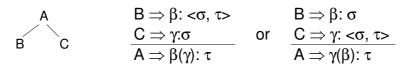
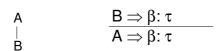
Semantic Theory

Lecture 5: Scope ambiguities

M. Pinkal / A. Koller Summer 2006


The story so far

- · We want:
 - logic-based semantic representations that capture the truth conditions of a sentence
 - type theory, tense & modal logic, ...
 - compositional semantics construction
 - lambdas
- · This works pretty well up to this point!
- And we could envisage that the system could be conservatively extended to deal with the rest of semantics too.


Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

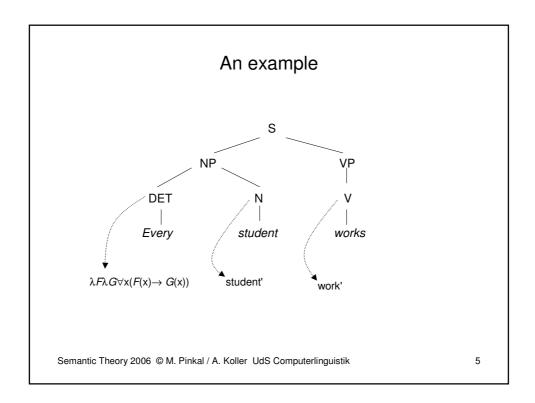
Some basic rules

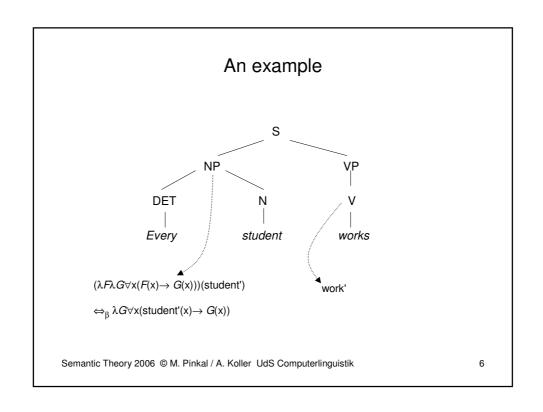
• Rule of functional application:

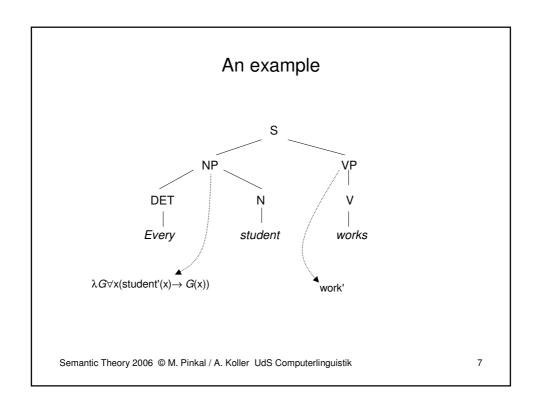
Rule of non-branching nodes:

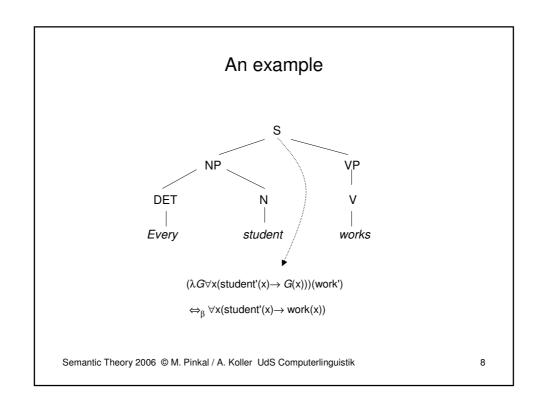
Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

3


Some basic rules


• Rule of lexical nodes:


$$\begin{array}{ccc}
A & & \\
 & & \\
A \Rightarrow \beta: \tau
\end{array}$$


The semantic representation β for the word "a" is supplied by the lexicon.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

However ...

 ... perhaps we made an assumption that is not generally correct!

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

9

What does this mean?

"Now we've got at least one city with all seven religions."

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

What does this mean?

• Headline: "A search engine for every subject"

(see: http://itre.cis.upenn.edu/~myl/languagelog/archives/002835.html)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

11

What does this mean?

- "Every linguist speaks two languages."
 - the same set of languages for each linguist?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

What does this mean?

- "During his visit to China, Helmut Kohl intends to visit a factory for CFC-free refrigerators."
 - are there concrete plans for a particular factory?
 - are there factories for CFC-free refrigerators in China?

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

13

What do all these mean?

- · "Victoria refuses to trade all her techs."
- "The bishop sent a letter to all priests."
- "It just didn't occur to me that a Barracks might not be there!"

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Scope ambiguities

 Some sentences have more than one possible semantic representation:

Every student presents a paper.

- (a) $\forall x[student'(x) \rightarrow \exists y[paper'(y) \land present'(x,y)]]$
- (b) $\exists y[paper'(y) \land \forall x[student'(x) \rightarrow present(x,y)]]$

Every student didn't pay attention.

- (a) $\forall x[student'(x) \rightarrow \neg pay-attention'(x)]$
- (b) $\neg \forall x[student'(x) \rightarrow pay-attention'(x)]$

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

Scope ambiguities

 The number of readings of a sentence with scope ambiguities grows with the number of NPs:

Every researcher of a company saw some sample.

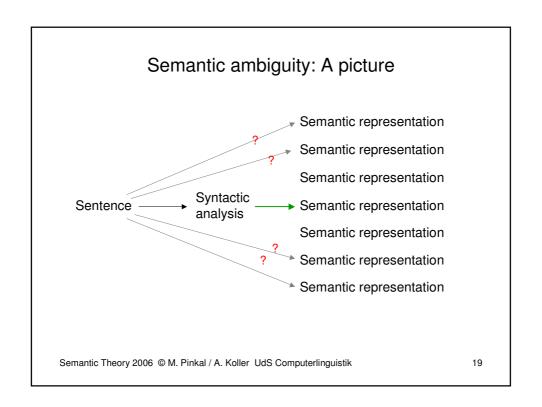
```
1. \forall x (res'(x) \land \exists y (cp'(y) \land of'(x,y)) \rightarrow \exists z (spl'(z) \land see'(x,z))
```

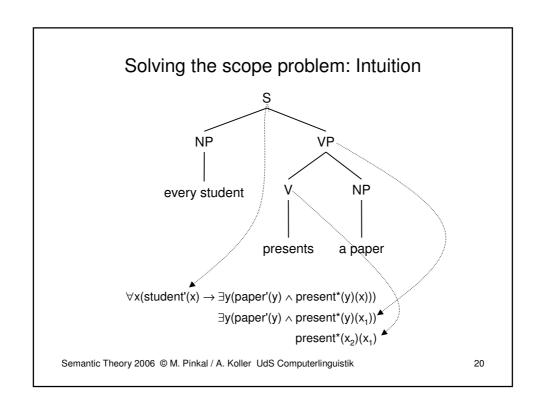
- 2. $\exists z (spl'(z) \land \forall x (res'(x) \land \exists y (cp'(y) \land of'(x,y)) \rightarrow see'(x,z))$
- 3. $\exists y(cp'(y) \land \forall x(res'(x) \land of'(x,y)) \rightarrow \exists z(spl'(z) \land see'(x,z))$
- 4. $\exists y(cp'(y) \land \exists z(spl'(z) \land \forall x(res'(x) \land of'(x,y)) \rightarrow see'(x,z))$
- 5. $\exists z (spl'(z) \land \exists y (cp'(y) \land \forall x (res'(x) \land of'(x,y)) \rightarrow see'(x,z))$

Every researcher of a company saw some samples of most products.

etc.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik


16


But: We get only one reading! $\begin{array}{c} S \\ \forall x[student(x) \to \exists y[paper(y) \land present^*(y)(x)]] : t \\ NP \\ \lambda X \exists y paper(y) \land present^*(y)(x) : <e,t> \\ VP \\ \lambda Q \lambda x[Q(\lambda z[present^*(z)(x)])] : <<<e,t>,t>,<e,t>> \\ \lambda Q \lambda x[Q(\lambda z[present^*(z)(x)])] : <<<e,t>,t>,<e,t>> \\ presents Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik 17$

The problem with scope

- Sentences with scope ambiguities can have multiple semantic representations for a syntactic constituent.
- The order of the scope-bearing elements (quantifiers, negation, adverbs, ...) don't necessarily follow the order of the syntactic combination.
- But: With the approach we have so far, we can only derive a single semantic representation for each constituent!
- · How can we solve this problem?

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

The missing reading

 We get one reading of the sentence by deriving the following terms:

```
\forall x (\text{student'}(x) \rightarrow \exists y (\text{paper'}(y) \land \text{present'}(y)(x))) \\ \exists y (\text{paper'}(y) \land \text{present'}(y)(x_1)) \\ \text{present'}(x_2)(x_1)
```

· We could construct the second reading as follows:

```
 \exists y (\mathsf{paper'}(y) \land \forall x (\mathsf{student'}(x) \to \mathsf{present^*}(y)(x))) \\ \forall x (\mathsf{student'}(x) \to \mathsf{present^*}(x_2)(x)) \\ \mathsf{present^*}(x_2)(x_1)
```

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

21

Solving the scope problem: Principles

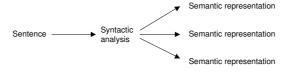
- Structural ambiguity: We can obtain the two readings by embedding an intermediate term into the NP representations in different orders.
- Invariant variable binding: At the same time, we must make sure that the variables will be bound in the same way in both readings.
- To a certain degree, we can solve both problems using lambda abstraction in a clever way.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Using lambda abstraction ("Montague's Trick")

 Intermediate results are all of type t. Abstract over the correct variable and then apply the NP representation to the abstracted term.

```
\begin{split} \lambda F \forall x (\text{student'}(x) &\to F(x)) (\lambda x_1. \ \lambda \text{$G$}\exists y (\text{paper'}(y) \land G(y)) (\lambda x_2.\text{present*}(x_2)(x_1))) \\ & \lambda G \exists y (\text{paper'}(y) \land G(y)) (\lambda x_2.\text{present*}(x_2)(x_1)) \\ & \text{present*}(x_2)(x_1) \end{split} \lambda G \exists y (\text{paper'}(y) \land G(y)) (\lambda x_2. \ \lambda F \forall x (\text{student'}(x) \to F(x)) (\lambda x_1.\text{present*}(x_2)(x_1))) \\ & \lambda F \forall x (\text{student'}(x) \to F(x)) (\lambda x_1.\text{present*}(x_2)(x_1)) \\ & \text{present*}(x_2)(x_1) \end{split}
```


Problem: How can we do this compositionally?

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

23

Nested Cooper Storage

- One algorithm for deriving such representations compositionally is Nested Cooper Storage (Keller 1988).
 It repairs some problems of the original Cooper Storage (Cooper 1975).
- Cooper Storages compute the set of all semantic readings nondeterministically from a single syntactic analysis:

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Nested Cooper Storage: Principles

- The semantic values of syntactic constituents are ordered pairs ⟨α, Δ⟩:
 - $-\alpha \in WE_{\tau}$ is the content
 - $-\Delta$ is the quantifier store: a set of NP representations that must still be applied.
- At NP nodes, we may store the content in Δ .
- At sentence nodes, we can retrieve NP representations from the store in arbitrary order and apply them to the appropriate argument positions.

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

25

Nested Cooper Storage: Principles

- A syntactic constituent may be associated with multiple semantic values of this form.
- A lambda term M counts as a semantic representation for the entire sentence iff we can derive ⟨M, Ø⟩ as a value for the root of the syntax tree.
- Hence, there may be more than one valid semantic representation for the complete sentence.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Nested Cooper Storage: Old Rules

Rule of functional application:

$$\begin{array}{l} \mathsf{B} \Rightarrow \langle \beta, \Delta \rangle \\ \mathsf{C} \Rightarrow \langle \gamma, \Gamma \rangle \\ \mathsf{A} \Rightarrow \langle \beta(\gamma), \Delta \cup \Gamma \rangle \end{array}$$

$$\begin{array}{ll} \mathsf{B} \Rightarrow \langle \beta, \Delta \rangle & \mathsf{B} \Rightarrow \langle \beta, \Delta \rangle \\ \mathsf{C} \Rightarrow \langle \gamma, \Gamma \rangle & \mathsf{or} & \begin{array}{ll} \mathsf{B} \Rightarrow \langle \beta, \Delta \rangle \\ \mathsf{C} \Rightarrow \langle \gamma, \Gamma \rangle \\ \mathsf{A} \Rightarrow \langle \beta(\gamma), \Delta \cup \Gamma \rangle \end{array} \\ & \mathsf{A} \Rightarrow \langle \gamma(\beta), \Delta \cup \Gamma \rangle \end{array}$$

Rule of non-branching nodes:

$$\frac{\mathsf{B} \Rightarrow \langle \beta, \Delta \rangle}{\mathsf{A} \Rightarrow \langle \beta, \Delta \rangle}$$

· Rule of lexical nodes:

$$A \Rightarrow \langle \beta, \varnothing \rangle$$

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

27

Nested Cooper Storage: Storage

$$\mathsf{B} \Rightarrow \langle \mathsf{\gamma}, \, \Gamma \rangle$$

B is an NP node

$$\mathsf{B} \Rightarrow \langle \lambda \mathsf{P}.\mathsf{P}(\mathsf{x}_i), \{\langle \gamma, \Gamma \rangle_i \} \rangle$$

 $B \Rightarrow \langle \lambda P.P(x_i), \{\langle \gamma, \Gamma \rangle_i \} \rangle$ where $i \in \mathbf{N}$ is a new index

- Using this rule, we can assign more than one semantic value to an NP node.
- The content of the new semantic value is just a placeholder of type <<e,t>,t>, and the old value (including its store) is moved to the store.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Nested Cooper Storage: Retrieval

- Using this rule, we can apply a stored NP.
- At this point, the correct λ-abstraction for the variable associated with the stored element is introduced.
- The old store Γ is released into the store for A.
- · This implements Montague's Trick.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

29

Nested Cooper Storage: Example Every student presents a paper. $\langle pres^*(x_2)(x_1),$ $\{\!\langle \lambda P \forall x [\textit{student'}(x) \rightarrow P(x)], \varnothing \rangle_{\!1}, \langle \lambda Q \exists y [\textit{paper'}(y) \land Q(y)] \;, \varnothing \rangle_{\!2} \} \rangle$ NP VΡ $\langle \lambda P \forall x [student'(x) \rightarrow P(x)], \emptyset \rangle$ $\langle \lambda x [\textit{pres*}(x_2)(x)], \{\langle \lambda Q \exists y [\textit{paper'}(y) \land Q(y)] \ , \varnothing \rangle_2 \} \rangle$ $\langle \lambda P.P(x_1), \{\langle \lambda P \forall x[student'(x) \rightarrow P(x)], \emptyset \rangle_1 \} \rangle$ $\mbox{Every student} \ \ _{\langle \lambda Q \ \lambda x [\ Q(\lambda y [\ present^*(y)(x)])], \ \varnothing \rangle }$ NP $\langle \lambda Q \exists y [\textit{paper'}(y) \wedge Q(y)], \varnothing \rangle$ $<\!\!\lambda P.P(x_2),\,\{\!\langle\lambda Q\exists y[\textit{paper'}(y) \wedge Q(y)]\;,\,\varnothing\rangle_2\!\}\rangle$ presents a paper Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik 30

Retrieval: Reading 1

• By applying the Retrieval rule, we can derive the following representation for the S node:

```
\begin{split} &\langle \textit{pres*}(x_2)(x_1), \{\langle \lambda \mathsf{P} \forall x[\textit{student'}(x) \to \mathsf{P}(x)], \varnothing \rangle_1, \langle \lambda \mathsf{Q} \exists y[\textit{paper'}(y) \land \mathsf{Q}(y)] \,, \varnothing \rangle_2 \} \rangle \\ & \Rightarrow_{\mathsf{R}} \langle \lambda \mathsf{Q} \exists y[\textit{paper'}(y) \land \mathsf{Q}(y)] (\lambda x_2. \textit{pres*}(x_2)(x_1)), \\ & \{\langle \lambda \mathsf{P} \forall x[\textit{student'}(x) \to \mathsf{P}(x)], \varnothing \rangle_1 \} \rangle \\ & \Rightarrow_{\beta} \langle \exists y[\textit{paper'}(y) \land \textit{pres*}(y)(x_1)], \{\langle \lambda \mathsf{P} \forall x[\textit{student'}(x) \to \mathsf{P}(x)], \varnothing \rangle_1 \} \rangle \\ & \Rightarrow_{\mathsf{R}} \langle \lambda \mathsf{P} \forall x[\textit{student'}(x) \to \mathsf{P}(x)] (\lambda x_1. \exists y[\textit{paper'}(y) \land \textit{pres*}(y)(x_1)]), \varnothing \rangle \\ & \Rightarrow_{\beta} \langle \forall x[\textit{student'}(x) \to \exists y[\textit{paper'}(y) \land \textit{pres*}(y)(x)]], \varnothing \rangle \end{split}
```

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

31

Retrieval: Reading 2

• By applying the Retrieval rule, we can derive the following representation for the S node:

```
\begin{split} &\langle \textit{pres*}(x_2)(x_1), \{\langle \lambda \mathsf{P} \forall x [\textit{student'}(x) \to \mathsf{P}(x)], \varnothing \rangle_1, \langle \lambda \mathsf{Q} \exists y [\textit{paper'}(y) \land \mathsf{Q}(y)], \varnothing \rangle_2 \} \rangle \\ &\Rightarrow_{\mathsf{R}} \langle \lambda \mathsf{P} \forall x [\textit{student'}(x) \to \mathsf{P}(x)] \; (\lambda x_1. \textit{pres*}(x_2)(x_1)), \\ &\qquad \qquad \{\langle \lambda \mathsf{Q} \exists y [\textit{paper'}(y) \land \mathsf{Q}(y)], \varnothing \rangle_2 \} \rangle \\ &\Rightarrow_{\beta} \langle \forall x [\textit{student'}(x) \to \textit{pres*}(x_2)(x)], \{\langle \lambda \mathsf{Q} \exists y [\textit{paper'}(y) \land \mathsf{Q}(y)], \varnothing \rangle_2 \} \rangle \\ &\Rightarrow_{\mathsf{R}} \langle \lambda \mathsf{Q} \exists y [\textit{paper'}(y) \land \mathsf{Q}(y)] (\lambda x_2. \forall x [\textit{student'}(x) \to \textit{pres*}(x_2)(x)]), \varnothing \rangle \\ &\Rightarrow_{\beta} \langle \exists y [\textit{paper'}(y) \land \forall x [\textit{student'}(x) \to \textit{pres*}(y)(x)]], \varnothing \rangle \end{split}
```

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Compositionality

- The Compositionality Principle as stated earlier:
 - The meaning of a complex expression is uniquely determined by the meanings of its sub-expressions and its syntactic structure.
- Nested Cooper Storage shows: We can maintain this principle even in the face of semantic (scope) ambiguity
 - as long as we accept that there are multiple meanings
 - the principle is also still true if we see NCS as a nondeterministic process.

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

33

Compositionality and NCS

- Two versions of the Compositionality Principle:
 - on the level of denotations
 - on the level of semantic representations
- Nested Cooper Storage is clearly compositional on the level of semantic representations -- but in a less straightforward way than last week's construction algorithm.
- Compositional on the level of denotations: only in a very indirect sense.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Other types of scope ambiguities

- Nested Cooper Storage makes the simplifying assumption that only NPs can participate in scope ambiguities.
- This is not true in general:
 - Every student didn't pay attention.
 - Sometimes every student is sleepy.
- NCS can be extended to deal with these, and you'll do it in the exercises, but we'll do something even better next week.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

35

Scope islands

- Nested Cooper Storage makes the simplifying assumption that NPs can be retrieved at all sentence nodes.
- This is not true in general because sentence-embedding verbs create scope islands:
 - John said that he saw a girl. (2 readings)
 - John said that he saw every girl. (1 reading)
- Universal quantifiers may not cross scope island boundaries; the second sentence doesn't mean "for every girl x, John said that he saw x".

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

De dicto/de re ambiguities

• De dicto/de re ambiguities are a special kind of scope ambiguity in which one scope bearer is a verb:

Helmut Kohl intends to visit a factory.

 $\exists x. factory(x) \land intend(hk, ^visit(gs,x))$ (de re) intend(hk, $^\exists x. factory(x) \land visit(gs,x)$) (de dicto)

- We need a more expressive (intensional) logic to represent the different readings, but the ambiguity is just a scope ambiguity and can be resolved by NCS.
- Compare the status of "a factory" to the unicorn in "John seeks a unicorn."

Semantic Theory 2006 @ M. Pinkal / A. Koller UdS Computerlinguistik

37

Scope ambiguities in the real world

- Scope ambiguities are not a very intuitive type of ambiguity, and are sometimes not seen as a serious problem for computational linguistics.
- In practice, they are often resolved by context, world knowledge, preferences, etc.
- We consider them here because they pose a fundamental challenge for semantics construction.
- If we want "deep" semantic representations that say something about scope, we must take scope ambiguities into account.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

Scope ambiguities in the real world

- Also, some large-scale grammars (e.g. the English Resource Grammar) compute semantic representations with scope.
- The ERG analyses all NPs as scope bearers to keep the grammar simple. (This is not necessarily correct: proper names, definites, etc.)
- Median number of scope readings in the Rondane corpus: 55.

(But: The median number of semantic equivalence classes is only 3!)

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik

39

Conclusion

- Last week's type-driven semantics construction is a nice first step.
- But it is fundamentally unable to deal with semantically ambiguous sentences.
- Scope ambiguity: Application order of NP representations can be different from syntactic structure.
- Nested Cooper Storage: Equip semantic representations with a quantifier store to allow flexible application of quantifiers; multiple semantic representations per syntactic constituents allowed.

Semantic Theory 2006 © M. Pinkal / A. Koller UdS Computerlinguistik