Semantic Theory
Summer 2005
Type theory and A-abstraction

M. Pinkal / A. Koller

Back to the Composition problem

Every student presented a paper

vd (student(d)— Fp (paper(p) Apresent(d,p)))

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

Noun phrases and FOL representations

John works. work(john)

Somebody works 3x (work(x))

Every student works ~ Vx (student(x)— work(x))
No student works — 3x (student(x) A work(x))

John and Mary work work(john) A work(mary)

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

A unified semantics for NPs? An attempt

John works.
john: e work: <e.t>

work(john): t

Every student works.
every-student: e work: <e,t>

work(every-student): t
?

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

A type-theoretic solution

Inverting the functor-argument relation by treating oun
phrases as second-order predicates:

Every student works.
every-student: <<e.t>.t> work: <e.t>

every-student (work): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

Internal NP structure

Determiners like every/some/no take a common-noun
denotation and return a second-order predicate:
Determiners are functions from first-oder predicates to
second-order predicates, i.e., two-place second-order
relations:

every: <<e t>.<<e t>t>> student: <e,t>

every(student): <<e.t>.t> work: <e.t>
every(student)(work): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

Towards a unified semantics of NPs

John works.
john: e work: <e.t>

work(john): t

Every student works.
every-student: <<e.t>.t> work: <e.t>

every-student (work): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

Towards a unified semantics of NPs

John works.
john: <<e t>.t> work: <e.t>

john(work): t

Every student works.
every-student: <<e.t>.t> work: <e.t>

every-student(work): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

Towards a unified semantics of NPs

»1ype raising“ of proper names from e to <<e,t>,t>:

John is represented by a second-order predicate that
denotes a function from first-order predicates to truth-
values which returns 1 for a predicate ¢ iff ¢ applies to
the entity John.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

Type theory as a semantic representation
language:Two problems

* Problem 1:

If we express quantification via second-order
relations without quantifiers: How do we do
inference?

* Problem 2:

Even (basic) type theory has problems with
coverage

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik

10

Another coverage problem

Swimming is healthy
swimming: <e,t> healthy <<e.t>.t>

healthy(swimming): t
Not smoking is healthy
Driving and drinking is dangerous

John drives and drinks
Some people drive and drink

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 11

The solution: A-abstraction

Ax[drive(x)Adrink(x)]
,to be an x such that x drives and drinks*

A-abstraction is an operation that takes an expression
and ,opens” or ,re-opens” specific argument positions by
abstracting over a variable.

E.g., the result of abstraction over individual variable x in
the formula drive(x)Adrink(x) results in the complex
predicate Ax[drive(x)Adrink(x)].

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 12

Syntax of A-abstraction

If o e WE,, ve Varg, then Avae WE

<G,T> "

Note: The scope of the A-operator is the smallest WE to
its right. Wider scope must be indicated by brackets.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 13

Example

drive: <e,t> x:e drink: <e,t> x:e
drive(x): t drink(x): t
drive(x)Adrink(x): t
Ax[drive(x)Adrink(x)]: <e,t>

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 14

Example
Some people drive and drink

drive: <e,t> x:e drink: <e,t> x:e
drive(x): t drink(x): t
some:<<e,t>,<<e > t>> people: <e,t> drive(x)Adrink(x): t

some(people).<<e,t> t> Ax[drive(x)adrink(x)]: <e,t>
some(people)(Ax[drive(x)Adrink(x)]):t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 15

Semantics of A-expressions

« Ifae WE,, ve Var,, then [[Ava]] M9 is that function ¢ €
D such that for all ae Dy : ¢(a) = [[o]] Melva

<0,T>?

« In general: [[Avo(B)]] M9 = [[o]] Matv [BIM9]

» The scope of the A-operator is the smallest WE to its
right. Wider scope must be indicated by brackets.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 16

A syntactic shortcut for the evaluation of A-expressions

» By the modified variable assignment, the value of the
argument of the A-expression is passed through its body
and becomes the value of all occurrences of variables
bound by the A-operator.

+ We obtain the same result, if we first substitute the free
occurrences of the A-variable in Avo(p) by the argument
B, and only then interpret the result:

— [TAvou(B)]] Mo = [[o]] Ml 1M to

= [va(B)]] Mo = [[[B/V]oe] M9

« This is the basic idea behind the A-calculus.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 17

A-conversion

* Are AvoPB) and [B/vla always equivalent?
— Ax[drive(x)Adrink(x)](john) = drive(john)Adrink(john)
— Ax[drive(x)Adrink(x)](y) = drive(y)Adrink(y)
— Ax [Vy know(x)(y)] (john) = Yy know(john)(y)
— Ax [Vy know(x)(y)] (y) # Yy know(y)(y)

X
]
]

+ Let v, v'be variables of identical type, a any well-formed
expression.
vis free for v'in a iff no free occurrence of v'in ais in
the scope of a quantifier or a A-operator that binds v.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 18

Conversion rules in the A-calculus

* B-conversion:

AvoB) & BMa , if all free variables in B are free for vin o.

* Q-conversion:

Avo < AviVe | if v'is free for vin o
* m-conversion:

Ava(v) © o

The relevant rule for semantic interpretation which we
really need, is B-conversion in the left-to-right direction (j3-
reduction), which allows to simplify representations.

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 19

Type theory as a semantic representation
language:Two problems

* Problem 1:

If we express quantification via second-order
relations without quantifiers: How do we do
inference?

* Problem 2:

Even (basic) type theory has problems with
coverage

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 20

10

Noun phrases interpretation again

* every student denotes a second-order property
(<<e,t>,t>) which holds of a (first-oder) property o iff all
students are in o.

» This semantic information can be straightforwardly
encoded as a lambda term:

LG Vx(student(x)— G(x))

» Accordingly, the determinator every can be represented

as:

AFLGVYX(F(X)— G(X))

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 21

John
Somebody
A student
No student
John

More noun phrases

AGIG(j")]

AG IXG(X)

AG Ix(student(x) A G(x))
AG — 3x (student(x) A G(x))
AGIG(j")]

John and Mary work AG[G(*) A G(M™)]

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 22

11

More determinators

a, some AFAG 3X(F(x) A G(X))
no AFAG — 3x (F(X) A G(X))
Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 23
An example

Every student works

AFAGYX(F(X)— G(x)) : <<e,t>,<<e t>t>> student: <e,t>
APLGVYX(F(x)— G(x))(student): <<e.t> t>
(by B-red.:) AGVx(student(x)— G(x)): <<e,t>t> work: <e, t>
AGVx(student(x)— G(x))(work): t
(by B-red.:) Vx(student(x)— work(x)): t

Semantic Theory 2005 © M. Pinkal/A.Koller UdS Computerlinguistik 24

12

