Semantic Theory Lecture 2: Type theory

M. Pinkal / A. Koller Summer 2006

Logic as a framework for NL semantics

- · Approximate NL meaning as truth conditions.
- Logic supports precise, consistent and controlled meaning representation via truth-conditional interpretation.
- Logic provides deduction systems to model inference processes, controlled through a formal entailment concept.
- Logic supports uniform modelling of the semantic composition process.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Logic as a framework for NL semantics

- Approximate NL meaning as truth conditions.
- Logic supports precise, consistent and controlled meaning representation via truth-conditional interpretation.
- Logic provides deduction systems to model inference processes, controlled through a formal entailment concept.
- Logic supports uniform modelling of the semantic composition process.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

3

Outline

- A reminder: First-order predicate logic (FOL).
- The limits of FOL as a formalism for semantic representations.
- Type theory.
- · Modal operators in logic.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Dolphins

Dolphins are mammals, not fish.

 $\forall d (dolphin(d) \rightarrow mammal(d) \land \neg fish(d))$

Dolphins live in pods.

 $\forall d (dolphin(d) \rightarrow \exists x (pod(p) \land live-in (d,p))$

Dolphins give birth to one baby at a time.

 $\forall d \; (dolphin(d) \rightarrow \forall x \; \forall y \; \forall t \; (give-birth-to \; (d,x,t) \; \land \; give-birth-to \; (d,y,t) \\ \rightarrow x=y)$

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

5

Syntax of FOL [1]

- Non-logical expressions:
 - Individual constants: IC
 - n-place predicate symbols: RC^n (n ≥ 0)
- · Individual variables: IV
- Terms: $T = IV \cup IC$
- Atomic formulas:
 - $-R(t_1,...,t_n)$ for $R \in RC^n$, if $t_1,...,t_n \in T$
 - -s=t for $s, t \in T$

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Syntax of FOL [2]

- FOL formulas: The smallest set For such that:
 - All atomic formulas are in For
 - If A, B are in *For*, then so are ¬ A, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \to B)$, $(A \to B)$
 - If x is an individual variable and A is in *For*, then $\forall xA$ and $\exists xA$ are in *For*.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

7

Dolphins in FOL

```
Dolphins are mammals, not fish.

∀d (dolphin(d)→mammal(d) ∧¬fish(d))
```

Dolphins live in pods. $\forall d (dolphin(d) \rightarrow \exists x (pod(p) \land live-in (d,p))$

Dolphins give birth to one baby at a time. $\forall d \ (dolphin(d) \rightarrow \forall x \ \forall y \ \forall t \ (give-birth-to \ (d,x,t) \land give-birth-to \ (d,y,t) \rightarrow x=y)$

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Semantics of FOL [1]

- Model structures for FOL: M = <U, V>
 - U (or U_M) is a non-empty universe (domain of individuals)
 - V (or V_M) is an interpretation function, which assigns individuals (∈ U_M) to individual constants and n-ary relations between individuals (∈ U_M ⁿ) to n-place predicate symbols.
- Assignment function for variables g: IV → U_M

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

a

Semantics of FOL [2]

 Interpretation of terms (with respect to a model structure M and a variable assignment g):

[[α]] M,g = V_M(α), if α is an individual constant [[α]] M,g = g(α), if α is a variable

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Semantics of FOL [3]

 Interpretation of formulas (with respect to model structure M and variable assignment g):

```
[[R(t_1, ..., t_n)]]^{M,g} = 1
                                         iff
                                                           \langle [[t_1]] \stackrel{M,g}{\ldots}, \, ..., \, [[t_n]] \stackrel{M,g}{\ldots} \rangle \in \, V_M(R)
[[s=t]]^{M,g} = 1
                                                           [[s]]^{M,g} = [[t]]^{M,g}
[[\neg \phi]]^{M,g} = 1
                                                           [[\phi]]^{M,g} = 0
[[\phi \wedge \psi]]^{M,g} = 1
                                          iff
                                                           [[\phi]]^{M,g} = 1 and [[\psi]]^{M,g} = 1
[[\phi \vee \psi]]^{M,g} = 1
                                                           [[\phi]]^{M,g} = 1 \text{ or } [[\psi]]^{M,g} = 1
                                          iff
[[\phi \to \psi]]^{M,g} \ = 1
                                                           [[\phi]]^{M,g} = 0 \text{ or } [[\psi]]^{M,g} = 1
                                          iff
                                                           [[\phi]]^{M,g} = [[\psi]]^{M,g}
[[\phi \leftrightarrow \psi]]^{M,g} = 1
                                                           there is a \in U_M such that [[\phi]]^{M,g[x/a]} = 1
[[\exists x\phi]]^{M,g} \ = 1
                                          iff
                                                           for all a \in U_M : [[\phi]]^{M,g[x/a]} = 1
[[\forall x \phi]]^{M,g} = 1
                                          iff
```

• g[x/a] is the variable assignment which is identical with g except that it assigns the individual a to the variable x.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

11

Semantics of FOL [4]

- Formula A is true in the model structure M iff [[A]]^{M,g} = 1 for every variable assignment g. This works best if A has no free variables.
- A model structure M satisfies a set of formulas Γ (or: M is a model of Γ) iff every formula A∈Γ is true in M.
- · A is valid iff A is true in all model structures.
- A is satisfiable iff there is a model structure that makes it true.
- A is unsatisfiable iff there is no model structure that makes it true.
- · A is contingent iff it it is satisfiable but not valid.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Entailment and Deduction

- A set of formulas Γ entails formula A (Γ |= A) iff A is true in every model of Γ.
- A (sound and complete) calculus for FOL allows us to prove A from
 Γ iff Γ |= A by manipulating the formulas syntactically. There are
 many calculi for FOL: resolution, tableaux, natural deduction, ...
- · Calculi can be implemented to obtain:
 - theorem provers: check entailment, validity, and unsatisfiability
 - model builders: check satisfiability, compute models
 - model checkers: determine whether model satisfies formula
 - find off-the-shelf implementations on the Internet

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

13

Two levels of interpretation

- Semantic interpretation of a NL expression in a logical framework is a two-step process:
 - The NL expression is assigned a semantic representation
 - The semantic representation is truth-conditionally interpreted.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [1]

John is a blond criminal

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

15

The expressive power of FOL [1]

John is a blond criminal criminal(j) ∧ blond(j)

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [1]

John is a blond criminal criminal(j) ∧ blond(j)

John is an honest criminal

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

17

The expressive power of FOL [1]

John is a blond criminal
criminal(j) ∧ blond(j)

John is an honest criminal
criminal(j) ∧ honest(j) ?

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [1]

John is a blond criminal
criminal(j) ∧ blond(j)

John is an honest criminal
criminal(j) ∧ honest(j) ?

John is an alleged criminal

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

19

The expressive power of FOL [1]

John is a blond criminal
criminal(j) ∧ blond(j)

John is an honest criminal
criminal(j) ∧ honest(j) ?

John is an alleged criminal
criminal(j) ∧ alleged(j) ??

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [2]

John is driving fast

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

21

The expressive power of FOL [2]

John is driving fast drive(j) ∧ fast(j)

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [2]

John is driving fast drive(j) ∧ fast(j) John is eating fast

Semantic Theory 2006 @ M. Pinkal/A.Koller UdS Computerlinguistik

23

The expressive power of FOL [2]

John is driving fast drive(j) \land fast(j) John is eating fast eat(j) \land fast(j) ??

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [2]

```
John is driving fast

drive(j) \( \stacktriag{\text{fast(j)}} \)

John is eating fast

eat(j) \( \stacktriag{\text{fast(j)}} \)??

John is driving very fast.
```

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

25

The expressive power of FOL [2]

```
John is driving fast
drive(j) \( \stack \) fast(j)

John is eating fast
eat(j) \( \stack \) fast(j)

??

John is driving very fast.
???
```

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

The expressive power of FOL [3]

It rains.
It rained yesterday.
It rains occasionally.

Bill is blond. Blond is a hair colour. (|≠ Bill is a hair colour.)

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

27

Type theory

- The types of non-logical expressions provided by FOL terms and n-ary first-order relations – are not sufficient to describe the semantic function of all natural language expressions.
- Type theory provides a much richer inventory of types higher-order relations and functions of different kinds.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Types

- For NL meaning representation the (minimal) set of basic types is {e, t}:
 - e (for entity) is the type of individual terms
 - t (for truth value) is the type of formulas
- All pairs $<\sigma$, $\tau>$ made up of (basic or complex) types σ , τ are types. $<\sigma$, $\tau>$ is the type of functions which map arguments of type σ to values of type τ .
- In short: The set of types is the smallest set **T** such that $e,t\in T$, and if $\sigma,\tau\in T$, then also $<\sigma,\tau>\in T$.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

29

Some useful complex types for NL semantics

- Individual: e
- · Sentence: t
- One-place predicate constant: <e,t>
- Two-place relation: <e,<e,t>>
- Sentence adverbial: <t,t>
- Attributive adjective: <<e,t>,<e,t>>
- Degree modifier: <<<e,t>,<e,t>>,<<e,t>>>

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Second-order predicates

- Bill is blond. Blond is a hair colour:
 - Bill is represented as a term of type e.
 - "blond" is represented as a term of type <e,t>.
 - "hair colour" is represented as a term of type <<e,t>,t>.
 - "Bill is a hair colour" is not even a well-formed statement.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

31

Some useful complex types for NL semantics

- · Individual: e
- · Sentence: t
- One-place predicate constant: <e,t>
- Two-place relation: <e,<e,t>>
- Sentence adverbial: <t,t>
- Attributive adjective: <<e,t>,<e,t>>
- Degree modifier: <<<e,t>,<e,t>>,<<e,t>,<e,t>>>
- Second-oder predicate: <<e,t>,t>

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Type-theoretic syntax [1]

- · Vocabulary:
 - Possibly empty, pairwise disjoint sets of non-logical constants: Con_{τ} for every type τ

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

33

Higher-order variables

- Bill has the same hair colour as John.
- · Santa Claus has all the attributes of a sadist.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Type-theoretic syntax [1]

- · Vocabulary:
 - Possibly empty, pairwise disjoint sets of non-logical constants: Con_{τ} for every type τ
 - Infinite and pairwise disjoint sets of variables: Var_{τ} for every type τ
 - The logical operators known from FOL.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

35

Type-theoretic syntax [2]

- The sets of well-formed expressions WE_{τ} for every type τ are given by:
 - $Con_{\tau} \subseteq WE_{\tau}$ for every type τ
 - $-\text{ If }\alpha\in\text{WE}_{<\sigma,\;\tau>}\text{, }\beta\in\text{WE}_{\sigma}\text{, then }\alpha(\beta)\in\text{WE}_{\tau}\text{.}$
 - If A, B are in WE_t, then so are ¬ A, (A∧B), (A∨B), (A→B),(A↔B)
 - If A is in WE_t, then so are $\forall v$ A and $\exists v$ A, where v is a variable of arbitrary type.
 - If $\alpha,\,\beta$ are well-formed expressions of the same type, then $\alpha\text{=}\beta\in\,WE_t$

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Building well-formed expressions

Bill drives fast.

<u>drive: <e,t></u> <u>fast: <<e,t>,<e,t>></u>

Bill: e fast(drive): <e,t>

fast(drive)(bill): t

Mary works in Saarbrücken

 $\underline{\mathsf{mary}} : \mathsf{e} \qquad \underline{\mathsf{work}} : \mathsf{<\!e}, \mathsf{t>\!>} \quad \underline{\mathsf{in}} : \mathsf{<\!e}, \mathsf{<\!t}, \mathsf{t>\!>} \quad \mathsf{sb} : \mathsf{e}$

work(mary): t in(sb): <t,t>

in(sb)(work(mary)): t

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

37

More examples

- · Blond is a hair colour.
- · Santa Claus has all the attributes of a sadist.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Type-theoretic semantics [1]

- · Let U be a non-empty set of entities.
- The domain of possible denotations D_{τ} for every type τ is given by:
 - $-D_e = U$
 - $-D_t = \{0,1\}$
 - $D_{<\sigma,\,\tau>}$ is the set of all functions from D_{σ} to D_{τ}

Semantic Theory 2006 @ M. Pinkal/A.Koller UdS Computerlinguistik

39

Type-theoretic semantics [2]

- A model structure for a type theoretic language:
 - $M = \langle U, V \rangle$, where
 - U (or U_M) is a non-empty domain of individuals
 - V (or V_M) is an interpretation function, which assigns to every member of Con_{τ} an element of D_{τ} .
- Variable assignment g assigns every variable of type τ a member of $D_{\tau}.$

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Type-theoretic semantics [3]

Interpretation (with respect to model structure M and variable assignment g):

```
\begin{split} & [[\alpha]]^{M,g} = \ V_M(\alpha), \ \text{if} \ \alpha \ \text{constant} \\ & [[\alpha]]^{M,g} = \ g(\alpha), \ \text{if} \ \alpha \ \text{variable} \\ & [[\alpha(\beta)]]^{M,g} = [[\alpha]]^{M,g}([[\beta]]^{M,g}) \\ & [[\neg \phi]]^{M,g} = 1 \qquad \text{iff} \qquad [[\phi]]^{M,g} = 0 \\ & [[\phi \land \psi]]^{M,g} = 1 \qquad \text{iff} \qquad [[\phi]]^{M,g} = 1 \ \text{and} \ [[\psi]]^{M,g} = 1, \ \text{etc.} \\ & \text{If} \ \textit{v} \in \text{Var}_\tau, \ [[\exists \textit{v} \textit{\phi}]]^{M,g} = 1 \ \text{iff} \qquad \text{there is } \textit{a} \in \ D_\tau \ \text{such that} \ [[\phi]]^{M,g[\textit{v}/\textit{a}]} = 1 \\ & \text{If} \ \textit{v} \in \text{Var}_\tau, \ [[\forall \textit{v} \textit{\phi}]]^{M,g} = 1 \ \text{iff} \qquad \text{for all} \ \textit{a} \in \ D_\tau \ \text{:} \ [[\phi]]^{M,g[\textit{v}/\textit{a}]} = 1 \\ & [[\alpha = \beta]]^{M,g} = 1 \ \text{iff} \qquad [[\alpha]]^{M,g} = [[\beta]]^{M,g} \end{split}
```

Semantic Theory 2006 @ M. Pinkal/A.Koller UdS Computerlinguistik

41

Type theory

- The definition of the syntax and semantics of type theory is a straightforward extension of FOL.
- Words like "satisfies", "valid", "satisfiable", "entailment" carry over almost verbatim from FOL.
- Type theory is sometimes called "higher-order logic":
 - first-order logic allows quantification over individual variables (type e)
 - second-order logic allows quantification over variables of type $<\sigma,\, \tau>$ where σ and τ are atomic

–

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

Currying

- All functional types are interpreted as one-place functions.
- How do we deal with functions/relations with multiple arguments?
- Currying ("Schönfinkeln"):
 - simulate term P(a,b) as the term P(a)(b)
 - simulate type <e x e, t> as the type <e, <e,t>>.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik

43

Summary

- First-order logic is nice, but its expressive power has limits that are not acceptable in NL semantics:
 - modification
 - modification of modifiers
 - higher-order properties
- Type theory is a generalisation of first-order logic that allows us to represent the semantics of all these expressions.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik