
Manfred Pinkal

Stefan Thater

2008-05-20

Semantic Theory

Underspecification

2

• Sentences with two or more scope bearing operators such

as quantifiers, negations, … are often ambiguous:

• “Every student presents a paper.”

– !x(student’(x) ! "y(paper’(y) # present’(x,y)))

– "y(paper’(y) # !x(student’(x) ! present’(x,y)))

• “Every student didn’t pay attention.”

– !x(student’(x) ! ¬pay-attention’(x))

– ¬!x(student’(x) ! pay-attention’(x))

Scope ambiguities

• Compositional semantic construction: the readings are

determined by the syntactic structure.

• How can we derive more than one reading if the sentence

has only one syntactic structure?

3

Sentence Semantic representationSyntactic analysis

…

Semantic representation

…

Semantic representation

Scope Ambiguities: Problem #1

?

?

4

Nested Cooper Storage

• “Every student presents a paper.”

– $present*(x2)(x1), {

 $%P !x[student’(x) ! P(x)], &'1, [= $ES, &'1]

 $%Q "y[paper’(y) # Q(y)],&'2 }' [= $AP, &'2]

• Retrieval:

1. ES(%x2(AP(%x1(present*(x2)(x1)))))

() "y(paper’(y) # !x(student’(x) ! present*(y)(x)))

2. AP(%x1(ES(%x2(present*(x2)(x1)))))

() !x(student’(x) ! "y(paper’(y) # present*(y)(x)))

Nested Cooper Storage

• Storage techniques like Nested Cooper Storage allow to

derive several distinct readings on the basis of a single

syntactic analysis.

– Problem #1 solved (… to a certain extent, see below)

• But note that Nested Cooper Storage has its own

problems:

– Non-determinism: storage vs. application at NP-nodes,

retrieval at S-nodes.

– For certain types of sentences it is not possible to derive all

readings (e.g., “every student did not pay attention.”)

5

6

• Combinatorial explosion of readings: the number of

readings can grow exponentially with the number of scope

bearing operators.

(1) Most politicians can fool most voters on most issues most

of the time, but no politician can fool every voter on

every single issue all of the time. (ca. 600 readings)

(2) But that would give us all day Tuesday to be there.

(ca. 65000 readings according to the ERG)

Scope Ambiguities: Problem #2

7

• Some sentences can be evaluated semantically without

having to commit to one scope reading:

– “In Saarbrücken, many scientists at several institutes are

working on numerous interesting research problems in

different areas of semantics.”

– “Every student must speak two foreign languages. This is

definitely too much.”

Enumeration of Readings is

sometimes not necessary

8

• The disambiguation to one reading can occur naturally as

the discourse progresses:

– “Every student must speak two foreign languages. These

languages are taught at our department.”

– “Every student must speak two foreign languages. Appendix

1 of the Studienordnung lists the twenty admissible

languages.”

Immediate Enumeration of

Readings is not always necessary

9

• Sentences can contain “spurious ambiguities”

– “We quickly put up the tents in the lee of a small hillside and

cook for the first time in the open.”

– 480 readings according to the English Resource Grammar …

– but only 2 equivalence classes, characterised by the relative

scope of “the lee of” and “a small hillside”

Enumeration of Readings is not

always necessary

10

• World knowledge can exclude some readings:

– “A rabbit is in every hat.”

– “She has a finger in every pie.”

• Preferences, such as

– Word order

– Intonation

– Choice of determiners: “a search engine for every subject” vs.

“a search engine for each subject”

– (from Language Log: A quantifier for every season)

Disambiguating Factors

11

• By using storage techniques, we can compute the

readings of scopally ambiguous sentences

compositionally.

• But …

– the number of readings can grow exponentially with the

number of scope-bearing elements.

– enumerating all readings can thus take a long time.

– most of this time is wasted.

So where do we stand?

• Derive a single underspecified semantic representation

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings excluded

by the context.

• Enumerate readings by need.

12

Underspecification: the big picture

Sentence Semantic representationSyntactic analysis

…

Semantic representation

…

Semantic representation

USR

13

• Basic observation:

– The readings of scopally ambiguous sentences are made up

of the same set of constants, connectives and variables, and

differ only in their structure

– “Every student reads a book.”

– !x(student’(x) ! "y(book’(y) # read’(x,y)))

– "y(book’(y) # !x(student’(x) ! read’(x,y)))

• Basic idea:

– Consider semantic representations as trees

– Describe sets of trees using dominance graphs

Scope Underspecification

Scope Underspecification: the Idea

• “Every student reads a book”

– !x(student’(x) * "y(book’(y) # read’(y)(x)))

– "y(book’(y) # !x(student’(x) * read’(y)(x)))

• Readings as trees:

14

!x

"

@

student’ varx

#y

$

@

book’ vary @

read’ vary

@

varx

#y

$

@

book’ vary

!x

"

@

student’ varx @

read’ vary

@

varx

Scope Underspecification: the Idea

15

!x

"

@

student’ varx

#y

$

@

book’ vary

@

read’ vary

@

varx

#y

$

@

book’ vary

!x

"

@

student’ varx @

read’ vary

@

varx

!x

"

@

student’ varx

#y

$

@

book’ vary @

read’ vary

@

varx

(USR) (Readings as trees)

Outline

• Terms as trees

• Dominance graphs as descriptions of sets of trees

• Semantics construction with dominance graphs

• Things you can do with dominance graphs

16

17

• Terms (and formulas) of type theory have a natural

reading as trees:

– Application M(N) is the tree @(M,N)

– Abstraction %x.M is the tree lam(M)

– Quantifiers analogously

– Constant symbols correspond to leaf labels

– Variables x correspond to leaves with label varx.

– (Alternatively: binding edges, see slides at the end)

Terms as Trees

• sleep’(j*)

18

Terms as Trees

@

sleep’ j*

19

Terms as Trees

• !x(student’(x)+!+intelligent’(x))

!x

"

@ @

student’ varx intelligent’ varx

20

Terms as Trees

• (%F.F(j*))(sleep’)

!F

@

varF j*

sleep’

@

21

• Informally, a dominance graph is a directed graph which

consists of trees (or “tree fragments”) which are

connected by dominance edges.

• For modeling scope underspecification, we consider

labeled dominance graphs, i.e. pairs of a dominance

graph and a partial node labeling function L

– L must be defined on all non-leaves of the tree fragments

– Leaves may be unlabelled

• Terminology:

– Unlabeled leaves are called “holes”

Dominance Graphs

An Example

22

• Three tree fragments that informally correspond to

– !x(student’(x) * …)

– "y(book’(y) # …)

– read(y)(x)

• The two upper fragments

each have one hole.

• The holes have outgoing

dominance edges to the

root of the lower fragment.

!x

"

@

student’ varx

#y

$

@

book’ vary

@

read’ vary

@

varx

Dominance Graphs

• More formally, a dominance graph is defined as a directed

graph G = (V, E , D) where V is a set of nodes and

– E is a set of “tree edges” (solid edges)

– D is a set of “dominance edges” (dotted edges)

• The subgraph (V, E) must be a forest, i.e. it is acyclic and

no node has more than one incoming (tree-) edge.

• Labelled dominance graphs: G = (V, E , D, L) where L is a

partial labelling function mapping nodes in V to labels of

some signature -.

23

Solved Forms

• A dominance graph G can be seen as a description of a

set of trees into which G can be embedded.

• These trees can be represented by the solved forms of G.

• A dominance graph GS is said to be in solved form if it is a

forest, i.e. no node has more than one incoming

dominance edge.

• GS is a solved form of some dominance graph G if

– GS is in solved form

– GS and G differ at most in their dominance edges, and

– if nodes X and Y are connected by a dominance edge in G,

then there is a directed path from X to Y in GS.

24

An Example

25

!x

"

@

student’ varx

#y

$

@

book’ vary

@

read’ vary

@

varx

!x

"

@

student’ varx #y

$

@

book’ vary

@

read’ vary

@

varx

(dominance graph) (solved form)

An Example

26

!x

"

@

student’ varx

#y

$

@

book’ vary

@

read’ vary

@

varx

!x

"

@

student’ varx

#y

$

@

book’ vary

@

read’ vary

@

varx

(dominance graph) (solved form)

Not a solved form of …

27

• The dominance graph on the right is in solved form, but it

is not a solved form of the graph on the left

– the dominance edge from the !-fragment to the read-

fragment is not realised as reachability in the right graph

 @

student’ varx

@

book’ vary

@

read’ vary

@

varx

!x

"

#y

$

@

student’ varx

@

book’ vary

@

read’ vary

@

varx

!x

"

#y

$

An unsolvable graph

• Not all dominance graphs have a solved form

28

@

student’ varx

!x

"

Solved Forms – Remark #1

• As said earlier, the solved forms of a dominance graph G

represent the trees into which G can be embedded.

(these trees are the solutions of G)

• For modeling scope underspecification, we are usually

interested in a particular class of solutions called

constructive solutions.

• Not every solved form corresponds to a constructive

solution, but recent studies indicate that the solved forms

of all “linguistically relevant” graphs all correspond to

constructive solutions.

29

Solved Forms – Remark #1

• Basic idea: if each hole of a solved form has exactly one

outgoing dominance edge, …

• then one can obtain a constructive solution by identifying

the two ends of each dominance edge.

30

Solved Forms – Remark #2

• We can distinguish various sub-classes of dominance

graphs, depending on which kinds of dominance edges

are permitted

– In normal dominance graphs, dominance edges are only

permitted between holes and roots.

– Weakly normal dominance graphs additionally permit root-to-

root dominance edges (but not hole-to-root edges)

• Note that for dominance graphs with hole-to-root

dominance edges, we need a more general definition of a

solved form.

31

Where are we now?

• Formulas (readings of natural language sentences) can be

seen as trees.

• These trees can be described by dominance graphs …

• in the sense that the solved forms of a graph correspond

to the readings of the underlying sentence.

• Next step: Semantic construction for dominance graphs.

32

33

• For every node in the syntax tree, we derive a dominance

graph as follows:

– Each syntax rule is associated with a semantics rule that

combines dominance graphs.

– Each of these sub-dominance graphs has an interface node

that is used to connect it with other subgraphs.

– The USR for the whole sentence is then the dominance graph

associated with the root of the sentence.

Semantics Construction: Principles

• Rule of lexical nodes:

The semantic representation (sub-graph)) for a word “a”

is supplied by the lexicon.

34

a

A

)

Lexicon access

A

Semantics construction rules

35

• S * NP VP

• VP * TV NP

• NP * PN

@

(VP) (NP)

@

(TV) (NP)

(PN)

Interface nodes

36

An Example

S

NP VP

PN TV NP

PNJohn loves

Mary

love' m*

j*

An Example

37

S

NP VP

PN TV NP

PNJohn loves

Mary

love' m*

j*

An Example

38

S

NP VP

PN TV NP

PNJohn loves

Mary

love' m*

j*@

An Example

39

S

NP VP

PN TV NP

PNJohn loves

Mary

love' m*

j*

@

@

Semantic representation: love’(m*)(j*)

40

Quantifiers

• The graph for a quantifier

noun phrase contains a

variable node and its binder.

• The interface node of the

graph is the node that

represents the variable (of

type e)
every

varx

@

@ lamx

student’

Constructing Graphs for Quantifiers

• Lexicon entry for determiners (here “every”):

41

every

lamP

!

@ @

lamQ

"x

varP varx varQ varx

Constructing Graphs for Quantifiers

• Syntax rule: NP * Det N’

42

varx

@

@ lamx

(N’)(Det)

An Example

43

S

NP VP

Det IV

sleepsEvery

sleep’

N

student

student’

every

An Example

44

S

NP VP

Det IV

sleepsEvery

sleep’

N

student

varx

@

@ lamx

student’

every

An Example

45

S

NP VP

Det IV

sleepsEvery

sleep’

@

N

student

varx

@

@ lamx

student’

every

• In a final step, we replace

dominance edges pointing

into fragments by dominance

edges pointing to the root of

the fragment.

• Corresponding formula:

– (%P%Q!y[P(y) ! Q(y)])(student’)(%x sleep’(x))

– () !y[student’(y) ! sleep’(y)]

After “Normalisation”

46

sleep’

@

varx

@

@ lamx

student’

every

Scope Ambiguities

47

S

NP VP

Det TV

presentsEvery

presents’

N

student

vary

@

@ lamx

student’

every

NP

Det

a

N

paper

@

@ lamy

paper’

a

varx

Scope Ambiguities

48

S

NP VP

Det TV

presentsEvery

present’

@

N

student

vary

@

@ lamx

student’

every

NP

Det

a

N

paper

@

@ lamy

paper’

a

varx

Scope Ambiguities

49

S

NP VP

Det TV

presentsEvery

present’

@

N

student

vary

@

@ lamx

student’

every

NP

Det

a

N

paper

@

@ lamy

paper’

a

@

varx

Scope Ambiguities

50

present’

@

vary

@

@ lamx

student’

every

@

@ lamy

paper’

a

@

varx

51

• We still use type theory as the object language, i.e. the

language of semantic representations.

• However, types no longer drive the construction process.

• We use far fewer lambdas for “construction bookkeeping”;

we replace this by plugging USRs into each other directly.

• This makes us more flexible in our choice of semantic

representations:

– can use john* of type e for proper names

– can use present* of type $e,$e,t'' for transitive verbs

An observation

52

• The quantifier representation is split into two parts:

– a variable of type e which the verb is applied to; this is like

the x
i
 that is introduced in the Nested Cooper Storage rule.

– a fragment containing a quantifier representation of type

$$e,t',t', which is applied at some point to what would be the

“semantic content” in Nested Cooper Storage.

• The two components are connected by binding and

dominance edges.

• The variable binding is introduced together with the

variable and the binder; no need for “variable capturing.”

An observation about NPs

53

• As in type theory, we use variable names to model the

relation between a binder (%, !, ") and the variables

bound by it.

• In an underspecification context,

variable names aren’t always

sufficient to indicate the binder

for each variable:

• Problem could be solved by requiring that variables are

named apart.

• Binding edges are a cleaner and simpler way of doing it.

Representing variable binding

P

!x "x

@

varx

54

• Assume a third type of edges: binding edges

• All variables have label “var,” and labels representing

lambda-binders as “lam” (quantifiers analogously)

• The graph for “every student presents a paper” with

binding edges:

Using binding edges

sleep’

@

var

@

@ lam

student’

every

@

@ lam

paper’

a

@

var

Algorithms

• Deciding solvability

– given a dominance graph G, has G as solved form?

• Enumerating solved forms

– given a dominance graph G, enumerate the (minimal) solved

forms of G.

• Eliminating redundant readings

– Strengthen an USR G such that it has fewer readings, but still

contains a representative for each equivalence class of G.

55

56

• Enumerating all readings is typically a waste of time.

• Underspecification: Enumerate only by need.

• Dominance graphs: Encode readings as trees; use graphs

as underspecified semantic representations.

• Simple semantics construction that combines sub-

dominance graphs.

• Each syntactic combination rule is associated with a

semantic combination rule.

Conclusion

