Semantic Theory:

Scope

Summer 2007

M.Pinkal/ S. Thater

Sentence Semantics

+ Step 1: FOL Representations
» Step 2: Types and Higher-order Logic

- Higher-order expressions (higher-order predicates, adjectives,
degree modifiers)

- Function application as basic operation for semantics construction
- Unified, compositional semantics for noun phrases
Step 3: A-expressions and p-reduction

- Higher-order expressions for semantic composition

- Obtaining FOL sentence representations through B-reduction

- Semantics Construction with Transitive Verbs

Step 4: Treatment of scope variation

- Cooper Storage

- Underspecification

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 2

Semantics Construction: Basic rules

* Rule of functional application:

A B = B: <o, > B=p:o
B/ \C C=vyo or C=y: <o,
A=B): A=yB):r

* Rule of non-branching nodes:

A B=p:t
I‘B A=t

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

‘

* Rule of lexical nodes:

a A=B1

The semantic representation 3 for the word "a" is
supplied by the lexicon.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 4

S
/ \
/ NP \ VP
-~ DET N \VJ
Every ~# student works
WEAGYX(F(X)—> G(X)) “student “work

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

‘

- NP ~ VP
DET N Y
Every student works
(FAGYX(F()— G()))(student) “orke

<5 AGVx(student'(x)—> G(x))

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 6

S
/ \
/ N_P \ VP
DET N v
I A
Every student works
kGVx(student‘(x): G(x)) ‘n“‘work'

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

‘

S
/ NP \ VP
DET l\ll \
| |
Every student / works
/

(AGVx(student'(x)— G(x)))(work")

<p Vx(student'(x)—> work(x))

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 8

Scope: Terminology

 Logic: Quantifier & Scope
VXx(student'(x)— work(x))

 NL Semantics
- Determiner+Restriction form NP-Denotation
(,Generalized Quantifier®)
- NP Denotation is applied to its Nuclear Scope

Every'(student')(work')

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

o

A Note on Notation

Either: Use expanded notation from the
beginning (e.g.,AG A G VX(FX)— G(x))), and
simplify (i.e., beta-reduce) as early as possible
Or: Use abbreviations (every'), and expand them

later:
- Every'(student')(work')
- AGAGVX(FAX)—> G(x))(student’)(work')

Or: Combine both in a sensible way
But: Don‘t rewrite expanded forms, whenever you
can avoid it

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

oo

i 1]] Variable NP Scope

» Every linguist speaks two languages

» Our company has an expert for every
problem

» A search engine for every subject

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 11

Every student didn't pay attention

Every citizen can become president

During his visit to China, Helmut Koh/
Intends to visit a factory for CFC-free
refrigerators

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

IJThe problem of scope variation

» The scope of noun phrases is not
determined by the syntactic position in
which they occuir.

» Divergence between syntactic and
semantic structure is a challenge for
compositionality and semantics
constructions.

» Scope variation may lead to a proliferation
of readings

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope ambiguity

Every student presents a paper.
(a) VX[student(x) — 3y[paperly) A
present(x.y)l]
(b) y[paperly) A VX[student(x) —
presentx,y)]|

Every student didn't pay attention.
(a) VX[student(x) — —pay-attention(x)]
(b) =V X[student(x) — pay-attention(x)]

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 14

» Every researcher of a company saw some
sample.

. Vx(res'(x) A Jy(cp'(y) A of'(x,y)) — Fz(spl'(z) A see'
spl'(z) A Vx(res'(x) A dy(cp'(y) A of'(x,y)) — see'
cp'(y) A Vx(res'(x) A of'(x,y)) = Fz(spl'(z) A see'
cp'(y) A 3z(spl'(z) A Vx(res'(x) A of'(x,y)) — see
spl'(z) A Jy(cp'(y) A Vx(res'(x) A of'(x,y)) — see

(x,2))
(x,2))
(x,2))
(x,2))
(x,2))

P

Every researcher of a company saw some
samples of most products.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

S
Vx([student(x) — Jy[paper(y) A present*(y)(X)]] : t

AH VX paper(y)N—P> H(y) : <<e,t>t>
VP
every student Ax 3y paper(y) A present*(y)(x) : <e,t>
NP

v AG3y paper(y) A G(y) : <<e,t>,t>
AQ AX[Q(rz[present*(z)(X)])] : <<<e,t>t><e,t>> Y paper(y) 2

presents a paper

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The problem with scope

» Sentences with scope ambiguities can have
multiple semantic representations for a syntactic
constituent.

» The order of the scope-bearing elements
(quantifiers, negation, adverbs, ...) don't
necessarily follow the order of the syntactic
combination.

» But: With the approach we have so far, we can
only derive a single semantic representation for
each constituent.

* How can we solve this problem?

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Example

NP % VP..

every student | V- NP

presents af"pqper

VX(student'&) — 3Jy(paper'(y) A present*(y)(x)))

3y(paper'(y) A present*(y)(xl))"";'_;
present*(x,)(x,) *

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

The missing reading

* We get one reading of the sentence by deriving
the following terms:

Vx(student'(x) — Jy(paper'(y) A present*(y)(x)))

Jy(paper'(y) A present*(y)(x,))
present*(x,)(x,)

* We should be able to construct the second
reading correspondingly:

Jy(paper'(y) A Vx(student'(x) — present*(y)(x)))
vx(student'(x) — present*(x,)(x))
present*(x,)(X,)

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Solving the scope problem:
Principl

* We can obtain the second reading by delaying
the application of the inner noun phrase.

* To this purpose, we have to:
- temporarily store the noun phrase denotation away

- formally bind the object argument position by a
variable

- make sure that the correct argment position will be
bound, when the ,real” noun prase denotation is
eventually applied

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Using lambda abstraction
(,Quantifying-in®)

» Abstract over the correct variable and then apply
the NP representation to the abstracted term.

AFVX(student'(x)— F(x))(Ax,. AG3y(paper'(y) A G(y))(Ax,.present*(x,)(X,)))

AG3y(paper'(y) A G(y))(Ax,.present*(x,)(x,))
present*(X,)(X,)

AG3Iy(paper'(y) A G(y))(Ax,. AFVx(student'(x)— F(x))(Ax,.present*(x,)(x,)))
AFEVX(student'(x)— F(x))(Ax,.present*(X,)(X,))
present*(X,)(X,)

* Problem: How can we do this compositionally?

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage

» One algorithm for deriving such
representations compositionally is Nested
Cooper Storage (Keller 1988). It repairs
some problems of the original Cooper
Storage (Cooper 1975).

» Cooper Storage technique is used to
compute the set of all semantic readings
nondeterministically from a single syntactic
analysis.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 22

Nested Cooper Storage: Storage

» The semantic values of syntactic constituents are
ordered pairs (a, A):
- a € WE, is the content
- Ais the quantifier store: a set of NP representations
that must still be applied.
* At NP nodes, we may store the content in A.

» At sentence nodes, we can retrieve NP
representations from the store in arbitrary order
and apply them to the appropriate argument
positions.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

B=(1I) B is an NP node

B = (WP.P(x), {¢y, I');}) wherei e N is a new index

» Using this rule, we can assign more than one semantic
value to an NP node.

» The content of the new semantic value is just a
placeholder of type <<e,t>,t>, and the old value
(including its store) is moved to the store.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 24

Nested Cooper Storage: Old Rules
Adjusted

* Rule of functional application:
A B = (B, A) B= (B, A)
T C=.D) or C=(, D)
A= By, Aul) A=), AuUT)

* Rule of non-branching nodes:

A B= (B A)

5 A= (B, A)

e Rule of lexical nodes: A

| A = (B 2)

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 25

Nested Cooper Storage: Principles

A syntactic constituent may be associated
with multiple semantic values of this form.

» A lambda term M counts as a semantic
representation for the entire sentence iff we
can derive (M, @) as a value for the root of
the syntax tree.

* Hence, there may be more than one valid
semantic representation for the complete
sentence.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

A=, Au{y,I)}) Alisanysentence node

A= (y(Axo), AU T)

Using this rule, we can apply a stored NP.

At this point, the correct A-abstraction for the variable
associated with the stored element is introduced.

The old store I is released into the store for A.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Nested Cooper Storage: Example

Every student presents a pape.

S
(pres*(x;)(xy),
{PVx[student'(x) » P(x)], @), (AQ3y[paper'(y) A Q)] , D)}
/\

NP VP

(APVx[student'(x) —> P(x)], &) (Mx[pres*(x,) ()], {(AQ3y[paper'(y) A QY)] , D).h
<AP.P(xy), {(APVx[student'(x) - P(X)], &).})

\Y

(.Q WxX[QUylpresent:(y) D], 2) NP

(AQ3y[paper'(y) A QY)l. @)

Every student

<MP.P(xy), {<7»QHY[pa|Per'(Y) AQW . D)ah

presents a paper

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Retrieval: Reading 1

« By applying the Retrieval rule, we can derive the
following representation for the S node:
(presix,)(X4), {APVX[student(x) — P(x)], D)4,
(AMQ3y[paperly) ~ Q(y)] , D).} = r (AQ3y[paper(y)

Q(Y)I(Ax,. pres(x,)(x4)),
{OPVX[student(x) — P(X)], D) })

:>B 3ylpaperty) A pres{y)(x,)], {APVX[student(x) —
PX)], D11

—R (APVX[student(x) — P(X)](Ax,.3y[paperly) A
presiy)(x,)]). &)

:>B (VX[student(x) — 3y[paperly) A presiy)(X)]], D)

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Retrieval: Reading 2

(pres(X,)(X4), {{APVX[student(x) — P(x)], D),
(AQ3y[paperly) n Q(Y)], D),}) =R (APVX[student(x) —
PX)] (Axy.pres™(x;)(x4)),

{(AQ3y[paperly) ~ Q(y)] , D).h
=8 (VX[student(x) — presx,)(x)], {{AQ3y[paperly) A
Q(y)l , D)1
=R (AQ3y[paperly) A Q(Y)(Ax,. VX[student(x) —
pres (x,)(x)]), D)
:>B Aylpaperly) A VX[student(x) — presiy)(X)]], D)

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Compositionality

» The Compositionality Principle as stated earlier:
The meaning of a complex expression is uniquely
determined by the meaning of its subexpressions
and its syntactic structure.

* Nested Cooper Storage shows: We can maintain
this principle even in the face of semantic (scope)
ambiguity, if we use a relaxed concept of
,meaning".

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Compositionality and NCS

» Two versions of the Compositionality Principle:
- on the level of denotations
- on the level of semantic representations

* Nested Cooper Storage is clearly compositional
on the level of semantic representations - but in a
less straightforward way than last week's
construction algorithm.

« Compositional on the level of denotations: only in
a very indirect sense.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

Scope islands

Scope ambiguities in real-world texts

* Nested Cooper Storage makes the simplifying
assumption that NPs can be retrieved at all
sentence nodes.

* This is not true in general because sentence-
embedding verbs create scope islands:

- John said that he saw every girl. (1 reading)

* Quantifiers may not be lifted across the S node of
the embedded clause; the sentence cannot mean
"for every girl x, John said that he saw x".

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

+ Some large-scale grammars (e.g. the English
Resource Grammar) compute semantic
representations with scope.

* The ERG analyses all NPs as scope bearers to
keep the grammar simple. (This is not
necessarily correct: proper names, definites, etc.)

* Median number of scope readings in the
Rondane corpus: 55.
(But: The median number of semantic
equivalence classes is only 3!)

Semantic Theory, SS 2007 © M. Pinkal, S. Thater 34

Conclusion

» Last week's type-driven semantics construction is a nice
first step.

« But it is fundamentally unable to deal with semantically
ambiguous sentences.

» Scope ambiguity: Application order of NP representations
can be different from syntactic structure.

* Nested Cooper Storage: Equip semantic representations
with a quantifier store to allow flexible application of
quantifiers; multiple semantic representations per
syntactic constituents allowed.

Semantic Theory, SS 2007 © M. Pinkal, S. Thater

