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Sentence Semantics

• Step 1: First-order Logic

• Step 2: Type Theory

– Higher-order predicates

– Compositional semantics construction

• Step 3: !-abstraction, "-reduction

– Higher-order expressions for semantics construction

– Obtaining first-order expressions by "-reduction

• Step 4: Treatment of Scope-Variations

– Today: Nested Cooper Storage

– Next Lecture: Underspecificaton
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Basic Composition Rules

• Rule of functional application

 B # " : $%,&'   B # " : %

 C # ( : %   or  C # ( : $%,&'

 A # "(() : &    A # ((") : &

• Rule for non-branching nodes

 B # " : &

 A # " : &
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Basic Composition Rules

• Rule for lexical nodes:

 

 A # " : &

• The semantic representation " for a word w is supplied by 

the lexicon. 
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“Every student works”
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!P!Q"x(P(x) ! Q(x))(student’)

#$ !Q"x(student’(x) ! Q(x))

work’

!Q"x(student’(x) ! Q(x))(work’)

#$ "x(student’(x) ! work’(x))

!P!Q"x(P(x) ! Q(x)) student’ work’

S

NP VP

DET VN

every student works

Scope – Terminology

• Logic: Quantifier and Scope

– )x(student’(x) ! work’(x))

• Natural language semantics:

– Determiner + Restriction form NP-Denotation

(“generalized quantifiers”)

– NP-denotation is applied to its nuclear scope

– every’(student’)(work’)

– (!P!Q)x(P(x) ! Q(x))(student’)(work’)
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Variable Quantifier-Scope

(1) Every linguist speaks two languages

(2) Our company has an expert for every problem

(3) Headline: A search engine for every subject 
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Quantifiers and Scope-Sensitive 

Operators 

(1) Every student didn’t pay attention.

(2) Every citizen can become president.

(3) During his visit to China, Helmut Kohl intends to visit a 

factory for CFC-free refrigerators 

8



9

Scope Ambiguities

(1) Every student presents a paper.

(a) )x(student’(x) ! *y(paper’(y) + present’(x,y)))

(b) *y(paper’(y) + )x(student’(x) ! present(x,y)))

(2) Every student didn’t pay attention.

(a) )x(student’(x) ! ¬pay-attention’(x))

(b) ¬)x(student’(x) ! pay-attention’(x))
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Scope Ambiguities

(1) Every researcher of a company saw some sample.

(a) )x((res’(x) + *y(cp’(y) + of’(x,y))) ! *z(spl’(z) + see’(x,z))

(b) *z(spl’(z) + )x((res’(x) + *y(cp’(y) + of’(x,y))) ! see’(x,z))

(c) *y(cp’(y) + )x((res’(x) + of’(x,y)) ! *z(spl’(z) + see’(x,z)))

(d) *y(cp’(y) + *z(spl’(z) + )x((res’(x) + of’(x,y)) ! see’(x,z)))

(e) *z(spl’(z) + *y(cp’(y) + )x((res’(x) + of’(x,y)) ! see’(x,z)))

(2) Every researcher of a company saw some sample of 

most products.

• The number of readings can grow exponentially with the 

number of noun-phrases!



Scope Ambiguities – Problems

• The scope of noun phrases is not determined by the 

syntactic position in which they occur.

• Divergence between syntactic and semantic structure is a 

challenge for compositionality and (compositional) 

semantics constructions.

• Scope ambiguities may lead to a combinatorial explosion 

of readings.
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So far, we get only one reading

S

NP VP

DET VN

every student presents

!Q"x(student’(x) ! Q(x))

"x(student’(x) ! #y(paper’(y) $ present’(y)(x)) 

!F!z(F(!w.present’(w)(z)))

NP

DET N

a paper

!Q#y(paper’(y) $ Q(y))

!z#y(paper’(y) $ present’(y)(z)) 
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The Problem with Scope

• Sentences with scope ambiguities can have multiple 

semantic representations for a syntactic constituent.

• The order of the scope-bearing elements – quantifiers, 

negation, adverbs, etc. – doesn’t necessarily follow the 

order of the syntactic combination.

• But: With the approach we have so far, we can only derive 

a single semantic representation for each constituent!

• How can we solve this problem?

Solving the Problem: Principles

(1) Every student presents a paper.

(a) )x(student’(x) ! *y(paper’(y) + present’(x,y)))

(b) *y(paper’(y) + )x(student’(x) ! present’(x,y)))

• We can obtain the second reading if we delay the 

application of the inner noun phrase (“a paper“).

• To this end, we have to:

– temporarily store the noun phrase representation away

– bind the object argument position by a variable

– make sure that the correct argment position will be bound, 

when the „real“ noun prase denotation is eventually applied
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Using Lambda-Abstraction

(“Quantifying-in”)

• Abstract over the correct variable and then apply the NP 

representation to the abstracted term.

• Problem: How can we do this compositionally?

!F)x(student’(x) ! F(x))(!x1. !G*y(paper’(y) + G(y))(!x2. present*(x2)(x1)))

 !G*y(paper’(y) + G(y))(!x2. present*(x2)(x1))

  present*(x2)(x1)

!G*y(paper’(y) + G(y))(!x2. !F)x(student’(x) ! F(x))(!x1. present*(x2)(x1)))

 !F)x(student’(x) ! F(x))(!x1.present*(x2)(x1))

  present*(x2)(x1)
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Nested Cooper Storage

• One algorithm for deriving such representations 

compositionally is Nested Cooper Storage (Keller 1988). 

• Nested Cooper Storage is an extension of the original 

Cooper Storage technique (Cooper 1975).

• (Nested) Cooper Storage computes the set of all semantic 

readings nondeterministically from a single syntactic 

analysis:

Sentence
Syntactic

analysis
Semantic representation

Semantic representation

Semantic representation
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Nested Cooper Storage: Principles

• The semantic values of syntactic constituents are ordered 

pairs $,, -':

– , . WE& is the content

– - is the quantifier store: a set of NP representations that must 

still be applied.

• At NP nodes, we may store the content in -.

• At sentence nodes, we can retrieve NP representations 

from the store in arbitrary order and apply them to the 

appropriate argument positions.

Nested Cooper Storage: Storage

• Storage: If B is an NP node whose semantic value is $(, -', 

then $!P.P(xi), {$(, -'i}' is also a semantic value for B, 

where i . N is a new index.

 B # $(, -'

 B # $!P.P(xi), {$(, -'i}'

• Using this rule, we can assign more than one semantic 

value to NP nodes.

• The content of the new semantic value is a placeholder of 

type $$e,t',t', and the original value (including its store) is 

moved to the store.
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Nested Cooper Storage:

Basic Composition Rules (adapted)

• Rule of functional application

 B # $", -'    B # $", -'

 C # $(, /'   or  C # $(, /'

 A # $"((), - 0 /'  A # $(("), - 0 /'

• Rule for non-branching nodes

 B # $", -'

 A # $", -'

• Rule for lexical nodes:

 

 A # $", 1'
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Nested Cooper Storage

• A syntactic constituent may be associated with multiple 

semantic values of this form.

• A lambda term M counts as a semantic representation for 

the entire sentence iff we can derive $M, 1' as a value for 

the root of the syntax tree.

• Hence, there may be more than one valid semantic 

representation for the complete sentence.



Nested Cooper Storage: Retrieval

• If B is a sentence node, we can retrieve quantifiers from 

the store:

 B # $,, - 0 {$(, /'i}'

 B # $((!xi.,), - 0 /'

• Using this rule, we can apply a previously stored NP.

• At this point, the correct !-abstraction for the variable 

associated with the stored element is introduced.

• The old store / is released into the store for A.
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An Example

(1) $!F!P)x(F(x) ! P(x)), 1'

(2) $student’, 1'

(3) $!F!P)x(F(x) ! P(x))(student’), 1'

 $!P)x(student’(x) ! P(x)), 1' ("-reduction)

 $!P.P(x1), {$!P)x(student’(x) ! P(x)), 1'1}' (storage)

(4) $!G!x(G(!y(pres*(y)(x)))), 1'

(7) $!Q*y(paper’(y) + Q(x)), 1'

 $!P.P(x2), {$!Q*y(paper’(y) + Q(x)), 1'2}' (storage)

(8) $!G!x(G(!y(pres*(y)(x))))(!P.P(x2)), {$!Q*y(paper’(y) + Q(x)), 1'2}'}

 $!x.pres*(x2)(x), {$!Q*y(paper’(y) + Q(x)), 1'2}'} ("-redcution)

(9) $pres*(x2)(x1), {$!P)x(student’(x) ! P(x)), 1'1, $!Q*y(paper’(y) + Q(x)), 1'2}'
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S (9)

NP (3) VP (8)

DET (1) V (4)N (2)

every student presents

NP (7)

DET (5) N (6)

a paper
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Retrieval: Reading #1

• By applying the Retrieval rule, we can derive the following 

representation for the S node:

 $ pres*(x2)(x1),  { $ !P)x[student’(x) ! P(x)], 1'1,

        $ !Q*y[paper’(y) + Q(y)] , 1'2 }'

#R $ !Q*y[paper’(y) + Q(y)](!x2.pres*(x2)(x1)),

  { $ !P)x[student’(x) ! P(x)], 1'1 }' 

#" $ *y[paper’(y) + pres*(y)(x1)],

  { $ !P)x[student’(x) ! P(x)], 1'1 }〉 

#R $ !P)x[student’(x) ! P(x)](!x1.*y[paper’(y) + pres*(y)(x1)]), 1'

#" $ )x[student’(x) ! *y[paper’(y) + pres*(y)(x)]], 1'
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Retrieval: Reading #2

• By applying the Retrieval rule, we can derive the following 

representation for the S node:

 $ pres*(x2)(x1),  { $ !P)x[student’(x) ! P(x)], 1'1,

        $ !Q*y[paper’(y) + Q(y)] , 1'2 }'

#R $ !P)x[student’(x) ! P(x)](!x1.pres*(x2)(x1)),

  { $ !Q*y[paper’(y) + Q(y)] , 1'2 }' 

#" $ )x[student’(x) ! pres*(x2)(x)],

  { $ !Q*y[paper’(y) + Q(y)] , 1'2 }〉 

#R $ !Q*y[paper’(y) + Q(y)](!x2.)x[student’(x) ! pres*(x2)(x)]), 1'

#" $ *y[paper’(y) + )x[student’(x) ! pres*(y)(x)], 1'



Nested Stores

(1) [Every researcher of a company] saw some sample.

• Nested stores are needed to model nested NPs as in (1) 

• If both NPs are stored, we must make sure that “every 

researcher (of)” is retrived before “a company.”

– Otherwise, we would obtain a wrong semantic representation 

containing a free variable for the complete sentence.

• The nesting of quantifier stores forces the quantifier for 

the nested NP to take scope over the quantifier for the 

nesting NP (if both NP-representations are stored).
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Compositionality

• The Compositionality Principle as stated earlier:

The meaning of a complex expression is uniquely 

determined by the meanings of its sub-expressions  and 

its syntactic structure.

• Nested Cooper Storage shows: We can maintain this 

principle even in the face of semantic (scope) ambiguity, 

if we use a relaxed concept of “meaning.”



Compositionality

• Two versions of the Compositionality Principle:

– on the level of denotations

– on the level of semantic representations

• Nested Cooper Storage is clearly compositional on the 

level of semantic representations - but in a less 

straightforward way than last week's construction 

algorithm.

• Compositional on the level of denotations: only ina very 

indirect sense.
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Scope Islands

• Nested Cooper Storage makes the simplifying assumption 

that NPs can be retrieved at all sentence nodes.

• This is not true in general because sentence-embedding 

verbs create “scope islands:”

(1) John said that he saw a girl.           (2 readings)

(2) John said that he saw every girl.    (1 reading)

• Non-existential quantifiers may not cross scope island 

boundaries: The second sentence doesn’t mean “for every 

girl x, John said that he saw x.”
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Scope Ambiguities in Real-World 

Texts

• Some broad-coverage grammars such as the English 

Resource Grammar (ERG) compute semantic 

representations with scope.

• The ERG analyses all NPs as scope bearers. This keeps the 

syntax-semantics interface simple, but is not necessarily 

correct (proper names, definites, etc). 

• The median number of scope readings for typical 

sentences (in the Rondane corpus) is 55. 

• But: The median number of semantic equivalence classes 

is only 3!
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Summary

• The syntax-semantics-interface presented last week is a 

nice first step, but it is unable to deal with semantically 

ambiguous sentences.

• Scope ambiguity: Application order of NP representations 

is not determined by the syntactic structure.

• Nested Cooper Storage: Equip semantic representations 

with a quantifier store to allow flexible application of 

quantifiers; multiple semantic representations per 

syntactic constituents allowed.


