
Manfred Pinkal & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universität des Saarlandes

Summer 2012

Semantic Theory
Lecture 3 – Semantics Construction

First-order logic

■ Formulas of first-order logic can talk about properties of
and relations between individuals.

■ Constants and variables denote individuals.

■ Quantification is restricted to quantification over
individuals.

2

Limits of first-order logic

■ First-order logic is not expressive enough to capture the
full range of meaning of natural language:
■ Modification (“good student”, “former professor”)
■ Sentence embedding verbs (“knows that …”)
■ Higher order quantification (“have the same hair color”)
■ …

■ First-order logic does not support compositional
semantics construction.

3

Limits of first-order logic

■ The principle of compositionality (recap): The
meaning of a complex expression is a function of the
meanings of its parts and of the syntactic rules by which
they are combined (cited from Partee &al., 1993)

■ Compositional semantics construction:
■ compute meaning representations for sub-expressions.
■ combine them to obtain a meaning representation for a

complex expression.

■ a man walks ↦ ∃x(man’(x) ∧ walk’(x))
■ a man ↦ (?)
■ walks ↦ (?)

4

■ The types of non-logical expressions provided by first-
order logic are not sufficient to describe the semantic
function of all natural language expressions.

■ Type theory provides a much richer inventory of types:
higher-order relations and functions of different kinds.

5

Type Theory

■ Basic types:
■ e – the type of individual terms (“entities”)
■ t – the type of formulas (“truth-values”)

■ Complex types:
■ If σ, τ are types, then ⟨σ, τ⟩ is a type.
■ ⟨σ, τ⟩ is the type of functions mapping arguments of type σ

to values of type τ.

■ Types indicate, how many arguments a predicate has,
and what types the arguments must have.

6

Types

Types of Predicate Logic

■ Individual constants and variables: e

■ One-place predicates (sleep, walk, …)
■ ⟨e, t⟩

■ Two-place predicates (read, admire, …)
■ ⟨e, ⟨e, t⟩⟩

■ Three-place predicates (give, …)
■ ⟨e, ⟨e, ⟨e, t⟩⟩⟩

7

8

■ Constants: For every type τ a possibly empty set of
non-logical constants CONτ (pairwise disjoint)

■ Variables: For every type τ an infinite set of
variables VARτ (pairwise disjoint)

■ Logical symbols: ∀, ∃, ∧, ∨, …

■ Brackets: (,)

Type Theory – Vocabulary

■ The sets of well-formed expressions WEτ for every
type τ are given by:
(i) CONτ ⊆ WEτ and VARτ ⊆ WEτ, for every type τ

(ii) If α is in WE⟨σ, τ⟩, β in WEσ, then α(β) ∈ WEτ.

(iii) If A, B are in WEt, then ¬A, (A ∧ B), (A ∨ B), (A → B),
(A ↔ B) are in WEt.

(iv) If A is in WEt and v is a variable of arbitrary type, then
∀vA and ∃vA are in WEt.

(v) If α, β are well-formed expressions of the same type,
then α = β ∈ WEt.

9

Type Theory – Syntax

■ Let U be a non-empty set of entities.

■ The domain of possible denotations Dτ for every
type τ is given by:
■ De = U
■ Dt = {0, 1}
■ D⟨σ, τ⟩ is the set of all functions from Dσ to Dτ

■ Expressions of type τ denote elements of Dτ

■ For instance
■ α ∈ WE⟨e, t⟩ denotes a set of individual
■ α ∈ WE⟨⟨e, t⟩, t⟩ denotes a set of sets of individuals

10

Type Theory – Semantics [1/3]

■ Many natural language expression have a type ⟨σ, t⟩.

■ ⟨σ, t⟩ the type of functions mapping elements of type σ
to true or false.

■ Such function are also known as characteristic
functions, and can be thought of as subsets of Dσ.

■ Example: “student” is a constant of type ⟨e, t⟩ and can
be seen as characterising the set of students.

11

Characteristic Functions

Characteristic Functions

■ U = {a, b, c, d}

■ X = {a, b}

■ Characterisitic function fX of X (over U):
■ fX(a) = 1
■ fX(b) = 1
■ fX(c) = 0
■ fX(d) = 0

■ More generally: For all a ∈ U, fX(a) = 1 iff a ∈ X

12

⎡3a3 → 13 ⎤
⎢3b3 → 13 ⎥
⎢3c3 → 03 ⎥
⎣3d3 → 03 ⎦

■ A model structure for a type theoretic language
consists of a pair M = ⟨U, V⟩, where.
■ U is a non-empty domain of individuals
■ V is an interpretation function, which assigns to every

member of CONτ an element of Dτ.

■ Variable assignment g assigns every variable of
type τ a member of Dτ

13

Type Theory – Semantics [2/3]

■ Interpretation with respect to a model structure
M = ⟨U, V⟩ and a variable assignment g:
(i) ⟦α⟧M,g = V(α), if α is a constant

⟦α⟧M,g = g(α), if α is a variable

(ii) ⟦α(β)⟧M,g = ⟦α⟧M,g(⟦β⟧M,g)

(iii) ⟦¬φ⟧M,g = 1 iff ⟦φ⟧M,g = 0
⟦φ ∧ ψ⟧M,g = 1 iff ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1
⟦φ ∨ ψ⟧M,g = 1 iff ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1
…

(iv) ⟦α = β⟧M,g = 1 iff ⟦α⟧M,g = ⟦β⟧M,g

14

Type Theory – Semantics [3/3]

■ Interpretation with respect to a model structure
M = ⟨U, V⟩ and a variable assignment g:
(v) ⟦∃vφ⟧M,g = 1 iff there is a d ∈ Dτ such that ⟦φ⟧M,g[v/d] = 1

⟦∀vφ⟧M,g = 1 iff for all d ∈ Dτ : ⟦φ⟧M,g[v/d] = 1
(where v is a variable of type τ)

15

Type Theory – Semantics [3/3]

■ Bill reads a book
■ ⟦∃x(book’(x) ∧ read’(x)(b*)⟧M,g = 1 iff …

■ Bill is a good student
■ ⟦good’(student’)(b*)⟧M,g = 1 iff …

16

Examples [⇒ whiteboard]

3 read’3: ⟨e, ⟨e, t⟩⟩3 b*3: e
3 book’3: ⟨e, t⟩3 x3 : e
3 student’3: ⟨e, t⟩
3 good’3: ⟨⟨e, t⟩, ⟨e, t⟩⟩

Adjective Classes & Meaning
Postulates

■ Natural language:
■ Bill is a good student ⊨ Bill is a student

■ Type theory:
■ good’(student’)(b*) ⊭ student’(b*)

■ We need additional “meaning postulates” to get the
intended entailment relations

■ Meaning postulates are restrictions on models and
constrain the possible meaning of certain words

17

Adjective Classes & Meaning
Postulates

■ Intersective adjectives (“blond”)
■ ⟦ blond N ⟧ = ⟦ blond ⟧ ∩ ⟦ N ⟧
■ Meaning postlate: ∀G∀x(blond(G)(x) → (blond*(x) ∧ G(x))
■ Note: blond ∈ WE((e, t), (e, t)), blond* ∈ WE(e,t)

■ Subsective adjectives (“good”)
■ ⟦ good N ⟧ ⊆ ⟦ N ⟧
■ Meaning postlate: ∀G∀x(good(G)(x) → G(x))

■ Privative adjectives (“former”)
■ ⟦ former N ⟧ ∩ ⟦ N ⟧ = ∅
■ Meaning postlate: ∀G∀x(former(G)(x) → ¬G(x))

18

■ The principle of compositionality (recap): The
meaning of a complex expression is a function of the
meanings of its parts and of the syntactic rules by which
they are combined (cited from Partee &al.,1993)

■ Compositional semantics construction:
■ compute meaning representations for sub-expressions
■ combine them to obtain a meaning representation for a

complex expression.

19

Semantics Construction

A simple grammar

■ Bill works

■ Bill likes Mary

■ …

20

. S.→ NP VP. PN.→. Bill

.NP.→ PN. PN.→ Mary
VP..→ IV. IV.→ works
.VP.→ TV NP. TV.→ likes

Semantic lexicon

■ Bill ↦ b* : e

■ Mary ↦ m* : e

■ likes ↦ like’ : ⟨e, ⟨e, t⟩⟩

■ works ↦ work’ : ⟨e, t⟩

■ read “↦” as “translates into”

21

Semantics Construction Rules
(1st Version)

■ S → NP VP
if VP ↦ α’ and NP ↦ β’, then S ↦ α’(β’)

■ NP → PN
if PN ↦ α’, then NP ↦ α’

■ VP → IV
if IV ↦ α’, then VP ↦ α’

■ VP → TV NP
if TV ↦ α’ and NP ↦ β’, then VP ↦ α’(β’)

22

Bill likes Mary

23

m* : e

m* : elike’ : ⟨e,⟨e,t⟩⟩

like’(m*) : ⟨e,t⟩

like’(m*)(b*) : t

b* : e

b* : e
NP

S

VP

V NPPN

likesBill
PN

Mary

24

. John works.↦ work(j)

. Somebody works.↦ ∃x(work(x))

.Every student works.↦ ∀x(student(x) → work(x))

. A student works.↦ ∃x(student(x) ∧ work(x))

. No student works.↦ ¬∃x(student(x) ∧ work(x))

.John and Mary work.↦ work(j) ∧ work(m)

Noun Phrases

λ-Abstraction

■ λx(drive(x) ∧ drink(x))
■ a term of type ⟨e, t⟩
■ denotes the property (set of individuals) of being “an x

such that x drives and drinks”

■ λ-abstraction is an operation that takes an expression
and “opens” specific argument positions.

■ The result of abstraction over individual variable x in the
formula “drive(x) ∧ drink(x)” results in the complex
expression “λx(drive(x) ∧ drink(x)).”

25

Type Theory with λ-Operator

■ Syntax like basic type theory, plus:
■ If α is in WEτ and v is a variable of type σ, then λvα

is a well-formed expression of type ⟨σ, τ⟩.

■ The scope of the λ-operator is the smallest WE to its
right. Wider scope must be indicated by brackets.

■ We often use the “dot notation” λx. … indicating that
the λ-operator takes widest possible scope.

26

λ-Abstraction – Semantics

■ If α ∈ WEτ, v ∈ VARσ, then ⟦λvα⟧M,g is that function
f : Dσ → Dτ such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]

■ ⟦λx(drink(x) ∧ drive(x))⟧M,g = …
■ [⇒ whiteboard]

27

λ-Abstraction – Semantics

■ If α ∈ WEτ, v ∈ VARσ, then ⟦λvα⟧M,g is that function
f : Dσ → Dτ such that for all a ∈ Dσ, f(a) = ⟦α⟧M,g[v/a]

■ If the λ-expression is applied to some argument, we can
simplify the interpretation:
■ ⟦λvα⟧M,g(A) = ⟦α⟧M,g[v/A]

■ ⟦λx(drink(x) ∧ drive(x))(b*)⟧M,g = 1
■ iff ⟦λx(drink(x) ∧ drive(x))⟧M,g(⟦b*⟧M,g) = 1
■ iff ⟦λx(drink(x) ∧ drive(x))⟧M,g(VM(b*)) = 1
■ iff ⟦drink(x) ∧ drive(x)⟧M,g[x/V(b*)] = 1
■ iff ⟦drink(x)⟧M,g[x/V(b*)] and ⟦drive(x)⟧M,g[x/V(b*)] = 1
■ iff VM(drink)(VM(b*)) = 1 and VM(drive)(VM(b*)) = 1

28

β-Reduction

29

■ ⟦λvα(β)⟧M,g = ⟦α⟧M,g[v/⟦β⟧M,g]

■ ⇒ all (free) occurrences of the λ-variable in α get the
interpretation of β as value.

■ Syntactic shortcut: β-reduction
■ λvα(β) ⇔ [β/v]α
■ [β/v]α is the result of replacing all free occurrences of v in

α with β.

■ Achtung: The equivalence is not unconditionally valid

Variable capturing

■ Are λvα(β) and [β/v]α always equivalent?
■ λx[drive’(x) ∧ drink’(x)](j*) ⇔ drive’(j*) ∧ drink’(j*)
■ λx[drive’(x) ∧ drink’(x)](y) ⇔ drive’(y) ∧ drink’(y)
■ λx[∀y know’(x)(y)](j*) ⇔ ∀y know(j*)(y)
■ NOT: λx[∀y know’(x)(y)](y) ⇔ ∀y know(y)(y)

■ Let v, v’ be variables of the same type, α any well-
formed expression.

■ v is free for v’ in α iff no free occurrence of v’ in α is in
the scope of a quantifier or a λ-operator that binds v.

30

Conversion rules

■ β-conversion: λvα(β) ⇔ [β/v]α
■ if all free variables in β are free for v in α.

■ α-conversion: λvα ⇔ λw[w/v]α
■ if w is free for v in α.

■ η-conversion: λv(α(v)) ⇔ α

31

Back to noun phrases

■ Every student
■ ↦ λP∀x(student’(x) → P(x))
■ Type: ⟨⟨e, t⟩, t⟩

■ Interpretation:
■ Every student denotes the set of properties that apply to

every student (“property” = sets of individuals).
■ ⟦Every student⟧ = { P | every student has property P }

■ Semantic construction rule for S → NP VP:
■ if VP ↦ α’ and NP ↦ β’, then S ↦ β’(α’)

32

NP

S

VP

worksEvery student

Back to noun phrases

■ Interpretation of “every student:” the set of properties P
that apply to every student
■ every student ↦ λP∀x(student’(x) → P(x))

■ Interpretation of “a student:” the set of properties P
that apply to some student.
■ a student ↦ λP∃x(student’(x) ∧ P(x))

■ Interpretation of “Bill:” the set of properties P that apply
to Bill.
■ Bill ↦ λP.P(b*)

33

Determiners

■ a, some! ↦ λFλG∃x(F(x) ∧ G(x))

■ every.. ↦ λFλG∀x(F(x) → G(x))

■ no.. . ↦ λFλG¬∃x(F(x) ∧ G(x))

■ …

34

Semantics Construction Rules
(2nd Version)

■ S → NP VP
if VP ↦ α’ and NP ↦ β’, then S ↦ β’(α’)

■ NP → DET N
if DET ↦ α’ and N ↦ β’, then NP ↦ α’(β’)

■ NP → PN
if PN ↦ α’, then NP ↦ α’

■ VP → IV
if IV ↦ α’, then VP ↦ α’

35

Every student works

(2) ↦ λPλQ∀x(P(x) → Q(x)) : ⟨⟨e, t⟩, ⟨⟨e, t⟩, t⟩

(3) ↦ student’ : ⟨e, t⟩

(1) ↦ λPλQ∀x(P(x) → Q(x))(student’): ⟨⟨e, t⟩, t⟩
. ⇒β λQ∀x(student’(x) → Q(x))

(4) = (5) ↦ work’ : ⟨e, t⟩

(0) ↦ λQ∀x(student’(x) → Q(x))(work’) : t
. ⇒β ∀x(student’(x) → work’(x))

36

NP (1)

S (0)

VP (4)

IV (5)DET (2)

worksEvery

N (3)

student

Literature

■ L.T.F. Gamut (1991): Logic, Language and Meaning,
Vol II. University of Chicago Press. Chapter 4

■ David Dowty, Robert Wall and Stanley Peters (1981):
Introduction to Montague Semantics. Dordrecht, Reidel.
Chapter 4.

37

