
1

Semantic Theory
Summer 2005

Type theory and λ-abstraction

M. Pinkal / A. Koller

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 2

Back to the Composition problem

∀d (student(d)→ ∃p (paper(p) ∧present(d,p)))

Every student presented a paper

2

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 3

Noun phrases and FOL representations

John works. work(john)

Somebody works ∃x (work(x))

Every student works ∀x (student(x)→ work(x))

No student works ¬ ∃x (student(x) ∧ work(x))

John and Mary work work(john) ∧ work(mary)

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 4

A unified semantics for NPs? An attempt

John works.

john: e work: <e,t>

work(john): t

Every student works.

every-student: e work: <e,t>

work(every-student): t

?

3

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 5

A type-theoretic solution

Inverting the functor-argument relation by treating oun

phrases as second-order predicates:

Every student works.

every-student: <<e,t>,t> work: <e,t>

every-student (work): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 6

Internal NP structure

Determiners like every/some/no take a common-noun

denotation and return a second-order predicate:

Determiners are functions from first-oder predicates to

second-order predicates, i.e., two-place second-order

relations:

every: <<e,t>,<<e,t>,t>> student: <e,t>

every(student): <<e,t>,t> work: <e,t>

every(student)(work): t

4

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 7

Towards a unified semantics of NPs

John works.

john: e work: <e,t>

work(john): t

Every student works.

every-student: <<e,t>,t> work: <e,t>

every-student (work): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 8

Towards a unified semantics of NPs

John works.

john: <<e,t>,t> work: <e,t>

john(work): t

Every student works.

every-student: <<e,t>,t> work: <e,t>

every-student(work): t

5

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 9

Towards a unified semantics of NPs

„Type raising“ of proper names from e to <<e,t>,t>:

John is represented by a second-order predicate that

denotes a function from first-order predicates to truth-

values which returns 1 for a predicate ϕ iff ϕ applies to

the entity John.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 10

Type theory as a semantic representation
language:Two problems

• Problem 1:

If we express quantification via second-order

relations without quantifiers: How do we do

inference?

• Problem 2:

Even (basic) type theory has problems with

coverage

6

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 11

Another coverage problem

Swimming is healthy

swimming: <e,t> healthy <<e,t>,t>

healthy(swimming): t

Not smoking is healthy

Driving and drinking is dangerous

John drives and drinks

Some people drive and drink

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 12

The solution: λ-abstraction

λx[drive(x)∧drink(x)]

„to be an x such that x drives and drinks“

λ-abstraction is an operation that takes an expression

and „opens“ or „re-opens“ specific argument positions by

abstracting over a variable.

E.g., the result of abstraction over individual variable x in

the formula drive(x)∧drink(x) results in the complex

predicate λx[drive(x)∧drink(x)].

7

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 13

Syntax of λ-abstraction

If α ∈ WEτ , v ∈ Varσ , then λvα∈ WE <σ,τ> .

Note: The scope of the λ-operator is the smallest WE to

its right. Wider scope must be indicated by brackets.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 14

Example

drive: <e,t> x:e drink: <e,t> x:e

drive(x): t drink(x): t

drive(x)∧drink(x): t

λx[drive(x)∧drink(x)]: <e,t>

8

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 15

Example

Some people drive and drink

drive: <e,t> x:e drink: <e,t> x:e

drive(x): t drink(x): t

some:<<e,t>,<<e,t>,t>> people: <e,t> drive(x)∧drink(x): t

some(people):<<e,t>,t> λx[drive(x)∧drink(x)]: <e,t>

some(people)(λx[drive(x)∧drink(x)]):t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 16

Semantics of λ-expressions

• If α ∈ WEτ , v ∈ Varσ , then [[λvα]] M,g is that function ϕ ∈

D<σ,τ> , such that for all a∈ Dσ : ϕ(a) = [[α]] M,g[v/a]

• In general: [[λvα(β)]] M,g = [[α]] M,g[v/ [[β]]M,g]

• The scope of the λ-operator is the smallest WE to its

right. Wider scope must be indicated by brackets.

9

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 17

A syntactic shortcut for the evaluation of λ-expressions

• By the modified variable assignment, the value of the

argument of the λ-expression is passed through its body

and becomes the value of all occurrences of variables

bound by the λ-operator.

• We obtain the same result, if we first substitute the free

occurrences of the λ-variable in λvα(β) by the argument

β, and only then interpret the result:

– [[λvα(β)]] M,g = [[α]] M,g[v/ [[β]]M,g] to

– [[λvα(β)]] M,g = [[[β/v]α]] M,g

• This is the basic idea behind the λ-calculus.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 18

λ-conversion

• Are λvα(β) and [β/v]α always equivalent?

– λx[drive(x)∧drink(x)](john) = drive(john)∧drink(john)

– λx[drive(x)∧drink(x)](y) = drive(y)∧drink(y)

– λx [∀y know(x)(y)] (john) = ∀y know(john)(y)

– λx [∀y know(x)(y)] (y) ≠≠≠≠ ∀y know(y)(y)

• Let v, v' be variables of identical type, α any well-formed

expression.

v is free for v' in α iff no free occurrence of v' in α is in

the scope of a quantifier or a λ-operator that binds v.

10

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 19

Conversion rules in the λ-calculus

• β-conversion:

λvα(β) ⇔ [β/v]α , if all free variables in β are free for v in α.

• α-conversion:

λvα ⇔ λv'[v'/v]α , if v' is free for v in α.

• η-conversion:

λvα(v) ⇔ α

The relevant rule for semantic interpretation which we

really need, is β-conversion in the left-to-right direction (β-

reduction), which allows to simplify representations.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 20

Type theory as a semantic representation
language:Two problems

• Problem 1:

If we express quantification via second-order

relations without quantifiers: How do we do

inference?

• Problem 2:

Even (basic) type theory has problems with

coverage

11

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 21

Noun phrases interpretation again

• every student denotes a second-order property

(<<e,t>,t>) which holds of a (first-oder) property ω iff all

students are in ω.

• This semantic information can be straightforwardly

encoded as a lambda term:

λG ∀x(student(x)→ G(x))

• Accordingly, the determinator every can be represented

as:

λFλG∀x(F(x)→ G(x))

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 22

More noun phrases

John λG[G(j*)]

Somebody λG ∃xG(x)

A student λG ∃x(student(x) ∧ G(x))

No student λG ¬ ∃x (student(x) ∧ G(x))

John λG[G(j*)]

John and Mary work λG[G(j*) ∧ G(m*)]

12

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 23

More determinators

a, some λFλG ∃x(F(x) ∧ G(x))

no λFλG ¬ ∃x (F(x) ∧ G(x))

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 24

An example

Every student works

λFλG∀x(F(x)→ G(x)) : <<e,t>,<<e,t>,t>> student: <e,t>

λFλG∀x(F(x)→ G(x))(student): <<e,t>,t>

(by β-red.:) λG∀x(student(x)→ G(x)): <<e,t>,t> work: <e,t>

λG∀x(student(x)→ G(x))(work): t

(by β-red.:) ∀x(student(x)→ work(x)): t

