
1

Semantic Theory

Lecture 6:
Underspecification

M. Pinkal / A. Koller

Summer 2006

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 2

Scope ambiguities

• Some sentences have more than one possible semantic

representation:

Every student presents a paper.

(a) ∀x[student'(x) → ∃y[paper'(y) ∧ present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) → present(x,y)]]

Every student didn't pay attention.

(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]

2

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 3

Scope ambiguities

• The number of readings of a sentence with scope ambiguities grows

with the number of NPs:

Every researcher of a company saw some sample.

1. ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

2. ∃z(spl'(z) ∧ ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → see'(x,z))

3. ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

4. ∃y(cp'(y) ∧ ∃z(spl'(z) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

5. ∃z(spl'(z) ∧ ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

Every researcher of a company saw some samples of most products.

etc.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 4

Semantic ambiguity: A picture

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

?
?

?

?

3

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 5

Nested Cooper Storage: Example

Every student presents a paper.

NP
〈λQ∃y[paper'(y) ∧ Q(y)], ∅〉

<λP.P(x2), {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

V
〈λQ Q λx[QQ(λy[present*(y)(x)])], ∅〉

NP
〈λP∀x[student'(x) → P(x)], ∅〉

<λP.P(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1}〉

VP
〈λx[pres*(x2)(x)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

S
〈pres*(x2)(x1),

{〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

Every student

presents a paper

(only showing the results

from the blue values here)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 6

(Nested) Cooper Storage: Schema

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

4

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 7

Montague Grammar: Schema

Sentence Semantic representationSyntactic analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Syntactic analysis

Syntactic analysis

Syntactic analysis

Syntactic analysis

• Montague 1974: "A proper treatment of quantification in ordinary

English"

• Analyse scope ambiguity as a syntactic ambiguity.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 8

So where do we stand?

• The Good News:

– We can compute the readings of a scope ambiguity

compositionally.

• The Bad News:

– The number of readings grows exponentially with the

number of scope-bearing elements.

– Enumerating them takes a long time.

– Most of this time is wasted.

5

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 9

Explosion of Readings

• A sentence with more than one scope ambiguity can

have an enormous number of readings:

Most politicians can fool most voters on most issues most

of the time, but no politician can fool every voter on every

single issue all of the time.

(ca. 600 readings, Hobbs)

• Modern large-scale grammars predict a lot of scope

readings even for harmless-looking sentences:

But that would give us all day Tuesday to be there.

(ca. 65.000 readings, according to ERG grammar)

• Record: One sentence in Rondane Treebank has

2.4 trillion (1012) scope readings according to ERG.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 10

Enumeration can get expensive

Median extraction times

1,0

10,0

100,0

1000,0

10000,0

100000,0

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Constraint size

R
u

n
ti

m
e
 [

m
s
]

Windows / C++

Windows / Java 1.5 Client

Windows / Java 1.6 Client

Windows / Java 1.5 Server

Windows / Java 1.6 Server

Linux / C++

Linux / Java 1.5 Client

Linux / Java 1.6 Client

Linux / Java 1.5 Server

Linux / Java 1.6 Server

6

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 11

Enumeration is not always necessary

• Some sentences can be evaluated semantically without

having to commit to one scope reading:

In Saarbrücken, many scientists at several institutes

are working on numerous interesting research

problems in different areas of semantics.

Every student must speak two foreign languages.

This is definitely too much.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 12

Immediate enumeration not always necessary

• The disambiguation to one reading can occur naturally

as the discourse progresses:

Every student must speak two foreign languages.

These languages are taught at our department.

Every student must speak two foreign languages.

Appendix 1 of the Studienordnung lists the twenty

admissible languages.

7

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 13

Disambiguating factors

• World knowledge can exclude some readings:

Every woman gave birth to a baby.

• Preferences, such as

– word order

– intonation

– choice of determiners:

"a search engine for every subject" vs. "a search

engine for each subject"

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 14

Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax

8

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 15

Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation

(USR) from the syntactic analysis.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 16

Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings

excluded by the context.

9

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 17

Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings

excluded by the context.

• Enumerate readings by need.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 18

Underspecification

• Main points:

– define USRs

– show how to do semantics construction

– show how to enumerate readings from USR

(next week)

• Quantifiers stores of NCS can be seen as proto-USRs,

but nondeterministic procedural element remains.

• USRs will be completely declarative.

10

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 19

Underspecification with Dominance Graphs

• Basic idea:

– Consider semantic representations as trees.

– Describe sets of trees using dominance graphs.

– Special mechanisms for variable binding.

• Equivalent to normal dominance constraints, a logical

formalism interpreted over trees (Egg et al. 2001, etc.).

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 20

Terms as trees

• Terms (and formulas) of type theory have a natural

reading as trees:

– Application M(N) is the tree @(M,N)

– Abstraction λx.M is the tree lam(M);

quantifiers analogously.

– Constant symbols become leaf labels

– All variables become leaves with label var.

• Every node label has an arity that determines the

number of children in the tree. @ has arity 2; abstraction,

quantifiers have arity 1; constants, variables have arity 0.

11

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 21

Terms as trees

@

sleep' john*

Tree representation of the formula sleep'(john*):

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 22

Terms as trees

Tree representation of the formula

∀x.student'(x) → intelligent'(x):

∀

→

@ @

student' var intelligent' var

12

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 23

Terms as trees

Tree representation of the formula

(λF.F(john*))(sleep'):

@

sleep'lam

@

john*var

Notice: This tree is different from the one for sleep'(john*),

because these are different (albeit equivalent) expressions.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 24

Representing variable binding

• A lambda structure L = (t,λ) is a pair of a tree t and a

partial function λ (the binding function) that maps nodes

of t to nodes of t.

• The function λ maps variables to their binders; binders

must dominate variables.

• Every expression of type theory corresponds to a unique

lambda structure.

• We will see later that variable names are no longer

sufficient to indicate variable binding in an

underspecification context.

13

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 25

Terms as lambda structures

Tree representation of the formula

∀x.student'(x) → intelligent'(x):

∀

→

@ @

student' var intelligent' var

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 26

Terms as trees

Tree representation of the formula

(λF.F(john*))(sleep'):

@

sleep'

@

john*var

lam

14

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 27

Dominance graphs

• A (normal) dominance graph is a directed graph with

node labels and three kinds of edges: tree edges,

dominance edges, and binding edges.

• The graph restricted to only the tree edges is a collection

of trees.

• All unlabelled nodes are leaves of these trees. These

nodes are called holes.

• Each labelled node has as many children over tree

edges as the arity of the label demands.

• Each tree contains at least one non-hole.

• The dominance edges all start at holes.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 28

A dominance graph

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@

15

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 29

Graphs describe lambda structures

• A lambda structure L is a solution of a dominance graph G iff there

is a mapping α of the nodes of G into the nodes of L such that

– α maps no two non-holes to the same node in L

– for all labelled nodes v in G, α(v) has the same label as v

– if the tree-edge children of v are v1,...,vn, then the children of α(v)

are α(v1),...,α(vn)

– for each dominance edge (u,v) in G, there is a path from α(u) to

α(v) in L

– for each binding edge (u,v) in G, λ(α(u)) is defined and

λ(α(u)) = α(v).

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 30

Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@

∀

student'

→

var

@ ∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@

16

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 31

Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@
∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 32

Not a solution

∀

student'

→

var

@

∃

paper' var

∧

@ ∀

student'

→

var

@

present' var

var

@

@
present' var

var

@

@

?

17

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 33

Not a solution

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

foo

∃

paper' var

∧

@

present' var

var

@

@

∀

student'

→

var

@ a

?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 34

What can we do now?

• Represent terms of type theory as lambda structures.

• Represent sets of terms of type theory (e.g. the semantic

representations of a sentence) as the solutions of a

dominance graph.

• Todo 1 (Semantics construction): How can we get a

dominance graph for a sentence?

• Todo 2 (Enumeration): How can we compute the

solutions of a dominance graph? (next week)

18

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 35

Semantics construction: Principles

• For every node in the syntax tree, we derive a

dominance graph.

• Each syntax rule is associated with a semantics rule that

combines dominance graphs.

• Each of these sub-dominance graphs has an interface

node that is used to connect it with other subgraphs.

• The USR for the whole sentence is then the dominance

graph associated with the root of the sentence.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 36

Lexicon access

• Rule of lexical nodes:

The semantic representation β for the word "a" is

supplied by the lexicon.

A

a

A

β

19

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 37

Semantics construction rules

• S → NP VP

• VP → TV NP

• NP → PN

@

VP NP

Interface node of S

Interface node of NP

@

TV NP

PN

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 38

A simple example

PN TV PN

John loves Mary

NP NP

VP

S

love' mary*

john*

20

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 39

A simple example

PN TV PN

John loves Mary

NP NP

VP

S

love' mary*

john*

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 40

A simple example

PN TV PN

NP NP

VP

S

@

John loves Mary

love' mary*

john*

21

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 41

A simple example

PN TV PN

NP NP

VP

S

@

@

John loves Mary

love' mary*

john*

Semantic representation: love'(mary*)(john*)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 42

Quantifiers

• The graph for a quantifier NP contains a variable node

and its binder, linked by dominance and binding edges.

• The interface node of the graph is the variable node

(representing a variable of type e)!

every

student'

lam

var

@

@

22

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 43

Building graphs for quantifiers

• Lexicon entry for determiners (here "every"):

• Syntax rule NP → Det N':

@

var var

@

var var

lam

lam

∀

→
every

@

@

Det N'

lam

var

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 44

An example with determiners

Det N IV

Every sleepsstudent

NP VP

S

every

student'

sleep'

23

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 45

An example with determiners

Det N IV

NP VP

S

@

@

lam

var

Every sleepsstudent

every

student'

sleep'

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 46

An example with determiners

Det N IV

NP VP

S

every sleep'

@

@

@

Every sleepsstudent

student'

lam

var

24

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 47

Drawn a little more nicely

λP λQ ∀x.(P(x) → Q(x))(student')(λy.sleep'(y))

⇔β ∀x.(student'(x) → sleep'(x))

every

sleep'

@

@

@

student'

lam

var

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 48

Scope ambiguities

Det N TV

Every presentsstudent

NP

VP

S

Det

a

N

paper

NP

every

student'

@

@

var

a

paper'

@

@

var

present'

lam lam

25

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 49

Scope ambiguities

Det N TV

NP

VP

S

Det N

NP

every

@

@

lam

var

a

@

@

var

@

Every presentsstudent a paper

student' paper'

present'

lam

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 50

Scope ambiguities

Det N TV

NP

VP

S

Det N

NP

Every presentsstudent a paper

every

@

@

lam

a

@

@

var

@

student' paper'

present'

lam

var

@

26

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 51

Drawn a little more nicely

every

@

@

lam

a

@

@

var

@

student' paper'

present'

lam

var

@

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 52

An observation

• We still use type theory as the object language, i.e. the

language of semantic representations.

• However, types no longer drive the construction process.

• We use far fewer lambdas for "construction

bookkeeping"; we replace this by plugging USRs into

each other directly.

• This makes us more flexible in our choice of semantic

representations:

– can use john* of type e for proper names

– can use present* of type <e,<e,t>> for transitive verbs

27

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 53

An observation about noun phrases

• The quantifier representation is split into two parts:

– a variable of type e which the verb is applied to; this is

like the xi that is introduced in the NCS Storage rule.

– a fragment containing a quantifier representation of

type <<e,t>,t>, which is applied at some point to what

would be the "semantic content" in NCS.

• The two components are connected by binding and

dominance edges.

• The variable binding is introduced together with the

variable and the binder; no need for "variable capturing".

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 54

Why binding edges?

• In an underspecification context, variable names aren't

always sufficient to indicate the binder for each variable:

• Problem could be solved by requiring that variables are

named apart, but this breaks down for extensions of

dominance graphs.

• Binding edges are a clean and simple way of doing it.

∀x ∃x

P(x)

28

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 55

Conclusion

• Enumerating all readings is typically a waste of time.

• Underspecification: Enumerate only by need.

• Dominance graphs: Encode readings as trees; use

graphs as underspecified semantic representations.

• Simple semantics construction that combines sub-

dominance graphs.

• Each syntactic combination rule is associated with a

semantic combination rule.

