
1

Semantic Theory

Lecture 7:
Advanced Underspecification

M. Pinkal / A. Koller

Summer 2006

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 2

Scope ambiguities

• Some sentences have more than one possible semantic

representation:

Every student presents a paper.

(a) ∀x[student'(x) → ∃y[paper'(y) ∧ present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) → present(x,y)]]

Every student didn't pay attention.

(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]

2

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 3

(Nested) Cooper Storage: Schema

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 4

Enumeration can get expensive

Median extraction times

1,0

10,0

100,0

1000,0

10000,0

100000,0

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Constraint size

R
u

n
ti

m
e
 [

m
s
]

Windows / C++

Windows / Java 1.5 Client

Windows / Java 1.6 Client

Windows / Java 1.5 Server

Windows / Java 1.6 Server

Linux / C++

Linux / Java 1.5 Client

Linux / Java 1.6 Client

Linux / Java 1.5 Server

Linux / Java 1.6 Server

3

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 5

Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings

excluded by the context.

• Enumerate readings by need.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 6

Terms as lambda structures

Tree representation of the formula

∀x.student'(x) → intelligent'(x):

∀

→

@ @

student' var intelligent' var

4

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 7

A dominance graph

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 8

Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@

∀

student'

→

var

@ ∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@

5

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 9

Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@
∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 10

What can we do now?

• Represent terms of type theory as lambda structures.

• Represent sets of terms of type theory (e.g. the semantic

representations of a sentence) as the solutions of a

dominance graph.

• Todo 1 (Semantics construction): How can we get a

dominance graph for a sentence? (last week)

• Todo 2 (Enumeration): How can we compute the

solutions of a dominance graph? (now)

6

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 11

Outline

• The solvability and enumeration problems.

• An enumeration algorithm for dominance graphs.

• Hypernormally connected dominance graphs.

• Inferences on dominance graphs.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 12

Solutions

• Question:

How many solutions does a solvable dominance graph

have?

7

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 13

Solutions

• Question:

How many solutions does a solvable dominance graph

have?

• Answer:

An infinite number of solutions!

f

a

f

a

f

a

g

f

a

g

h

b

. . .

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 14

Solved Forms

• Enumerating all solutions of a graph is therefore

hopeless (and not useful).

• Thus, we aim at enumerating all solved forms of a

dominance graph and not all solutions.

• A dominance graph in solved form is a graph whose tree

and dominance edges form a forest.

• A graph G' is a solved form of G iff G' is in solved form,

G and G' have the same tree and binding edges, and

whenever there is a path from u to v in G (over tree and

dominance edges), there is also a path from u to v in G'.

8

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 15

Solutions and solved forms

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

dominance graph

solved form

solution

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 16

Solved Forms and Solutions

. . .

. . .

9

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 17

Solved forms and solutions

• We can consider solved forms as representatives of

classes of solutions that only differ in "irrelevant details".

• Every graph in solved form without binding edges has a

solution.

• Every solution of a graph is also a solution of one of its

solved forms.

• We will completely ignore binding edges when solving

dominance graphs. The solver can be easily extended to

deal with binding edges as they are generated e.g. by

last week's grammar.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 18

Computational Questions

• Two computational questions arise in the context of

dominance graphs.

– The solvability problem: Does a given dominance

graph have any solutions?

– The enumeration problem: Enumerate the (minimal)

solved forms of a dominance graph.

• The two questions are closely related.

10

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 19

Solving dominance graphs

• A solver for dominance graphs is an algorithm that

solves the solvability and enumeration problems.

• There is a variety of different solvers for dominance

graphs.

• The algorithm presented here is not the fastest one, but

it is easiest to explain.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 20

The solver: General architecture

• The solver is a search algorithm:

– It recursively generates (simpler) new graphs by

applying three simplification rules.

– If none of the rules are applicable, it tests whether the

graph is solvable.

11

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 21

The Choice Rule

• Driving force behind solver is the Choice rule: Which of

two trees comes on top?

a

f

b

g

d

h

c

a

f

b

g

d

h

c

a

f

b

g

d

h

c

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 22

Cleaning Up I: Parent Normalisation

• Parent Normalisation changes a dominance edge (u,v)

into a dominance edge (u,w), where w is the parent of v

over a tree edge.

a

f

b

g

d

h

c

a

f

b

g

d

h

c

12

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 23

Cleaning Up II: Redundancy Elimination

• Redundancy Elimination deletes an edge (u,v) whenever

there is a path from u to v that doesn't use this edge.

a

f

b

g

d

h

c

a

f

b

g

d

h

c

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 24

Correctness of the solver

• The rules are correct:

– Every solved form of the original graph is a solved

form of exactly one of the two results of Choice.

– The original graph and the result of PN or RE have

exactly the same solved forms.

• Every application of Choice (plus some applications of

PN and RE) arranges the parents of one node.

• Eventually there will be no more nodes with two

incoming edges left; so the algorithm terminates.

13

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 25

Detecting unsolvability

• It remains to check whether the end results are solvable

or not.

• A dominance graph in which no node has two incoming

edges is either a tree, or it has a cycle.

– If it's a tree, then the graph is in solved form.

– If it has a cycle, then it is unsolvable.

a

f

b

g

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 26

The complete solver

solve(G):

1. Apply Parent Normalisation and Redundancy

Elimination exhaustively to G.

2. If there is a node v in G with two incoming dominance

edges:

apply Choice once; this gives new graphs H1 and H2

solve(H1)

solve(H2)

3. If there is no such node v, and if G has no cycle, then

report G as a solved form of the original graph.

14

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 27

An example run of the solver

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 28

An example run of the solver

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

15

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 29

Choice 1

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 30

After Redundancy Elimination

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

16

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 31

After Parent Normalisation (2 steps)

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

This is a solved form!

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 32

Choice 2

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

17

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 33

After RE and PN

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

This is a solved form!

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 34

Running into unsolvability

f

g

a b

f

g

a
b f

g

a
b

18

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 35

The solver: Summary

• The solver is a search algorithm that computes a set of

solved forms for a dominance graph.

• It doesn't enumerate all solved forms, but it does

enumerate all minimal solved forms. Every solution of G

solves exactly one minimal solved form of G.

• The algorithm may spend a lot of time trying to solve

unsolvable graphs.

• This can be improved by a smarter unsolvability test.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 36

Comparison of different solvers

19

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 37

Constructive solutions

• Our initial idea was that solutions of a dominance graph

should correspond to semantic representations.

• But now we know that there is generally an infinite

number of solutions!

• We are really only interested in constructive solutions,

i.e. solutions for which every node in the solution is the

α-image of a non-hole (with a label).

• Can we always extract constructive solutions from

solved forms?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 38

Solved forms vs. constructive solutions

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

a graph in solved form and its unique constructive solution

20

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 39

Not all graphs have constructive solutions!

g

a b

g

a b

f

a graph in solved form and a smallest solution.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 40

Constructive solvability

• In general, not all dominance graphs have constructive

solutions.

• How can we tell which ones do?

21

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 41

Hypernormal paths

• A hypernormal path is an undirected path in a

dominance graph that doesn't use two dominance edges

out of the same hole.

• A dominance graph is hypernormally connected (or hnc,

or a net) iff every pair of nodes is connected by a

hypernormal path.

g

a

b

f f

g

a

b b

g

g

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 42

Simple solved forms

• A solved form is called simple iff every hole has exactly

one outgoing dominance edge.

• Every graph in simple solved form has exactly one

constructive solution.

• All solved forms of a hypernormally connected graph

are simple.

• Thus: Every solved form of a hnc graph has exactly one

constructive solution.

22

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 43

The usefulness of nets

• Hypernormal paths have a number of really useful

properties:

– All solved forms of a hnc graph are simple,

i.e. solved forms correspond to readings.

– USRs from other formalisms (Hole Semantics, MRS)

can be translated into dominance graphs if the result

is hnc.

– A dominance graph is unsolvable iff its undirected

version has a hypernormal cycle.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 44

The usefulness of nets

• The only question now is:

– How useful is the fragment of hnc graphs?

– Do we know that all graphs that we want to use in

practice are in fact hnc?

• We believe: Yes!

– This is called the Net Hypothesis.

– An upper limit on scope flexibility.

– Ongoing research.

23

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 45

The Net Hypothesis

• Can be proved for (an extension of) last week's

grammar.

• Relationship to (Nested) Cooper Storage.

• Empirical verification (Flickinger et al., HPSG 2005):

– Compute USRs for all 960 sentences in the Rondane

Treebank using the English Resource Grammar.

– Result: 90% are hypernormally connected.

– The rest seem to be due to errors in grammar

(but this is ongoing research).

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 46

What can we do with USRs?

• We know now how to enumerate readings from USRs,

and that is good and important.

• But really, we wanted to use USRs as a platform for

disambiguation.

• How can we do this?

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

24

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 47

Inference on USRs

• Direct deduction (Reyle, de Rijke, Jaspars, ..., 1990s):

Infer from USR another USR that describes logical

consequences of its readings.

• Use anaphora (Koller & Niehren 2000):

Every linguist speaks two languages. These languages

are taught at our department.

• Eliminate logical redundancy (Koller & Thater 2006):

A researcher of some company saw a sample of a

product. (14 readings, all logically equivalent)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 48

Utool

• A fast implementation of a solver for dominance graphs

is available online:

– Utool, the Swiss Army Knife of Underspecification
http://www.coli.uni-saarland.de/projects/chorus/utool

• Implements another graph algorithm (not the one

presented here).

• Extra functionality:

– support for other underspecification formalisms and

file formats

– redundancy elimination

25

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 49

Summary

• Solving means enumeration of solved forms

(not solutions).

• Solving dominance graphs:

– search algorithm that is driven by the Choice rule

– detect unsolvability via cyclicity test

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 50

Summary

• Hypernormally connected graphs (nets):

– guarantee that solved forms have constructive

solutions

– it seems that every graph used in underspecification

is a net

• Some first results about inference on underspecified

representations.

