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WordNet Relations in FOL

... and in Description Logic
Vx(family(x)—group(x))
family C group
Vx(relative(x)—person(x))
relative C person
Vx(person(x) — Jy(substance_m(y,x) A body(y))
person C Isubstance_m.body
Vx(body(x) — Jy(part_m(y,x) A leg(y))
body L dpart_m.leg
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Figure 2. Network representation of three semantic relations
among an illustrative variety of lexical concepts
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WordNet Relations in Description Logic

Body C Natural_object Family C Group

Relative E Person Brother C Relative

Sister C Relative Flesh € Organic_substance
Bone E Organic_substance Organic_substance t Substance
Arm C 3Substance_m.Flesh Arm C 3Substance_m.Bone
Body C 3Part_m.Arm Body C 3Part_m.Leg

Person C 3Substance_m.Body Relative C IMember_m.Family
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Description Logic Formulas in Description Logic

Atomic Concepts: + Axioms or Rules encode terminological knowledge
» Concepts A = unary predicates in FOL

— i C C
» Empty and universal concept: 1, T Inclusilon c __D’ R _E
+ Roles R = binary relations in FOL - Equality C=DR=S
— If the first concept of an equality axiom is atomic, the axiom is

Comp|ex Concepts: called a definition.
+ Conjunction and disjunction of concepts: C1ncC2,C1uC2 » Axioms form the ,TBox“, containing the conceptual
» Negation (complementary concept): -C knowledge
 Existential restriction: dr.C

( “something that has an R which is a C”) bachelor = = Amarried. T 1 man Lbachelors are unmarried men*
* Value restriction: VR.C married = married-! (being married to so. is reflexive)

(“something all of whose R's (if any) are C) 3 married. T C happy ,all married people are happy*
* Number or Cardinality Restrictions: A<mR/ 3 mR/ 3=mR c Y

(“Something that has at most/ at least/ exactly m different Rs”) 3 22 love £ L »,you can love at most one person

3 married.woman E 3 love.woman ,someone married to a woman
is someone who loves a woman*
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Formulas in Description Logic An example
A T-BOX
* Assertions encode world knowledge: bachelor = = Amarried. T M man Lbachelors are unmarried men*

- C(a). R(@b) married = married! (being married to so. is reflexive)
where C and Bare. TBox concepts and roles, 3 married. T C happy all married people are happy*
a,b,c,...are _'nd'v'd”al constants ) 3 oloveC 1L ,you can love at most one person*

* Aset of assertions forms the ,ABox 3 married.woman C 3 love.woman ,someone married to a woman
is someone who loves a woman*
woman(mary) man(john) An A-BOX

man(sam) woman(sue) :

loves(john,mary)  loves(mary,sam) woman(mary) man(john)

married(sam,sue) happy(sam) man(sam) woman(sue)

loves(john,mary)  loves(mary,sam)
married(sam,sue) happy(sam)
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Model-theoretic Interpretation

« Like FOL model structure:

— M= <D, I> (notational variant of <U, V>)
— D is domain of individuals
— lis interpretation function, providing DL expressions with appropriate value

« Interpretation of concepts, roles, and individual constants:

— I(A) C D for atomic concepts A
— I(R) C DxD for roles R
— I(a) € D for individual constants a

- ()=
_(T)=D

— I(CnD)=/(C)N ID)

— I(CuD)=1/(C)U /D)

I(~ C) = D\I(C)

— I(3R.C) ={a € D| there is b with <a,b>€ /(R) and be /(C)}
I(AR.C ) = {a € D| for all b with <a,b>€ I(R): be I(C)}
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Some Facts about Description Logic

All versions of description logic are proper FOL fragments.
Major reasoning tasks in description logic:
— Subsumption check (Is C sub-concept of D? - Inheritance!)
— Satisfiability check (Are C and D compatible?)
DL reasoning is much more efficient than FOL deduction.

There are different versions of description logic, including or exluding,
e.g., full term negation, union, number restrictions.

Trade-off between expressive power and computational complexity
DL reasoners: FaCT, Racer, Protégé, supporting different reasoning
tasks for different DL versions.

Description Logics form the core or backbone of Semantic Markup
Languages for the Web (e.g., OWL) and various ontologies
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Model-theoretic Interpretation

* Interpretation of formulas (axioms and assertions):

—(CLD )—1|ffI(C) I(D)
- I(C = D) = 1iff I(C) = /(D)

— I(C(a)) = 1iff I(a) € [(C)
— [(R(a, b)) = 1 iff </(a), I(b)> € I(R)
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Ontologies

» An ontology is a shared conceptualization of a domain

* An ontology is a set of definitions in a formal language for terms
describing the world
(Definition taken from slides of Adam Pease)

» Another definition: Ontologies are
— Hierarchical data structures
— Providing formally rigorous information about concepts and relation
— Within a specific domain (domain ontologies)

— Or concepts and relations of foundational, domain-independent
relevance (upper ontologies)

» Upper Ontologies:
— DOLCE, CYC, SUMO
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Event Semantics: Donald Davidson's A Problem

Problem

* Problem: How can the logical entailment relations

(1) The gardener killed the baron at midnight in the park between the different uses of kill be systematically
= killy(g, b, m, p) explained?
(2) The gardener Killed the baron at midnight %(1 ),Q
= killy(g, b, m) (2) 3)
(3) The gardener killed the baron in the park N 2
= kill,(g, b, p) (4)
(4) The gardener killed the baron + Naive FOL interpretation does not solve the problem:
= kill,(g, b) — kill,(g, b, m, p) I= kill,(g, b, m)
— Killy(g, b, m) 1= kill,(g, b)
— etc.
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Another Problem

Adjunct Interpretation: Second Attempt

» Precompute the maximum arity of the underlying

predicate, as., a fixed nurleer. N * What is the correct arity of an event verb/ its
» Bind syntactically unrealized argument positions underlying predicate?

with existential quantifier.

The gardener killed the baron at midnight in the
park under cover of absolute darkness with a
shotgun ...

(1) = Kkill(g, b, m, p)

(2) = Ay kill(g, b, m, y)
(3) = 3AxKill(g, b, X, p)
(4) = I3y Kill(g, b, X, y)
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Adjunct Interpretation: Third Attempt L 1] Davidson's Solution

¢ Model adjuncts in type theory as higher.order operators, . Verps expre.zssin.g gvents have an additional event argument, which is not
i.e., as sentence modifiers (type <t,t>): realised at linguistic surface: ,
1 in th K(at-midiaht(kill b kill = AxhyAe kill(e,x,y), where Kill: <e,<e,<e,t>>>
(1) = in the park(at-midight(kill(g, b))) - Generally, event verbs are represented by relations of a fixed arity (number
+ The arity problem is solved: An arbitrary number of of syntactic complements +1)
adjuncts can be iteratively applied Ieaving the type of the » Adjuncts express two-place relations between events and the respective

"cirumstantial information" (a time, a location, ...)

reSUItmg expression (t) unchanged » The event variable is existentially bound:

* However: The systematic entailment information is lost The gardener killed the baron at midnight in the park
again: = Je][ kill(e,g,b) A time(e, m) A location(e, p) ]
at-midnight(kill(g b)) |= kiII(g b) » Event semantics permits an arbitrary number of adjunct, entailment from

sentence with adjunct to sentence without adjunct follows trivially:
Jef kill(e,g,b) A time(e, m) a location(e, p) |
1= 3e[ kill(e,g,b) A time(e, m) ]
1= 3e[ kill(e,g,b) ]
* Note also: Verb semantics with events is much more intuitive.
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Compositional Event Semantics Uniform treatment of modifiers

» Problem: How are event semantic representations compositionally derived? * One semantic representation for PP modifiers used as adjuncts and in NO
« Remember intersective adjectives: modification:

— Adjectives in attributive use are common noun modifiers (type: <<e,t>,<e,t>>) in the park = AFAX[F(x) A location(x, p)]

— The intersective semantics adjectives like red is modelled by its analysis as

red = AFAX[F(x) A red(x)] + Local adjunct as event modifier:

» Accordingly, adjuncts are analysed as intersective modifiers for event [[The gardener killed the baron ] in the park]

predicates:

o ) o * Post-nominal modifier of an standard common noun:
— at midnight = LE\e[E(e) A time(e, midnight)] The [Jpavillon] in the park]
» The gardener killed the baron at midnight : . . .
. L . » Event semantics provides a natural interpretation for deverbal common
= LEA\e[E(e) A time(e, midnight)](re.kill(e, g, b)) nouns and their modifiers:
< )e.kill(e, g, b) A time(e, midnight) The [[murder] in the park]
» Infinite/tensed clauses, the event variable is eventually bound:

= Jelkill(e, g, b) A time(e, midnight)]
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Event Semantics and Thematic Roles Model theoretic semantics with events

*  Complements can be treated like adjuncts: « Model structure like in standard FOL, except that

— Represent event verbs as one-place event predicates. . . .. .
— Thematic roles as two-place relations linking arguments to the event the universe is subdivided into

denoted by the verb. — a set of standard individuals Ug
The gardener killed the baron at midnight in the park — a set of events Ug
= Je [kill(e) A ag(e,g) A pat(e,b) A time(e,m) A location(e,p)] _ _ _

_ _ - M=<U, V>, U=UgUUg, UsNUg =@

or, using FrameNet frames and roles:

Je [killing(e)  killer(e,g) A victim(e,b)]

+ ,Neo-Davidsonian“ semantics allows the partioning of semantic

information into minimal pieces pieces of information: One-place and
two-place predications.
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Event anaphora in DRT I Event anaphora in DRT

* Events as a new kind of individuals help also to give «The gardener killed the baron . It happened at midnight.
discourse semantics wider coverage:

» The gardener killed the baron . It happened at midnight. e.gb e g be
* Yesterday, | went by train from Hamburg to Saarbriicken. gardener(g) gardener(g)
That was a boring trip. baron(b) baron(b)
kill(e,g,b) kill(e,g,b)
idnight
+ Event referents {i",,'qer‘(ﬁ,r,f;" )
— anew kind of discourse referents e'=e
— are typically introduced by finite/ tensed clauses

— can be referred to by nominal anaphoric expressions
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Model theoretic semantics with events

» Model structure like in standard FOL, except that
the universe is subdivided into
— a set of standard individuals Ug, and
— a set of events Ug

— which is partially ordered by a "temporally precedes"
relation.

Semantic Theory, SS 2008 © M. Pinkal, S. Thater

Temporal relations in an Event

Temporal relations in Event Semantics

» Event Semantics allows the explicit representation of
tense and temporal relations in FOL/DRT

John left = Je[leave(e, j*) n e < e,]

where < is interpreted as temporal precedence, and is the
utterance event.

John left, after Peter had arrived
= Je, Je,[ leave(e,, j*) A e, < e, arrive(e,, p) A €, < €]
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Semantics

John left, after Peter had arrived

jenp,é€

leave(e,j)
e<e,

arrive(e',p)
e<e
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