps words to semantic representations (type theory)

®m Semantics construction rules

m tell for each syntactic rule X - Y1 Y2 how to combine the
semantic represenatations of Y1 and Y2 to obtain a
semantic representation for X

m we assume here that there is only a single operation to
combine meaning representation: functional application
m Note: all syntactic categories (N, V, NP, VP, ...) are
mapped to semantic representations with the same type
® all N's have type (e, t), all NP’s have type {((e, t), t), ...

Semantics Sonstruction (recap)

(2) » APAQVX(P(x) = Q(x)) : {{e, t), ({e, t), t)
(3) v student’ : (e, t)

(1) » APAQVX(P(x) = Q(x))(student’): ({e, t}, t)
=g AQVx(student’(x) = Q(x))

(4) = (5) » work’ : (e, t)
(0) » AQVx(student’(x) =» Q(x))(work’) : t S (0)

5 Ux(student’(x) » work’(x)) T

NP (1) VP (4)

PN I

DET(2) N (3) IV (5)
I I I

Every student works

Transitive Verbs

m Fvery student reads a book
m Vx(student'(x) = Jy(book’(y) A read’(y)(x))

S
- Vx(student’'(x) = Jy(book’(y) A read’(y)(x)))

NP VP
+ ARVx(student’(x) = R(x)) B (22)

/\

Every student v NP
P (22) AP3y(book’(y) A P(y))

reads a book

Transitive Verbs (1t attempt)

m read » read’ € WEen, t), (e, t))
m read a book » read’(AP3y(book’(y) A P(y)) € WEe, v
m every student reads a book

® > ARVx(student’(x) = R(x))(read’(AP3y(book’(y) A P(y)))
B o Vx(student’(x) - read’(AP3y(book’(y) A P(y)))(x))
m Problem:

without an additional meaning postulate the formula
does not capture the truth-conditions of the sentence.

Transitive Verbs (final version)

m Solution:

m yse a more explicit A-term for transitive verbs

m read » AQAzQ(Ax(read*(x)(z))) € WEeu, v, (e, t))
m Note: read* € WEge, (e, t))

m read a book
® & AQAzQ(Ax(read*(x)(z)))(AP3y(book’(y) A P(y)))
® &g Az(APy(book’(y) A P(y))(Ax(read*(x)(z))))
m o Az(3y(book’(y) A Ax(read*(x)(z))(y)))
® g Az(3y(book’(y) A read*(y)(z)))

Transitive Verbs (final version)

m Solution:

® use a more explicit A-term for transitive verbs

m read a book
= Az3Ay(book’'(y) A read*(y)(z))

m every student
® > ARVx(student’'(x) —» R(x))
m every student reads a book
m & ARVx(student’(x) = R(x))(Az3y(book’(y) A read*(y)(z)))
m op Vx(student'(x) = Az3y(book’(y) A read*(y)(z))(x))
B &g Vx(student'(x) = Jy(book’(y) A read*(y)(x)))

Scope Ambiguities

m Fvery student reads a book
a. Vx(student’(x) —» Jy(book’(y) A read*(y)(x)))
b. y(book’(y) A ¥x(student'(x) = read*(y)(x)))

Every student didn’t pay attention
a. Vx(student’(x) -» —pay-attention’(x))
b. =Vx(student’(x) —» pay-attention’(x))

m Some inhabitant of every midwestern city participated
m An American flag stood in front of every building
m John searches a good book about semantics

m Pola wants to marry a millionaire

Scope Ambiguities

m Using the semantics construction rules from the
previous lecture, we can derive only one reading for
sentences exhibiting a scope ambiguity.

m (... if the sentence has a unique syntactic structure)

m Quantifier scope is not determined by the syntactic
position in which the corresponding NP occurs.

m Mismatch between syntactic and semantic structure is a
challenge for compositional semantics construction.

Cooper Storage

m Cooper-Storage is a technique to derive different
readings of sentences exhibiting a scope ambiguity

m The different readings are derived by using a single,
surface-based syntactic structure

Semantic representation

Sentence —> Syntactic analysis

Semantic representation

10

Cooper Storage

m Natural language expressions are assigned ordered
pairs {a, A) as semantic values:

. o € WE-is the content

m A © WEe,t),1 is the quantifier store

m Quantifiers (NPs) can either apply in situ, or they can be
moved to the store for later application (“storage”).

m At sentence nodes, quantifiers can be removed from the
store and applied to the content (“retrieval”).

m Aterm o counts as a semantic representation for a
sentence if we can derive (a, @) as its semantic value.

11

Cooper-Storage

The basic idea

m Storage at (1)
(AG3Ix(bk(x) A G(x)), @) =
(AF.F(x1), {[AG3Ix(bk(x) A G(x))11})

m Retrieval at (2)
(Vy(st(y) = rd(x1)(y)), {[AG3x(bk(x) A G(x))]1}) =
(AG3Ax(bk(x) A G(x))(Axa(Vy(st(y) = rd(x1)(y)), @)

m After B-reduction:

(3x(bk(x) A Vy(stly) > rdy)), @) __ 2@ eee
NP VP .

: /\l
every student \ll NP:(l)

reads a book
12

Cooper-Storage

Sample Grammar

S - NP VP PN - Bill | John | ...
NP — DET N’ DET - every | a | some
NP — PN N - student | book | ...
N - N P-of|at]..

N - N PP TV - reads | likes | ...
VP - IV IV = works | sleeps | ...
VP - TV NP
PP - P NP

13

Cooper-Storage

Semantic Lexicon

Bill » AF(F(b*)) € WE(en.t)
every » AFAGVX(F(x) = G(x)) € WE(et).(e.t).t)
a » AFAG3Ix(F(x) A G(x)) € WE(e,t),((e,t),t)
works + work’ € WE(e,n
student » student’ € WEe
book + book’ € WE(ey
university » university’ € WEe

reads » AQAx(Q(Ay(read*(y)(x)))) € WEqet,n, (et))

of, at » [= exercise] € WE(et.n, (et), (e.tn)

14

Cooper-Storage

Semantic Construction [1/3]

BEX>YZorX-ZY
X (a(B),AuT)

m f Y » ((X, A), VS WE(U,T) /\
m and Zw» (B, T),BEWEs
Yo {a,A) Zw»(B,TI)

m then X (a(B),AuT)

m f Y b {a, A)
m then X b (a, A)

" X->w

m X (o, @), where a = SemLex(w)

15

Cooper-Storage

Every student reads a book

S (1)
NP (2) VP (6)
DET (3) N’ (4) V(7) NP (8)

every N (5) reads DET (9) N’ (10)

student a N (11)

book

16

Cooper-Storage

Every student reads a book

— (9) (AFAGIX(F(X) A G(x)), @) NP (8)
(11) (book’, @) PN

DET (9) N’ (10)
(10) (book’, @) | |

(8) (AFAGIX(F(x) A G(x))(book), @) a N (|11)

g (AGIx(book’(x) A G(x)), @) book

17

Cooper-Storage

Semantic Construction [2/3]

m Storage: (Q, A) =s (AP.P(x;), A u {[Ql]i})

m if Aiis an noun phrase whose semantic value is (Q, A), then
(AP.P(xi), A u {[Q]}) is also a semantic value for A, where
i € Nis anew index.

m The original content is moved to the store.

® The new content is a placeholder of type ((e,t),t)

m Note: by using this rule, we can assign more than one
semantic value to a noun phrase.

18

Cooper-Storage

Every student reads ... (cont’d)

(9) (AFAG3X(F(x) A G(x)), @)

NP (8)
(10) (book’, @) N
DET (9) N’ (10)
(11) (book’, @) | |
(8) (AFAGAX(F(x) A G(x))(book’), @) a N (Ill)
&g (AGIx(book'(x) A G(x)), @) book

o =5 (AP.P(x1), {[AG3Ix(book'(x) A G(x))]1})

19

Cooper-Storage

Every student reads ... (cont’d)

—p (8) (AP.P(x1), {[AGIx(book’(x) A G(x))11})
(7) (AMQAx(Q(Ay(read*(y)(x)))), @)
(6) (AQAX(Q(Ay(read*(y)(x))))(AP.P(x1)), {[AG3x(...)]1})
<p (AX(AP(P(x1))(Ay(read*(y)(x)))), {[AG3x(...)11})
«p (Ax(Ay(read*(y)(x))(x1)), {[IAGIx(...)]1})

©p (Ax(read*(x1)(x)), {IAG3x(...)]1})
VP (6)

V(7) NP (8)

reads a book

20

Cooper-Storage

Every student reads ... (cont’'d)

—> (6) (Ax(read*(x1)(x)), {[AGIx(book’(x) A G(x))]11})
(2) (AGVy(student’(y) = G(y)), @)
(1) (AGVy(student'(y) » G(y))(Ax(read*(x1)(x))), {[...11})
e (Vy(student’(y) » Ax(read*(x1)(x))(y)), {[...11})
op (Vy(student'(y) —» read*(x1)(y)), {[...11})

S (1)

every student reads a book

21

Cooper-Storage

Semantic Construction [3/3]

m Retrieval: (a, A u {[Q]i}) =r (Q(AX; a), A)

m if Ais any sentence with semantic value (a, A u {[Q]}),
then (Q(Axi a), A) is also a semantic value for A.

m Notation: read “u” as “disjoint union”

22

Cooper-Storage

Every student reads ... (cont’d)

(1) (Vy(student’(y) - read*(xa)(y)), {[AG3x(...)]11})
=g (AGIx(book’(x) A G(x))(Ax1(VYy(... X1 ...))), @)
&g (Ix(book’(x) A Axa(Vy(... X1 ...))(X)), @)
g (IX(book’(x) A Vy(student'(y) = read*(x)(y))), @)

S (1)
NP (2) VP (6)

P AN

every student reads a book

23

Cooper-Storage

Problem: Nested noun phrases

m Every researcher of a company works

S (1)
. o
DET (3) N’ (4) %
evvlary N (5) PP (6)

researcher P (7) NP (8)

PN

of a company

24

Cooper-Storage

Problem: Nested noun phrases

—> (8) (AF(F(x1)), {[AG3x(comp(x) A G(x))]1})

(4) (Ax(res(x) A of(x1)(x)), {[...]11})

(2) (AGVy((res(y) A of(xa)(y)) = G(y)), {[...]11})

=s (AF(F(x2)),{[AGVy((res(y) A of(x1)(y)) = G(y))]z2, [...]1a})

(1) (work(x2), {[.-Jz, [.]1}) s)

NP(2) VP (9)
DET (3) N’ (4) works
every N (5) PP (6)
researcher P (7) NP (8)

of acompany
25

Cooper-Storage

Problem: Nested noun phrases

(work(x2), { [Q2 = AGVy((res(y) A of(x1)(y)) = G(y))]2,
[Q1 = AG3Ix(comp(x) A G(x))11})

=r (Q1(Ax1.work(x2)), {[Q212})
ep (Ix(comp(x) A work(x2)), {[Qz2]2})
=g (Q2(Ax2.3x(comp(x) A work(x2))), @)

<p (Vy((res(y) A of(x1)(y)) = Ix(comp(x) A work(y))), D)

Not a reading! Variable x1 occurs free!

26

Cooper-Storage

Problem: Nested noun phrases

®m The unstructered store does not reflect the
dependencies between quantifiers in complex noun
phrases like ,every [reasearcher of a company]“

m = quantifiers can be retrieved in any order!

(or o Y

m (work(xz), {[AGVY(... x1...))]2, [AG3x(...)]1})

m We want: Q: cannot be retrieved if Q2 is still on the store

27

(Keller, 1988)

Nested Cooper Storage

m Storage: (Q, A) =s (AP.P(xi), {{Q, A)i})
m |f Ais a noun phrase whose semantic value is (Q, A),
then (AP.P(xi), {{Q, A)i}) is also a semantic value for A,
where i € N is a new index.

m The original semantic value including its store is
moved to the store.

28

(Keller, 1988)

Nested Cooper Storage

m Retrieval: (o, AU {(Q, Ni}) = (Q(Axia), AuT)

m |f A is a sentence with semantic value (a, A u {(Q, IN)i}),
then (Q(Axi.a), A u I') is also a semantic value of the
sentence.

m = nested stores are not accessible for retrieval

29

Nested Cooper-Storage

Every reasearcher of a ...

S (1)
NP (2) VP (9)
DET (3) N (4) ﬁ
every N (5) PP (6)

researcher P (7) NP (8)

PN

of acompany

30

Nested Cooper-Storage

Every reasearcher of a ...

— (8) (AGIx(comp(x) A G(x)), D)

=5 (AF.F(x1), {{(Q1 = AG(Ix(comp(x) A G(x)), D)1})
(4) (Ay(res(y) A of(x1)(y)), {(Q1, @)1})
(2) (AGVz((res(z) A of(x1)(z)) = G(2)), {(Q1, @)1})
=s (ARF(x2), {(Q2 = AGVz(...), {(Q1, @)1})2})
(9) (work, @)
(1) {(work(x2), {{Qz, {(Q1, @)1})2})

S (1)
NP (2) VP (9)
DET (3) N’ (4) works
every N (5) PP (6)
researcher P (7) NP (8)

of acompany
31

Nested Cooper-Storage

Every reasearcher of a ...

(work(x2), {{Q2, {{Q1, @)1})2})
=r (Qz2 (Axz2.work(xz2)), {(Q1, @)1})
ep (Vz((res(z) A of(x1)(z)) -» work(z)), {{Q1, @)1})
=r (Q1(Ax1.Vz((res(z) A of(x1)(z)) - work(z))), @)

op (Ix(comp(x) A Vz((res(z) A of(x)(z)) = work(z))), @)

32

Nested Cooper-Storage

Every reasearcher of a ...

(work(x2), {{AGVz(...), {{AG3IX(...), D}1})2})

=% Ix(comp(x) A Vz((res(z) A of(x)(z)) » work(z)))

m No other reading can be derived!
m But how do we derive the “direct scope” reading?

m Simple answer: don’t store, apply quantifiers “in situ”

33

Can we derive all readings?

m Storing a quantifier means to “move it upwards” in the
syntax tree (roughly speaking).

m Every student did not pay attention
m “Every student” is higher in the tree than the negation

® = the negation cannot take scope over “every student”

S (1)

NP (2) VP (3)

N T

every student AUX VP

I PN

didn’t pay attention
34

(see Ruys & Winter, 2008)

Some restrictions on scope

m Some inhabitant of every midwestern city participated

® two readings: (a) direct scope and (b) every <* some

m Someone who inhabits every midwestern city
participated

m only the direct scope reading available

Finite clauses can create “scope islands”
® Quantifiers must take scope within such clauses

35

(see Ruys & Winter, 2008)

Some restrictions on scope

m You will inherit a fortune if every man dies
m “every man” cannot take scope over complete sentence
m /f a friend of mine from Texas had died in a fire, | would
have inherited a fortune (Fodor & Sag 1982)

m “a friend of mine from Texas” can take wide scope

m Finite clauses can create “scope islands”
m Quantifiers must take scope within such clauses

m |ndefinites can “escape” scope islands

36

Compositionality

m Denotations (“D-compositionality”)
The denotation of a complex expression is a function of
the denotations its parts.

m Semantic representations (“S-compositionality”)
The semantic representation of a complex expression is
a function of the semantic representations of its parts.

37

Compositionality

m Storage techniques are (up to non-determinism)
compositional on the level of semantic representations.

m But are not compositional on the level of denotations:
Semantic values (a, A) don’t receive an interpretation.

38

Literature

m Patrick Blackburn, Johan Bos (2005): Representation and
Inference for Natural Language. A First Course in
Computational Semantics. CSLI Press.

m W. R. Keller (1988). Nested Cooper storage: The proper
treatment of quantification in ordinary noun phrases. In
Reyle, Rohrer (Ed.). Natural Language Parsing and
Linguistic Theories

m E. G. Ruys, Yoad Winter (2008). Quantifier scope in
formal linguistics. To appear in: Handbook of
Philosophical Logic, 2nd Edition.

39

