
1

Semantic Theory
Lecture 2: Type theory

M. Pinkal / A. Koller

Summer 2006

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 2

Logic as a framework for NL semantics

• Approximate NL meaning as truth conditions.

• Logic supports precise, consistent and controlled

meaning representation via truth-conditional

interpretation.

• Logic provides deduction systems to model inference

processes, controlled through a formal entailment

concept.

• Logic supports uniform modelling of the semantic

composition process.

2

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 3

Logic as a framework for NL semantics

• Approximate NL meaning as truth conditions.

• Logic supports precise, consistent and controlled

meaning representation via truth-conditional

interpretation.

• Logic provides deduction systems to model inference

processes, controlled through a formal entailment

concept.

• Logic supports uniform modelling of the semantic

composition process.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 4

Outline

• A reminder: First-order predicate logic (FOL).

• The limits of FOL as a formalism for semantic

representations.

• Type theory.

• Modal operators in logic.

3

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 5

Dolphins

Dolphins are mammals, not fish.

∀d (dolphin(d)→mammal(d) ∧¬fish(d))

Dolphins live in pods.

∀d (dolphin(d)→ ∃x (pod(p) ∧ live-in (d,p))

Dolphins give birth to one baby at a time.

∀d (dolphin(d)→ ∀x ∀y ∀t (give-birth-to (d,x,t) ∧ give-birth-to (d,y,t)

→ x=y)

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 6

Syntax of FOL [1]

• Non-logical expressions:

– Individual constants: IC

– n-place predicate symbols: RCn (n ≥ 0)

• Individual variables: IV

• Terms: T = IV∪IC

• Atomic formulas:

– R(t1,...,tn) for R∈ RCn, if t1, ..., tn ∈T

– s=t for s, t ∈T

4

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 7

Syntax of FOL [2]

• FOL formulas: The smallest set For such that:

– All atomic formulas are in For

– If A, B are in For, then so are ¬ A, (A∧B), (A∨B),

(A→B),(A↔B)

– If x is an individual variable and A is in For,

then ∀xA and ∃xA are in For.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 8

Dolphins in FOL

Dolphins are mammals, not fish.

∀d (dolphin(d)→mammal(d) ∧¬fish(d))

Dolphins live in pods.

∀d (dolphin(d)→ ∃x (pod(p) ∧ live-in (d,p))

Dolphins give birth to one baby at a time.

∀d (dolphin(d)→ ∀x ∀y ∀t (give-birth-to (d,x,t) ∧ give-birth-to (d,y,t)

→ x=y)

5

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 9

Semantics of FOL [1]

• Model structures for FOL: M = <U, V>

– U (or UM) is a non-empty universe (domain of

individuals)

– V (or VM) is an interpretation function, which assigns

individuals (∈UM) to individual constants and n-ary

relations between individuals (∈UM
n) to n-place

predicate symbols.

• Assignment function for variables g: IV � UM

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 10

Semantics of FOL [2]

• Interpretation of terms (with respect to a model structure M and a

variable assignment g):

[[α]] M,g = VM(α), if α is an individual constant

[[α]] M,g = g(α), if α is a variable

6

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 11

Semantics of FOL [3]

• Interpretation of formulas (with respect to model structure M and variable

assignment g):

[[R(t1, ..., tn)]]
M,g = 1 iff 〈[[t1]]

M,g, ..., [[tn]]
M,g 〉 ∈ VM(R)

[[s=t]]M,g = 1 iff [[s]] M,g = [[t]] M,g

[[¬ϕ]]M,g = 1 iff [[ϕ]]M,g = 0

[[ϕ ∧ ψ]]M,g = 1 iff [[ϕ]]M,g = 1 and [[ψ]]M,g = 1

[[ϕ ∨ ψ]]M,g = 1 iff [[ϕ]]M,g = 1 or [[ψ]]M,g = 1

[[ϕ → ψ]]M,g = 1 iff [[ϕ]]M,g = 0 or [[ψ]]M,g = 1

[[ϕ ↔ ψ]]M,g = 1 iff [[ϕ]]M,g = [[ψ]]M,g

[[∃xϕ]]M,g = 1 iff there is a∈UM such that [[ϕ]]M,g[x/a] = 1

[[∀xϕ]]M,g = 1 iff for all a∈UM : [[ϕ]] M,g[x/a] = 1

• g[x/a] is the variable assignment which is identical with g except that it

assigns the individual a to the variable x.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 12

Semantics of FOL [4]

• Formula A is true in the model structure M iff [[A]]M,g = 1 for every

variable assignment g. This works best if A has no free variables.

• A model structure M satisfies a set of formulas Γ (or: M is a model of

Γ) iff every formula A∈Γ is true in M.

• A is valid iff A is true in all model structures.

• A is satisfiable iff there is a model structure that makes it true.

• A is unsatisfiable iff there is no model structure that makes it true.

• A is contingent iff it it is satisfiable but not valid.

7

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 13

Entailment and Deduction

• A set of formulas Γ entails formula A (Γ |= A) iff A is true in every
model of Γ.

• A (sound and complete) calculus for FOL allows us to prove A from
Γ iff Γ |= A by manipulating the formulas syntactically. There are
many calculi for FOL: resolution, tableaux, natural deduction, ...

• Calculi can be implemented to obtain:

– theorem provers: check entailment, validity, and unsatisfiability

– model builders: check satisfiability, compute models

– model checkers: determine whether model satisfies formula

– find off-the-shelf implementations on the Internet

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 14

Two levels of interpretation

• Semantic interpretation of a NL expression in a logical

framework is a two-step process:

– The NL expression is assigned a semantic

representation

– The semantic representation is truth-conditionally

interpreted.

8

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 15

The expressive power of FOL [1]

John is a blond criminal

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 16

The expressive power of FOL [1]

John is a blond criminal

criminal(j) ∧ blond(j)

9

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 17

The expressive power of FOL [1]

John is a blond criminal

criminal(j) ∧ blond(j)

John is an honest criminal

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 18

The expressive power of FOL [1]

John is a blond criminal

criminal(j) ∧ blond(j)

John is an honest criminal

criminal(j) ∧ honest(j) ?

10

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 19

The expressive power of FOL [1]

John is a blond criminal

criminal(j) ∧ blond(j)

John is an honest criminal

criminal(j) ∧ honest(j) ?

John is an alleged criminal

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 20

The expressive power of FOL [1]

John is a blond criminal

criminal(j) ∧ blond(j)

John is an honest criminal

criminal(j) ∧ honest(j) ?

John is an alleged criminal

criminal(j) ∧ alleged(j) ??

11

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 21

The expressive power of FOL [2]

John is driving fast

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 22

The expressive power of FOL [2]

John is driving fast

drive(j) ∧ fast(j)

12

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 23

The expressive power of FOL [2]

John is driving fast

drive(j) ∧ fast(j)

John is eating fast

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 24

The expressive power of FOL [2]

John is driving fast

drive(j) ∧ fast(j)

John is eating fast

eat(j) ∧ fast(j) ??

13

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 25

The expressive power of FOL [2]

John is driving fast

drive(j) ∧ fast(j)

John is eating fast

eat(j) ∧ fast(j) ??

John is driving very fast.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 26

The expressive power of FOL [2]

John is driving fast

drive(j) ∧ fast(j)

John is eating fast

eat(j) ∧ fast(j) ??

John is driving very fast.

???

14

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 27

The expressive power of FOL [3]

It rains.

It rained yesterday.

It rains occasionally.

Bill is blond. Blond is a hair colour. (|≠ Bill is a hair colour.)

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 28

Type theory

• The types of non-logical expressions provided by FOL –

terms and n-ary first-order relations – are not sufficient to

describe the semantic function of all natural language

expressions.

• Type theory provides a much richer inventory of types –

higher-order relations and functions of different kinds.

15

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 29

Types

• For NL meaning representation the (minimal) set of basic

types is {e, t} :

– e (for entity) is the type of individual terms

– t (for truth value) is the type of formulas

• All pairs <σ, τ> made up of (basic or complex) types σ, τ

are types. <σ, τ> is the type of functions which map

arguments of type σ to values of type τ.

• In short: The set of types is the smallest set T such that

e,t∈T, and if σ,τ ∈T, then also <σ,τ> ∈T.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 30

Some useful complex types for NL semantics

• Individual: e

• Sentence: t

• One-place predicate constant: <e,t>

• Two-place relation: <e,<e,t>>

• Sentence adverbial: <t,t>

• Attributive adjective: <<e,t>,<e,t>>

• Degree modifier: <<<e,t>,<e,t>>,<<e,t>,<e,t>>>

16

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 31

Second-order predicates

• Bill is blond. Blond is a hair colour:

– Bill is represented as a term of type e.

– "blond" is represented as a term of type <e,t>.

– "hair colour" is represented as a term of type

<<e,t>,t>.

– "Bill is a hair colour" is not even a well-formed

statement.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 32

Some useful complex types for NL semantics

• Individual: e

• Sentence: t

• One-place predicate constant: <e,t>

• Two-place relation: <e,<e,t>>

• Sentence adverbial: <t,t>

• Attributive adjective: <<e,t>,<e,t>>

• Degree modifier: <<<e,t>,<e,t>>,<<e,t>,<e,t>>>

• Second-oder predicate: <<e,t>,t>

17

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 33

Type-theoretic syntax [1]

• Vocabulary:

– Possibly empty, pairwise disjoint sets of non-logical

constants: Conτ for every type τ

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 34

Higher-order variables

• Bill has the same hair colour as John.

• Santa Claus has all the attributes of a sadist.

18

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 35

Type-theoretic syntax [1]

• Vocabulary:

– Possibly empty, pairwise disjoint sets of non-logical

constants: Conτ for every type τ

– Infinite and pairwise disjoint sets of variables: Varτ for

every type τ

– The logical operators known from FOL.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 36

Type-theoretic syntax [2]

• The sets of well-formed expressions WEτ for every type τ

are given by:

– Conτ ⊆ WEτ for every type τ

– If α ∈ WE<σ, τ>, β ∈ WEσ , then α(β) ∈ WEτ .

– If A, B are in WEt , then so are ¬ A, (A∧B), (A∨B),

(A→B),(A↔B)

– If A is in WEt , then so are ∀vA and ∃vA, where v is a

variable of arbitrary type.

– If α, β are well-formed expressions of the same type,

then α=β ∈ WEt.

19

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 37

Building well-formed expressions

Bill drives fast.

drive: <e,t> fast: <<e,t>,<e,t>>

Bill: e fast(drive): <e,t>

fast(drive)(bill): t

Mary works in Saarbrücken

mary: e work: <e,t> in: <e,<t,t>> sb: e

work(mary): t in(sb): <t,t>

in(sb)(work(mary)): t

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 38

More examples

• Blond is a hair colour.

• Santa Claus has all the attributes of a sadist.

20

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 39

Type-theoretic semantics [1]

• Let U be a non-empty set of entities.

• The domain of possible denotations Dτ for every type τ is

given by:

– De = U

– Dt = {0,1}

– D<σ, τ> is the set of all functions from Dσ to Dτ

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 40

Type-theoretic semantics [2]

• A model structure for a type theoretic language:

M = <U, V>, where

– U (or UM) is a non-empty domain of individuals

– V (or VM) is an interpretation function, which assigns

to every member of Conτ an element of Dτ.

• Variable assignment g assigns every variable of type τ a

member of Dτ.

21

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 41

Type-theoretic semantics [3]

Interpretation (with respect to model structure M and variable

assignment g):

[[α]] M,g = VM(α), if α constant

[[α]] M,g = g(α), if α variable

[[α(β)]]M,g = [[α]]M,g([[β]]M,g)

[[¬ϕ]]M,g = 1 iff [[ϕ]]M,g = 0

[[ϕ ∧ ψ]]M,g = 1 iff [[ϕ]]M,g = 1 and [[ψ]]M,g = 1, etc.

If v∈Varτ, [[∃vϕ]]M,g = 1 iff there is a∈ Dτ such that [[ϕ]]M,g[v/a] = 1

If v∈Varτ, [[∀vϕ]]M,g = 1 iff for all a∈ Dτ : [[ϕ]] M,g[v/a] = 1

[[α=β]]M,g = 1 iff [[α]]M,g = [[β]]M,g

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 42

Type theory

• The definition of the syntax and semantics of type theory

is a straightforward extension of FOL.

• Words like "satisfies", "valid", "satisfiable", "entailment"

carry over almost verbatim from FOL.

• Type theory is sometimes called "higher-order logic":

– first-order logic allows quantification over individual

variables (type e)

– second-order logic allows quantification over

variables of type <σ, τ> where σ and τ are atomic

–

22

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 43

Currying

• All functional types are interpreted as one-place

functions.

• How do we deal with functions/relations with multiple

arguments?

• Currying ("Schönfinkeln"):

– simulate term P(a,b) as the term P(a)(b)

– simulate type <e x e, t> as the type <e, <e,t>>.

Semantic Theory 2006 © M. Pinkal/A.Koller UdS Computerlinguistik 44

Summary

• First-order logic is nice, but its expressive power has

limits that are not acceptable in NL semantics:

– modification

– modification of modifiers

– higher-order properties

• Type theory is a generalisation of first-order logic that

allows us to represent the semantics of all these

expressions.

