Sentence Semantics

- Step 1: FOL Representations
- Step 2: Types and Higher-order Logic
 - Higher-order expressions (higher-order predicates, adjectives, degree modifiers)
 - Function application as basic operation for semantics construction
 - Unified, compositional semantics for noun phrases
- Step 3: λ-expressions and β-reduction
 - Higher-order expressions for semantic composition
 - Obtaining FOL sentence representations through β-reduction
 - Semantics Construction with Transitive Verbs
- Step 4: Treatment of scope variation
 - Cooper Storage
 - Underspecification

Semantics Construction: Basic rules

- Rule of functional application:
 \[
 \frac{B \Rightarrow \beta: <\sigma, \tau> \quad C \Rightarrow \gamma: \sigma}{A \Rightarrow \beta(\gamma): \tau}
 \]

- Rule of non-branching nodes:
 \[
 \frac{A \Rightarrow \beta: \tau}{B \Rightarrow \beta: \tau}
 \]

- Rule of lexical nodes:
 \[
 \frac{a}{A \Rightarrow \beta: \tau}
 \]

The semantic representation β for the word "a" is supplied by the lexicon.
An example

S

NP

DET

Every

$\lambda_1 \forall x (F(x) \rightarrow G(x))$

$\lambda_2 \text{student' }$ work'

VP

N

student

V

works

$\forall x (F(x) \rightarrow G(x)) (\text{student'})$

$\Rightarrow \beta \lambda_3 \forall x (\text{student'}(x) \rightarrow G(x))$

$\Rightarrow \beta \forall x (\text{student'}(x) \rightarrow \text{work}(x))$
Scope: Terminology

- Logic: **Quantifier & Scope**

\[\forall x (\text{student}'(x) \rightarrow \text{work}(x)) \]

- **NL Semantics**
 - Determiner + Restriction form NP-Denotation ("Generalized Quantifier")
 - NP Denotation is applied to its **Nuclear Scope**

 \text{Every}'(\text{student}')'(\text{work}')

A Note on Notation

- Either: Use expanded notation from the beginning (e.g., \[\lambda G \lambda x (F(x) \rightarrow G(x)) \]), and simplify (i.e., beta-reduce) as early as possible
- Or: Use abbreviations (every'), and expand them later:
 - Every'(student')(work')
 - \[\lambda G \lambda x (F(x) \rightarrow G(x))(\text{student}')'(\text{work}') \]
- Or: Combine both in a sensible way
- But: Don't rewrite expanded forms, whenever you can avoid it

Variable NP Scope

- *Every linguist speaks two languages*
- *Our company has an expert for every problem*
- *A search engine for every subject*

NPs and scope-sensitive operators

- *Every student didn't pay attention*
- *Every citizen can become president*
- *During his visit to China, Helmut Kohl intends to visit a factory for CFC-free refrigerators*
The problem of scope variation

• The scope of noun phrases is not determined by the syntactic position in which they occur.
• Divergence between syntactic and semantic structure is a challenge for compositionality and semantics constructions.
• Scope variation may lead to a proliferation of readings

Scope ambiguity

Every student presents a paper.
(a) \(\forall x[student(x) \rightarrow \exists y[paper(y) \land present(x,y)]] \)
(b) \(\exists y[paper(y) \land \forall x[student(x) \rightarrow present(x,y)]] \)

Every student didn't pay attention.
(a) \(\forall x[student(x) \rightarrow \neg pay-attention(x)] \)
(b) \(\neg \forall x[student(x) \rightarrow pay-attention(x)] \)

So far, we get only one reading

1. \(\forall (res'(x) \land \exists (cp'(y) \land of(y,x))) \rightarrow \exists z(spl'(z) \land see'(x,z)) \)
2. \(\exists z(spl'(z) \land \forall x(res'(x) \land \exists y(cp'(y) \land of(y,x))) \rightarrow \exists z(spl'(z) \land see'(x,z)) \)
3. \(\exists y(cp'(y) \land \forall x(res'(x) \land of(y,x))) \rightarrow \exists z(spl'(z) \land see'(x,z)) \)
4. \(\exists y(cp'(y) \land \exists z(spl'(z) \land \forall x(res'(x) \land of(y,x))) \rightarrow \exists z(spl'(z) \land see'(x,z)) \)
5. \(\exists z(spl'(z) \land \exists y(cp'(y) \land \forall x(res'(x) \land of(y,x))) \rightarrow \exists z(spl'(z) \land see'(x,z)) \)

Every researcher of a company saw some samples of most products.
The problem with scope

- Sentences with scope ambiguities can have multiple semantic representations for a syntactic constituent.
- The order of the scope-bearing elements (quantifiers, negation, adverbs, ...) don’t necessarily follow the order of the syntactic combination.
- But: With the approach we have so far, we can only derive a single semantic representation for each constituent.
- How can we solve this problem?

Example

The missing reading

- We get one reading of the sentence by deriving the following terms:

\[\forall x(\text{student}'(x) \rightarrow \exists y(\text{paper}'(y) \land \text{present}^*(y)(x))) \]
\[\exists y(\text{paper}'(y) \land \text{present}^*(y)(x_1)) \]
\[\text{present}^*(x_2)(x_1) \]

- We should be able to construct the second reading correspondingly:

\[\exists y(\text{paper}'(y) \land \forall x(\text{student}'(x) \rightarrow \text{present}^*(y)(x))) \]
\[\forall x(\text{student}'(x) \rightarrow \text{present}^*(x_2)(x)) \]
\[\text{present}^*(x_2)(x_1) \]

Solving the scope problem: Principles

- We can obtain the second reading by delaying the application of the inner noun phrase.
- To this purpose, we have to:
 - temporarily store the noun phrase denotation away
 - formally bind the object argument position by a variable
 - make sure that the correct argument position will be bound, when the „real“ noun phrase denotation is eventually applied
Using lambda abstraction ("Quantifying-in")

- Abstract over the correct variable and then apply the NP representation to the abstracted term.

\[\lambda F \forall x (\text{student}'(x) \rightarrow F(x))(\lambda x_1. \lambda G \exists y (\text{paper}'(y) \land G(y))(\lambda x_2. \text{present}^*(x_2)(x_1))) \]

\[\lambda G \exists y (\text{paper}'(y) \land G(y))(\lambda x_2. \text{present}^*(x_2)(x_1)) \]

- Problem: How can we do this compositionally?

Nested Cooper Storage

- One algorithm for deriving such representations compositionally is Nested Cooper Storage (Keller 1988). It repairs some problems of the original Cooper Storage (Cooper 1975).
- Cooper Storage technique is used to compute the set of all semantic readings nondeterministically from a single syntactic analysis.

Nested Cooper Storage: Principles

- The semantic values of syntactic constituents are ordered pairs \(\langle \alpha, \Delta \rangle \):
 - \(\alpha \in \text{WE} \), is the content
 - \(\Delta \) is the quantifier store: a set of NP representations that must still be applied.
- At NP nodes, we may store the content in \(\Delta \).
- At sentence nodes, we can retrieve NP representations from the store in arbitrary order and apply them to the appropriate argument positions.

Nested Cooper Storage: Storage

- Using this rule, we can assign more than one semantic value to an NP node.
- The content of the new semantic value is just a placeholder of type \(<e,t>,t>\), and the old value (including its store) is moved to the store.
Nested Cooper Storage: Old Rules Adjusted

- Rule of functional application:
 \[
 \begin{align*}
 A & \Rightarrow \langle \beta, \Delta \rangle \\
 B & \Rightarrow \langle \gamma, \Gamma \rangle \\
 C & \Rightarrow \langle \gamma, \Gamma \rangle \\
 A & \Rightarrow \langle \beta(\gamma), \Delta \cup \Gamma \rangle \\
 B & \Rightarrow \langle \beta, \Delta \rangle \\
 C & \Rightarrow \langle \gamma, \Gamma \rangle \\
 A & \Rightarrow \langle \gamma(\beta), \Delta \cup \Gamma \rangle \\
 \end{align*}
 \]
 or

- Rule of non-branching nodes:
 \[
 \begin{align*}
 A & \Rightarrow \langle \beta, \Delta \rangle \\
 B & \Rightarrow \langle \beta, \Delta \rangle \\
 A & \Rightarrow \langle \beta, \Delta \rangle \\
 \end{align*}
 \]

- Rule of lexical nodes:
 \[
 \begin{align*}
 A & \Rightarrow \langle \beta, \Delta \rangle \\
 a & \Rightarrow \langle \beta, \emptyset \rangle \\
 \end{align*}
 \]

Nested Cooper Storage: Principles

- A syntactic constituent may be associated with multiple semantic values of this form.
- A lambda term \(M \) counts as a semantic representation for the entire sentence if we can derive \(\langle M, \emptyset \rangle \) as a value for the root of the syntax tree.
- Hence, there may be more than one valid semantic representation for the complete sentence.

Nested Cooper Storage: Retrieval

\[
A \Rightarrow \langle \alpha, \Delta \cup \{\langle \gamma, \Gamma \rangle\} \rangle \\
A \Rightarrow \langle \gamma(\lambda x.\alpha), \Delta \cup \Gamma \rangle
\]

- Using this rule, we can apply a stored NP.
- At this point, the correct \(\lambda \)-abstraction for the variable associated with the stored element is introduced.
- The old store \(\Gamma \) is released into the store for \(A \).

Nested Cooper Storage: Example

\textit{Every student presents a paper.}

\[
S \Rightarrow \langle \text{pres}^*(x_2)(x_1), \{\lambda P.\forall x[\text{student}(x) \rightarrow P(x)], \emptyset\}, \{\lambda Q.\exists y[\text{paper}(y) \land Q(y)], \emptyset\} \rangle
\]

\[
\begin{align*}
\text{NP} & \Rightarrow \langle \lambda P.\forall x[\text{student}(x) \rightarrow P(x)], \emptyset\rangle, \{\lambda x[\text{pres}^*(x_2)(x)]\}, \{\lambda Q.\exists y[\text{paper}(y) \land Q(y)], \emptyset\}\rangle \\
\text{VP} & \Rightarrow \langle \lambda Q.\exists y[\text{paper}(y) \land Q(y)], \emptyset\rangle, \{\lambda P.\forall x[\text{student}(x) \rightarrow P(x)], \emptyset\}, \{\lambda x[\text{pres}^*(x_2)(x)]\}\rangle \\
\end{align*}
\]

\textit{Every student} \(\Rightarrow \langle \lambda Q.\exists y[\text{paper}(y) \land Q(y)], \emptyset\rangle, \{\lambda P.\forall x[\text{student}(x) \rightarrow P(x)], \emptyset\}, \{\lambda x[\text{pres}^*(x_2)(x)]\}\rangle \)

\textit{presents} \(\Rightarrow \langle \lambda Q.\exists y[\text{paper}(y) \land Q(y)], \emptyset\rangle, \{\lambda P.\forall x[\text{student}(x) \rightarrow P(x)], \emptyset\}, \{\lambda x[\text{pres}^*(x_2)(x)]\}\rangle \)

\textit{a paper} \(\Rightarrow \langle \lambda Q.\exists y[\text{paper}(y) \land Q(y)], \emptyset\rangle, \{\lambda P.\forall x[\text{student}(x) \rightarrow P(x)], \emptyset\}, \{\lambda x[\text{pres}^*(x_2)(x)]\}\rangle \)
Retrieval: Reading 1

• By applying the Retrieval rule, we can derive the following representation for the S node:

\[
\langle \text{pres}^*(y_2)(x_1), \{\langle \lambda p \forall x[\text{student}(x) \rightarrow P(x)] \rangle, \emptyset \rangle_1, \\
\langle \lambda q \exists y[\text{paper}(y) \land Q(y)], \emptyset \rangle_2 \rangle \Rightarrow R \langle \lambda q \exists y[\text{paper}(y) \land Q(y)](\lambda x_2.\text{pres}^*(y_2)(x_1)), \{\langle \lambda p \forall x[\text{student}(x) \rightarrow P(x)], \emptyset \rangle_1 \rangle \\
\Rightarrow \beta \langle \exists y[\text{paper}(y) \land \text{pres}^*(y)(x_1)] \rangle, \{\langle \lambda p \forall x[\text{student}(x) \rightarrow P(x)] \rangle, \emptyset \rangle_1 \rangle \\
\Rightarrow R \langle \lambda p \forall x[\text{student}(x) \rightarrow \text{pres}^*(y_2)(x_1)], \{\langle \lambda q \exists y[\text{paper}(y) \land Q(y)], \emptyset \rangle_2 \rangle \rangle \\
\Rightarrow \beta \langle \forall x[\text{student}(x) \rightarrow \exists y[\text{paper}(y) \land \text{pres}^*(y)(x_1)]], \emptyset \rangle \\
\Rightarrow R \langle \lambda q \exists y[\text{paper}(y) \land Q(y)](\lambda x_2.\forall x[\text{student}(x) \rightarrow \\
\text{pres}^*(y_2)(x_1)]), \emptyset \rangle \\
\Rightarrow \beta \langle \exists y[\text{paper}(y) \land \forall x[\text{student}(x) \rightarrow \text{pres}^*(y)(x_1)]], \emptyset \rangle
\]

Retrieval: Reading 2

\[
\langle \text{pres}^*(x_2)(x_1), \{\langle \lambda p \forall x[\text{student}(x) \rightarrow P(x)] \rangle, \emptyset \rangle_1, \\
\langle \lambda q \exists y[\text{paper}(y) \land Q(y)], \emptyset \rangle_2 \rangle \Rightarrow R \langle \lambda q \exists y[\text{paper}(y) \land Q(y)](\lambda x_2.\text{pres}^*(x_2)(x_1)), \{\langle \lambda p \forall x[\text{student}(x) \rightarrow P(x)], \emptyset \rangle_1 \rangle \\
\Rightarrow \beta \langle \forall x[\text{student}(x) \rightarrow \text{pres}^*(x_2)(x_1)], \{\langle \lambda q \exists y[\text{paper}(y) \land Q(y)], \emptyset \rangle_2 \rangle \rangle \\
\Rightarrow R \langle \lambda q \exists y[\text{paper}(y) \land Q(y)](\lambda x_2.\forall x[\text{student}(x) \rightarrow \\
\text{pres}^*(x_2)(x_1)]), \emptyset \rangle \\
\Rightarrow \beta \langle \exists y[\text{paper}(y) \land \forall x[\text{student}(x) \rightarrow \text{pres}^*(y)(x_1)]], \emptyset \rangle
\]

Compositionality

• The Compositionality Principle as stated earlier: The meaning of a complex expression is uniquely determined by the meaning of its subexpressions and its syntactic structure.

• Nested Cooper Storage shows: We can maintain this principle even in the face of semantic (scope) ambiguity, if we use a relaxed concept of „meaning“.

Compositionality and NCS

• Two versions of the Compositionality Principle:
 - on the level of denotations
 - on the level of semantic representations

• Nested Cooper Storage is clearly compositional on the level of semantic representations - but in a less straightforward way than last week’s construction algorithm.

• Compositional on the level of denotations: only in a very indirect sense.
Scope islands

- Nested Cooper Storage makes the simplifying assumption that NPs can be retrieved at all sentence nodes.
- This is not true in general because sentence-embedding verbs create scope islands:
 - John said that he saw every girl. (1 reading)
- Quantifiers may not be lifted across the S node of the embedded clause; the sentence cannot mean "for every girl x, John said that he saw x".

Scope ambiguities in real-world texts

- Some large-scale grammars (e.g. the English Resource Grammar) compute semantic representations with scope.
- The ERG analyses all NPs as scope bearers to keep the grammar simple. (This is not necessarily correct: proper names, definites, etc.)
- Median number of scope readings in the Rondane corpus: 55.
 (But: The median number of semantic equivalence classes is only 3!)

Conclusion

- Last week's type-driven semantics construction is a nice first step.
- But it is fundamentally unable to deal with semantically ambiguous sentences.
- Scope ambiguity: Application order of NP representations can be different from syntactic structure.
- Nested Cooper Storage: Equip semantic representations with a quantifier store to allow flexible application of quantifiers; multiple semantic representations per syntactic constituents allowed.