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Scope ambiguities

• Some sentences have more than one possible semantic 

representation:

Every student presents a paper.

(a) ∀x[student'(x) → ∃y[paper'(y) ∧ present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) → present(x,y)]]

Every student didn't pay attention.

(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]
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(Nested) Cooper Storage: Schema

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation
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Enumeration can get expensive

Median extraction times
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Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation 

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings 

excluded by the context.

• Enumerate readings by need.
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Terms as lambda structures

Tree representation of the formula 

∀x.student'(x) → intelligent'(x):

∀

→

@ @

student' var intelligent' var
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A dominance graph

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@

∀

student'

→

var

@ ∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@
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Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@
∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@
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What can we do now?

• Represent terms of type theory as lambda structures.

• Represent sets of terms of type theory (e.g. the semantic 

representations of a sentence) as the solutions of a 

dominance graph.

• Todo 1 (Semantics construction): How can we get a 

dominance graph for a sentence? (last week)

• Todo 2 (Enumeration): How can we compute the 

solutions of a dominance graph? (now)
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Outline

• The solvability and enumeration problems.

• An enumeration algorithm for dominance graphs.

• Hypernormally connected dominance graphs. 

• Inferences on dominance graphs.
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Solutions

• Question:

How many solutions does a solvable dominance graph 

have?
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Solutions

• Question:

How many solutions does a solvable dominance graph 

have?

• Answer:

An infinite number of solutions!

f

a

f

a

f

a

g

f

a

g

h

b

. . .

Semantic Theory 2006  © M. Pinkal / A. Koller  UdS Computerlinguistik 14

Solved Forms

• Enumerating all solutions of a graph is therefore 

hopeless (and not useful).

• Thus, we aim at enumerating all solved forms of a 

dominance graph and not all solutions.

• A dominance graph in solved form is a graph whose tree 

and dominance edges form a forest.

• A graph G' is a solved form of G iff G' is in solved form, 

G and G' have the same tree and binding edges, and 

whenever there is a path from u to v in G (over tree and 

dominance edges), there is also a path from u to v in G'.
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Solutions and solved forms

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

dominance graph

solved form

solution
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Solved Forms and Solutions

. . .

. . .
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Solved forms and solutions

• We can consider solved forms as representatives of 

classes of solutions that only differ in "irrelevant details".

• Every graph in solved form without binding edges has a 

solution.

• Every solution of a graph is also a solution of one of its 

solved forms.

• We will completely ignore binding edges when solving 

dominance graphs. The solver can be easily extended to 

deal with binding edges as they are generated e.g. by 

last week's grammar.
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Computational Questions

• Two computational questions arise in the context of 

dominance graphs.

– The solvability problem: Does a given dominance 

graph have any solutions?

– The enumeration problem: Enumerate the (minimal) 

solved forms of a dominance graph.

• The two questions are closely related.
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Solving dominance graphs

• A solver for dominance graphs is an algorithm that 

solves the solvability and enumeration problems.

• There is a variety of different solvers for dominance 

graphs.

• The algorithm presented here is not the fastest one, but 

it is easiest to explain.
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The solver: General architecture

• The solver is a search algorithm: 

– It recursively generates (simpler) new graphs by 

applying three simplification rules.

– If none of the rules are applicable, it tests whether the 

graph is solvable.
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The Choice Rule

• Driving force behind solver is the Choice rule: Which of 

two trees comes on top?
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Cleaning Up I: Parent Normalisation

• Parent Normalisation changes a dominance edge (u,v) 

into a dominance edge (u,w), where w is the parent of v 

over a tree edge.
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Cleaning Up II: Redundancy Elimination

• Redundancy Elimination deletes an edge (u,v) whenever 

there is a path from u to v that doesn't use this edge.
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Correctness of the solver

• The rules are correct: 

– Every solved form of the original graph is a solved 

form of exactly one of the two results of Choice.

– The original graph and the result of PN or RE have 

exactly the same solved forms.

• Every application of Choice (plus some applications of 

PN and RE) arranges the parents of one node.

• Eventually there will be no more nodes with two 

incoming edges left; so the algorithm terminates.
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Detecting unsolvability

• It remains to check whether the end results are solvable 

or not.

• A dominance graph in which no node has two incoming 

edges is either a tree, or it has a cycle.

– If it's a tree, then the graph is in solved form.

– If it has a cycle, then it is unsolvable.

a

f

b

g

Semantic Theory 2006  © M. Pinkal / A. Koller  UdS Computerlinguistik 26

The complete solver

solve(G):

1. Apply Parent Normalisation and Redundancy 

Elimination exhaustively to G.

2. If there is a node v in G with two incoming dominance 

edges:

apply Choice once; this gives new graphs H1 and H2

solve(H1)

solve(H2)

3. If there is no such node v, and if G has no cycle, then 

report G as a solved form of the original graph.
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An example run of the solver

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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An example run of the solver

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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Choice 1

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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After Redundancy Elimination

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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After Parent Normalisation (2 steps)

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

This is a solved form!
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Choice 2

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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After RE and PN

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

This is a solved form!
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Running into unsolvability
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a b

f

g

a
b f

g

a
b



18

Semantic Theory 2006  © M. Pinkal / A. Koller  UdS Computerlinguistik 35

The solver: Summary

• The solver is a search algorithm that computes a set of 

solved forms for a dominance graph.

• It doesn't enumerate all solved forms, but it does 

enumerate all minimal solved forms. Every solution of G 

solves exactly one minimal solved form of G.

• The algorithm may spend a lot of time trying to solve 

unsolvable graphs.

• This can be improved by a smarter unsolvability test.
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Comparison of different solvers
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Constructive solutions

• Our initial idea was that solutions of a dominance graph 

should correspond to semantic representations.

• But now we know that there is generally an infinite 

number of solutions!

• We are really only interested in constructive solutions, 

i.e. solutions for which every node in the solution is the 

α-image of a non-hole (with a label).

• Can we always extract constructive solutions from 

solved forms?
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Solved forms vs. constructive solutions

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

a graph in solved form ... ... and its unique constructive solution
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Not all graphs have constructive solutions!

g

a b

g

a b

f

a graph in solved form ... ... and a smallest solution.
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Constructive solvability

• In general, not all dominance graphs have constructive 

solutions.

• How can we tell which ones do?
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Hypernormal paths

• A hypernormal path is an undirected path in a 

dominance graph that doesn't use two dominance edges 

out of the same hole.

• A dominance graph is hypernormally connected (or hnc, 

or a net) iff every pair of nodes is connected by a 

hypernormal path.

g

a

b

f f

g

a

b b

g

g
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Simple solved forms

• A solved form is called simple iff every hole has exactly 

one outgoing dominance edge.

• Every graph in simple solved form has exactly one 

constructive solution.

• All solved forms of a hypernormally connected graph 

are simple.

• Thus: Every solved form of a hnc graph has exactly one 

constructive solution.
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The usefulness of nets

• Hypernormal paths have a number of really useful 

properties:

– All solved forms of a hnc graph are simple, 

i.e. solved forms correspond to readings.

– USRs from other formalisms (Hole Semantics, MRS) 

can be translated into dominance graphs if the result 

is hnc.

– A dominance graph is unsolvable iff its undirected 

version has a hypernormal cycle.
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The usefulness of nets

• The only question now is:

– How useful is the fragment of hnc graphs?

– Do we know that all graphs that we want to use in 

practice are in fact hnc?

• We believe: Yes!

– This is called the Net Hypothesis.

– An upper limit on scope flexibility.

– Ongoing research.
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The Net Hypothesis

• Can be proved for (an extension of) last week's 

grammar.

• Relationship to (Nested) Cooper Storage.

• Empirical verification (Flickinger et al., HPSG 2005):

– Compute USRs for all 960 sentences in the Rondane 

Treebank using the English Resource Grammar.

– Result: 90% are hypernormally connected.

– The rest seem to be due to errors in grammar 

(but this is ongoing research).
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What can we do with USRs?

• We know now how to enumerate readings from USRs, 

and that is good and important.

• But really, we wanted to use USRs as a platform for 

disambiguation.

• How can we do this?

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR
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Inference on USRs

• Direct deduction (Reyle, de Rijke, Jaspars, ..., 1990s): 

Infer from USR another USR that describes logical 

consequences of its readings.

• Use anaphora (Koller & Niehren 2000):

Every linguist speaks two languages. These languages 

are taught at our department.

• Eliminate logical redundancy (Koller & Thater 2006):

A researcher of some company saw a sample of a 

product. (14 readings, all logically equivalent)
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Utool

• A fast implementation of a solver for dominance graphs 

is available online:

– Utool, the Swiss Army Knife of Underspecification
http://www.coli.uni-saarland.de/projects/chorus/utool

• Implements another graph algorithm (not the one 

presented here).

• Extra functionality:

– support for other underspecification formalisms and 

file formats

– redundancy elimination
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Summary

• Solving means enumeration of solved forms 

(not solutions).

• Solving dominance graphs:

– search algorithm that is driven by the Choice rule

– detect unsolvability via cyclicity test
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Summary

• Hypernormally connected graphs (nets):

– guarantee that solved forms have constructive 

solutions

– it seems that every graph used in underspecification 

is a net

• Some first results about inference on underspecified 

representations.


