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Scope ambiguities

• Some sentences have more than one possible semantic 

representation:

Every student presents a paper.

(a) ∀x[student'(x) → ∃y[paper'(y) ∧ present'(x,y)]]

(b) ∃y[paper'(y) ∧ ∀x[student'(x) → present(x,y)]]

Every student didn't pay attention.

(a) ∀x[student'(x) → ¬pay-attention'(x)]

(b) ¬∀x[student'(x) → pay-attention'(x)]
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Scope ambiguities 

• The number of readings of a sentence with scope ambiguities grows 

with the number of NPs:

Every researcher of a company saw some sample.

1. ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

2. ∃z(spl'(z) ∧ ∀x(res'(x) ∧ ∃y(cp'(y) ∧ of'(x,y)) → see'(x,z))

3. ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → ∃z(spl'(z) ∧ see'(x,z))

4. ∃y(cp'(y) ∧ ∃z(spl'(z) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

5. ∃z(spl'(z) ∧ ∃y(cp'(y) ∧ ∀x(res'(x) ∧ of'(x,y)) → see'(x,z))

Every researcher of a company saw some samples of most products.

etc.
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Semantic ambiguity: A picture

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

?
?

?

?
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Nested Cooper Storage: Example

Every student presents a paper.

NP
〈λQ∃y[paper'(y) ∧ Q(y)], ∅〉

<λP.P(x2), {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

V
〈λQ Q λx[QQ(λy[present*(y)(x)])], ∅〉

NP
〈λP∀x[student'(x) → P(x)], ∅〉

<λP.P(x1), {〈λP∀x[student'(x) → P(x)], ∅〉1}〉

VP
〈λx[pres*(x2)(x)], {〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

S
〈pres*(x2)(x1), 

{〈λP∀x[student'(x) → P(x)], ∅〉1, 〈λQ∃y[paper'(y) ∧ Q(y)] , ∅〉2}〉

Every student

presents a paper

(only showing the results

from the blue values here)
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(Nested) Cooper Storage: Schema

Sentence Semantic representation
Syntactic

analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation
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Montague Grammar: Schema

Sentence Semantic representationSyntactic analysis

Semantic representation

Semantic representation

Semantic representation

Semantic representation

Syntactic analysis

Syntactic analysis

Syntactic analysis

Syntactic analysis

• Montague 1974: "A proper treatment of quantification in ordinary

English"

• Analyse scope ambiguity as a syntactic ambiguity.
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So where do we stand?

• The Good News:

– We can compute the readings of a scope ambiguity 

compositionally.

• The Bad News:

– The number of readings grows exponentially with the 

number of scope-bearing elements.

– Enumerating them takes a long time.

– Most of this time is wasted.
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Explosion of Readings

• A sentence with more than one scope ambiguity can 

have an enormous number of readings:

Most politicians can fool most voters on most issues most 

of the time, but no politician can fool every voter on every 

single issue all of the time.

(ca. 600 readings, Hobbs) 

• Modern large-scale grammars predict a lot of scope 

readings even for harmless-looking sentences:

But that would give us all day Tuesday to be there.

(ca. 65.000 readings, according to ERG grammar)

• Record: One sentence in Rondane Treebank has 

2.4 trillion (1012) scope readings according to ERG.
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Enumeration can get expensive

Median extraction times
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Enumeration is not always necessary

• Some sentences can be evaluated semantically without 

having to commit to one scope reading: 

In Saarbrücken, many scientists at several institutes 

are working on numerous interesting research 

problems in different areas of semantics.

Every student must speak two foreign languages.

This is definitely too much.
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Immediate enumeration not always necessary

• The disambiguation to one reading can occur naturally 

as the discourse progresses: 

Every student must speak two foreign languages. 

These languages are taught at our department.

Every student must speak two foreign languages. 

Appendix 1 of the Studienordnung lists the twenty 

admissible languages.
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Disambiguating factors

• World knowledge can exclude some readings:

Every woman gave birth to a baby.

• Preferences, such as

– word order

– intonation

– choice of determiners:

"a search engine for every subject" vs. "a search 

engine for each subject"
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Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax
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Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation 

(USR) from the syntactic analysis.
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Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation 

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings 

excluded by the context.
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Underspecification: The big picture

Sentence

semantic repres. 1

semantic repres. 2

semantic repres. 3

semantic repres. 4

Syntax USR

• Derive a single underspecified semantic representation 

(USR) from the syntactic analysis.

• Perform inferences on USR to eliminate readings 

excluded by the context.

• Enumerate readings by need.
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Underspecification

• Main points:

– define USRs

– show how to do semantics construction

– show how to enumerate readings from USR 

(next week)

• Quantifiers stores of NCS can be seen as proto-USRs, 

but nondeterministic procedural element remains.

• USRs will be completely declarative.
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Underspecification with Dominance Graphs

• Basic idea:

– Consider semantic representations as trees.

– Describe sets of trees using dominance graphs.

– Special mechanisms for variable binding.

• Equivalent to normal dominance constraints, a logical 

formalism interpreted over trees (Egg et al. 2001, etc.).
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Terms as trees

• Terms (and formulas) of type theory have a natural 

reading as trees:

– Application M(N) is the tree @(M,N)

– Abstraction λx.M is the tree lam(M); 

quantifiers analogously.

– Constant symbols become leaf labels

– All variables become leaves with label var.

• Every node label has an arity that determines the 

number of children in the tree. @ has arity 2; abstraction, 

quantifiers have arity 1; constants, variables have arity 0.
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Terms as trees

@ 

sleep' john*

Tree representation of the formula sleep'(john*):
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Terms as trees

Tree representation of the formula 

∀x.student'(x) → intelligent'(x):

∀

→

@ @

student' var intelligent' var



12

Semantic Theory 2006  © M. Pinkal / A. Koller  UdS Computerlinguistik 23

Terms as trees

Tree representation of the formula 

(λF.F(john*))(sleep'):

@ 

sleep'lam

@

john*var

Notice: This tree is different from the one for sleep'(john*), 

because these are different (albeit equivalent) expressions.
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Representing variable binding

• A lambda structure L = (t,λ) is a pair of a tree t and a 

partial function λ (the binding function) that maps nodes 

of t to nodes of t.

• The function λ maps variables to their binders; binders 

must dominate variables.

• Every expression of type theory corresponds to a unique 

lambda structure. 

• We will see later that variable names are no longer 

sufficient to indicate variable binding in an 

underspecification context.
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Terms as lambda structures

Tree representation of the formula 

∀x.student'(x) → intelligent'(x):

∀

→

@ @

student' var intelligent' var
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Terms as trees

Tree representation of the formula 

(λF.F(john*))(sleep'):

@ 

sleep'

@

john*var

lam
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Dominance graphs

• A (normal) dominance graph is a directed graph with 

node labels and three kinds of edges: tree edges, 

dominance edges, and binding edges.

• The graph restricted to only the tree edges is a collection 

of trees.

• All unlabelled nodes are leaves of these trees. These 

nodes are called holes.

• Each labelled node has as many children over tree 

edges as the arity of the label demands.

• Each tree contains at least one non-hole.

• The dominance edges all start at holes.
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A dominance graph

∀

student'

→

var

@

present' var

var

@

@

∃

paper' var

∧

@
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Graphs describe lambda structures

• A lambda structure L is a solution of a dominance graph G iff there 

is a mapping α of the nodes of G into the nodes of L such that

– α maps no two non-holes to the same node in L

– for all labelled nodes v in G, α(v) has the same label as v

– if the tree-edge children of v are v1,...,vn, then the children of α(v) 

are α(v1),...,α(vn)

– for each dominance edge (u,v) in G, there is a path from α(u) to 

α(v) in L

– for each binding edge (u,v) in G, λ(α(u)) is defined and 

λ(α(u)) = α(v).
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Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@

∀

student'

→

var

@ ∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@
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Solutions of dominance graphs

∀

student'

→

var

@

∃

paper' var

∧

@
∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@
present' var

var

@

@
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Not a solution

∀

student'

→

var

@

∃

paper' var

∧

@ ∀

student'

→

var

@

present' var

var

@

@
present' var

var

@

@

?
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Not a solution

∀

student'

→

var

@

∃

paper' var

∧

@

present' var

var

@

@

foo

∃

paper' var

∧

@

present' var

var

@

@

∀

student'

→

var

@ a

?
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What can we do now?

• Represent terms of type theory as lambda structures.

• Represent sets of terms of type theory (e.g. the semantic 

representations of a sentence) as the solutions of a 

dominance graph.

• Todo 1 (Semantics construction): How can we get a 

dominance graph for a sentence?

• Todo 2 (Enumeration): How can we compute the 

solutions of a dominance graph? (next week)
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Semantics construction: Principles

• For every node in the syntax tree, we derive a 

dominance graph.

• Each syntax rule is associated with a semantics rule that 

combines dominance graphs.

• Each of these sub-dominance graphs has an interface 

node that is used to connect it with other subgraphs.

• The USR for the whole sentence is then the dominance 

graph associated with the root of the sentence.
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Lexicon access

• Rule of lexical nodes:

The semantic representation β for the word "a" is 

supplied by the lexicon.

A

a

A

β
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Semantics construction rules

• S → NP VP

• VP → TV NP

• NP → PN

@

VP NP

Interface node of S

Interface node of NP

@

TV NP

PN
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A simple example

PN TV PN

John loves Mary

NP NP

VP

S

love' mary*

john*
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A simple example

PN TV PN

John loves Mary

NP NP

VP

S

love' mary*

john*
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A simple example

PN TV PN

NP NP

VP

S

@

John loves Mary

love' mary*

john*
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A simple example

PN TV PN

NP NP

VP

S

@

@

John loves Mary

love' mary*

john*

Semantic representation: love'(mary*)(john*)
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Quantifiers

• The graph for a quantifier NP contains a variable node 

and its binder, linked by dominance and binding edges.

• The interface node of the graph is the variable node 

(representing a variable of type e)!

every

student'

lam

var

@

@
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Building graphs for quantifiers

• Lexicon entry for determiners (here "every"):

• Syntax rule NP → Det N':

@

var var

@

var var

lam

lam

∀

→
every

@

@

Det N'

lam

var
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An example with determiners

Det N IV

Every sleepsstudent

NP VP

S

every

student'

sleep'
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An example with determiners

Det N IV

NP VP

S

@

@

lam

var

Every sleepsstudent

every

student'

sleep'
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An example with determiners

Det N IV

NP VP

S

every sleep'

@

@

@

Every sleepsstudent

student'

lam

var
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Drawn a little more nicely

λP λQ ∀x.(P(x) → Q(x))(student')(λy.sleep'(y))

⇔β ∀x.(student'(x) → sleep'(x))

every

sleep'

@

@

@

student'

lam

var
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Scope ambiguities

Det N TV

Every presentsstudent

NP

VP

S

Det

a

N

paper

NP

every

student'

@

@

var

a

paper'

@

@

var

present'

lam lam
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Scope ambiguities

Det N TV

NP

VP

S

Det N

NP

every

@

@

lam

var

a

@

@

var

@

Every presentsstudent a paper

student' paper'

present'

lam
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Scope ambiguities

Det N TV

NP

VP

S

Det N

NP

Every presentsstudent a paper

every

@

@

lam

a

@

@

var

@

student' paper'

present'

lam

var

@
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Drawn a little more nicely

every

@

@

lam

a

@

@

var

@

student' paper'

present'

lam

var

@
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An observation

• We still use type theory as the object language, i.e. the 

language of semantic representations.

• However, types no longer drive the construction process.

• We use far fewer lambdas for "construction 

bookkeeping"; we replace this by plugging USRs into 

each other directly.

• This makes us more flexible in our choice of semantic 

representations:

– can use john* of type e for proper names

– can use present* of type <e,<e,t>> for transitive verbs
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An observation about noun phrases

• The quantifier representation is split into two parts:

– a variable of type e which the verb is applied to; this is 

like the xi that is introduced in the NCS Storage rule.

– a fragment containing a quantifier representation of 

type <<e,t>,t>, which is applied at some point to what 

would be the "semantic content" in NCS.

• The two components are connected by binding and 

dominance edges.

• The variable binding is introduced together with the 

variable and the binder; no need for "variable capturing".
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Why binding edges?

• In an underspecification context, variable names aren't 

always sufficient to indicate the binder for each variable:

• Problem could be solved by requiring that variables are 

named apart, but this breaks down for extensions of 

dominance graphs.

• Binding edges are a clean and simple way of doing it.

∀x ∃x

P(x)
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Conclusion

• Enumerating all readings is typically a waste of time.

• Underspecification: Enumerate only by need.

• Dominance graphs: Encode readings as trees; use 

graphs as underspecified semantic representations.

• Simple semantics construction that combines sub-

dominance graphs.

• Each syntactic combination rule is associated with a 

semantic combination rule.


