Semantic Theory
Lecture 3 - Semantics Construction

Manfred Pinkal & Stefan Thater
FR 4.7 Allgemeine Linguistik (Computerlinguistik)
Universitat des Saarlandes

Summer 2012

First-order logic

m Formulas of first-order logic can talk about properties of
and relations between individuals.

m Constants and variables denote individuals.

m Quantification is restricted to quantification over
individuals.

Limits of first-order logic

m First-order logic is not expressive enough to capture the
full range of meaning of natural language:

m Modification (“good student”, “former professor”)

m Sentence embedding verbs (“knows that ...")

m Higher order quantification (“have the same hair color”)
L I

m First-order logic does not support compositional
semantics construction.

Limits of first-order logic

m The principle of compositionality (recap): The
meaning of a complex expression is a function of the
meanings of its parts and of the syntactic rules by which
they are combined (cited from Partee &al., 1993)

m Compositional semantics construction:

m compute meaning representations for sub-expressions.
m combine them to obtain a meaning representation for a
complex expression.

m a man walks » 3Ix(man’(x) A walk’(x))

m amanwr (?)

m walks » (?)

Type Theory

m The types of non-logical expressions provided by first-
order logic are not sufficient to describe the semantic
function of all natural language expressions.

m Type theory provides a much richer inventory of types:
higher-order relations and functions of different kinds.

Types

m Basic types:
m e - the type of individual terms (“entities”)

m t - the type of formulas (“truth-values”)

m Complex types:
m |f g, T are types, then (o, T) is a type.

m (g, T) is the type of functions mapping arguments of type o
to values of type T.

m Types indicate, how many arguments a predicate has,
and what types the arguments must have.

Types of Predicate Logic

m Individual constants and variables: e

m One-place predicates (sleep, walk, ...)
= (e t)

m Two-place predicates (read, admire, ...)
= (g, (e t)

m Three-place predicates (give, ...)
= (e, (e, (e, 1)

Type Theory - Vocabulary

m Constants: For every type T a possibly empty set of
non-logical constants CON+ (pairwise disjoint)

m Variables: For every type T an infinite set of
variables VAR (pairwise disjoint)

m Logical symbols: V, 3, A, v, ...

m Brackets: (,)

Type Theory - Syntax

m The sets of well-formed expressions WE- for every
type T are given by:

(i) CON: € WErand VAR: € WE-, for every type T
(ii) If ais in WE, 1), B in WEs, then a(B) € WE-.

(iii) If A, B are in WEt, then —A, (A A B), (A v B), (A - B),
(A & B) are in WE:.

(iv) If Aisin WEtand v is a variable of arbitrary type, then
VVvA and 3vA are in WE:.

(v) If a, B are well-formed expressions of the same type,
then a = B € WEt.

Type Theory - Semantics [1/3]

m Let U be a non-empty set of entities.

m The domain of possible denotations D+ for every
type T is given by:
L} De = U
m D= {0, 1}

® D, 1) is the set of all functions from Dg to D+
m Expressions of type T denote elements of D+

m For instance
m o € WE, v denotes a set of individual

m o € WEe, 1), vy denotes a set of sets of individuals

10

Characteristic Functions

m Many natural language expression have a type (o, t).

m (o, t) the type of functions mapping elements of type o
to true or false.

m Such function are also known as characteristic
functions, and can be thought of as subsets of Dg.

m Example: “student” is a constant of type (e, t) and can
be seen as characterising the set of students.

11

Characteristic Functions

m U={a, b, c d}

m X = {a, b}
m Characterisitic function fx of X (over U):
m fy(a) =1 a1
m fx(b) =1 b o1
m fx(c)=0 c -0
m fy(d) =0 d-0

m More generally: Foralla € U, fx(a) = 1iffae X

12

Type Theory - Semantics [2/3]

m A model structure for a type theoretic language
consists of a pair M = (U, V), where

m U is a non-empty domain of individuals
m Vs an interpretation function, which assigns to every
member of CON; an element of Dx.

m Variable assignment g assigns every variable of
type T a member of D«

13

Type Theory - Semantics [3/3]

m Interpretation with respect to a model structure
M = (U, V) and a variable assignment g:

(i) [oI™9 = V(a), if a is a constant
[a]™9 = g(a), if a is a variable
(ii) [o(B)I™9 = [a™9([BIM9)

(i) [~@I"9 = 1 iff [= 0
[[(P A lIJ]]M'g =1 iff II(p]]M'g =1 and [[lp]]M,g =1
[[(P v LP]]Mrg =1 iff H(p]]M.g =1or Hw]]M,g =1

(iv) [a=pIMe = 1iff [a]™9 = [BI™9

14

Type Theory - Semantics [3/3]

m Interpretation with respect to a model structure
M = (U, V) and a variable assignment g:
(v) [3AveI"9 = 1 iff there is a d € D such that [@]"elvdl = 1
[VveIMs = 1 iff for all d € D : [pIMolvidl = 1
(where v is a variable of type T)

15

Examples [= whiteboard]

m Bjll reads a book
m [3Ix(book’(x) A read’(x)(b*)]M9 = 1 iff ...

m Bijll is a good student
m [good’(student’)(b*)[M9 = 1 iff ...

read’ : (e, (e, t)) b*:e

book’ : (e, t) x:e
student’ : (e, t)

good’ : {{e, t), (e, t))

16

Adjective Classes & Meaning
Postulates

= Natural language:

m Bill is a good student E Bill is a student

= Type theory:
m good’(student’)(b*) ¥ student’(b*)

|u

m We need additional “meaning postulates” to get the
intended entailment relations

m Meaning postulates are restrictions on models and
constrain the possible meaning of certain words

17

Adjective Classes & Meaning
Postulates

m Intersective adjectives (“blond”)
®m [blond N]= [blond [n[N]
m Meaning postlate: VGVx(blond(G)(x) = (blond*(x) A G(x))
m Note: blond € WEe, 1), (e, t)), blond* € WE(en
m Subsective adjectives (“good”)
® [goodN]Jc[N]
m Meaning postlate: VGVx(good(G)(x) = G(x))
m Privative adjectives (“former”)
m [formerN]In[N]= @
m Meaning postlate: YGVx(former(G)(x) =» =G(x))

18

Semantics Construction

m The principle of compositionality (recap): The
meaning of a complex expression is a function of the
meanings of its parts and of the syntactic rules by which
they are combined (cited from Partee &al.,1993)

m Compositional semantics construction:

m compute meaning representations for sub-expressions

m combine them to obtain a meaning representation for a
complex expression.

19

A simple grammar

S -> NP VP PN - Bill
NP - PN PN — Mary
VP - IV IV - works
VP - TV NP TV - likes
m Bijll works

m Bill likes Mary

20

Semantic lexicon

m Billb b*:e
m Mary» m*:e
m likes b like’' : (e, (e, t))

m works » work’ : (e, t)

® read “p” as “translates into”

21

Semantics Construction Rules
(1st Version)

m S-> NPVP
if VP » o' and NP » B’, then S+ a'(B’)

= NP - PN
if PN » o', then NP » o’

m VP IV
if Ve o, then VP o’

m VP - TV NP
if TV o and NP - @', then VP » o'(B’)

22

Bill likes Mary

S
like’(m*)(b*) : t

NP VP
b*: e like’(m*) : (e,t)
PN \ NP
b*: e like’ : (e,(e,t)) m*: e
. . PN
Bill likes m*: e
Mary

23

Noun Phrases

John works » work(j)

Somebody works » Ax(work(x))

Every student works » ¥x(student(x) = work(x))
A student works » Ax(student(x) a work(x))

No student works » =3Ax(student(x) A work(x))

John and Mary work ~ work(j) A work(m)

24

A-Abstraction

m Ax(drive(x) A drink(x))
m 3 term of type (e, t)
m denotes the property (set of individuals) of being “an x

such that x drives and drinks”

m A-abstraction is an operation that takes an expression
and “opens” specific argument positions.

m The result of abstraction over individual variable x in the
formula “drive(x) A drink(x)” results in the complex
expression “Ax(drive(x) A drink(x)).”

25

Type Theory with A-Operator

m Syntax like basic type theory, plus:
m |f a is in WE: and v is a variable of type o, then Ava
is a well-formed expression of type (o, T).

m The scope of the A-operator is the smallest WE to its
right. Wider scope must be indicated by brackets.

m We often use the “dot notation” Ax. ... indicating that
the A-operator takes widest possible scope.

26

A-Abstraction - Semantics

m If a € WE+, v € VARg, then [AvalM9 is that function
f: D¢ = D+ such that for all a € Dg, f(a) = [a]M9lv/al

m [Ax(drink(x) A drive(x))IM9 = ...

® [= whiteboard]

27

A-Abstraction - Semantics

m If « € WE+, v € VARg, then [AvalM9 is that function
f: Do = D+ such that for all a € Dy, f(a) = [a]M.9lv/al

m |f the A-expression is applied to some argument, we can
simplify the interpretation:
= [Ava]“9(A) = [a]MolvAl

m [Ax(drink(x) A drive(x))(b*)]M9 =1
m iff [Ax(drink(x) A drive(x))IM9([b*]™9) = 1
m iff [Ax(drink(x) A drive(x))IM9(Vm(b*)) = 1
m ff [drink(x) A drive(x)]M-axV(b"] =]
m iff [drink(x)M9lxV®O9] and [drive(x)M-ebVE9] = 1

m iff Vm(drink)(Vm(b*)) = 1 and Vm(drive)(Vm(b*)) =1
28

B-Reduction

m [Ava(B)IM9 = [a]M-olvIBIMal

® = all (free) occurrences of the A-variable in a get the
interpretation of B as value.

m Syntactic shortcut: B-reduction
= Ava(B) e [B/v]a

m [B/v]a is the result of replacing all free occurrences of v in
o with B.

m Achtung: The equivalence is not unconditionally valid

29

Variable capturing

m Are Ava(B) and [B/v]a always equivalent?
Ax[drive’(x) A drink’(x)1(j*) « drive’(j*) A drink’(j*)

Ax[drive’(x) A drink’(x)1(y) e drive’(y) A drink’(y)
= Ax[Vy know’(x)(y)1(j*) & Vy know(j*)(y)
= NOT: Ax[Vy know’(x)(y)I(y) « Yy know(y)(y)

m Let v, v’ be variables of the same type, a any well-
formed expression.

m v is free for v’ in a iff no free occurrence of v’ in ais in
the scope of a quantifier or a A-operator that binds v.

30

Conversion rules

m B-conversion: Ava(B) [B/v]x

m if all free variables in B are free for v in a.

® g-conversion: Ava © Aw[w/v]a

m if wis free forvin a.

® n-conversion: Av(a(v)) & a

31

Back to noun phrases

m Every student S
® & APVx(student’(x) - P(x)) —
NP VP
m Type: {{(e, t), t) /\ /\
m Interpretation: Every student works

m Fvery student denotes the set of properties that apply to
every student (“property” = sets of individuals).

m [Every student] = { P | every student has property P }

m Semantic construction rule for S -» NP VP:
m ifVPe o' and NP e B, then S+ B'(a’)

32

Back to noun phrases

m Interpretation of “every student:” the set of properties P
that apply to every student

m every student » APVx(student’(x) - P(x))

m Interpretation of “a student:” the set of properties P
that apply to some student.
m 3 student - AP3x(student’(x) A P(x))

m Interpretation of “Bill:” the set of properties P that apply
to Bill.
. Bill » AP.P(b*)

33

Determiners

B a, some b AFAG3X(F(x) A G(x))
m every b AFAGVYX(F(x) = G(x))
® no » AFAG —=3x (F(x) A G(x))

34

Semantics Construction Rules
(2nd Version)

m S->NPVP
if VP> a’ and NP » B’, then S » B'(a’)

= NP-DETN
if DET » a’ and N » B’, then NP » o’(B’)

= NP - PN
if PN » o', then NP » o’

m VP IV
if Ve a, then VP B o’

35

Every student works

(2) » APAQVX(P(x) = Q(x)) : {{e, t), ({e, t), t)
(3) » student’ : (e, t)

(1) » APAQVX(P(x) = Q(x))(student’): {{e, t), t)
=g AQVx(student’(x) = Q(x))

(4) = (5) » work’ : (e, t)
(0) » AQVx(student’(x) —» Q(x))(work’) : t S (0)

5 Ux(student’(x) » work’(x)) T

NP (1) VP (4)
DET(2) N (3) IV (5)
I I I

Every student works
36

Literature

m L.T.F. Gamut (1991): Logic, Language and Meaning,
Vol Il. University of Chicago Press. Chapter 4

m David Dowty, Robert Wall and Stanley Peters (1981):
Introduction to Montague Semantics. Dordrecht, Reidel.
Chapter 4.

37

