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4 Nested Cooper Storage

The syntax tree, decorated with the semantic values for each syntax node, is shown below.
For each node, we have indicated which rule (Store, Retrieve, or Apply) was used to derive
the semantic value from the semantic values of the children.

We use the following abbreviations:

abbreviation full term type
AC λP∃x.(company′(x) ∧ P (x)) 〈〈e, t〉, t〉
AS λP∃x.(sample′(x) ∧ P (x)) 〈〈e, t〉, t〉
ER λP∀x.(researcher′(x) ∧ of∗(x1)(x)) → P (x) 〈〈e, t〉, t〉
of ′ λxλFλy.of∗(y)(x) ∧ F (y) 〈e, 〈〈e, t〉, 〈e, t〉〉〉
every′ λPλQ∀x.P (x) → Q(x) 〈〈e, t〉, 〈〈e, t〉, t〉〉
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Note that we almost never have two different rules which could be applied at the same
node. The only exception is the root sentence node, at which we could apply either Store
or Functional Application. We have shown the result of the Store rule, but the Functional
Application rule would eventually yield exactly the same three readings. In particular, be
aware the Storage rule is only applicable if one of the syntactic children is an NP and the
other child is of type 〈e, τ〉 for some τ , so both the N’ and the subject NP node must get
exactly the given semantic value.

The complex term of ′(x1)(researcher′), which occurs in the store entry 3, beta-reduces to
the following term:

of ′(x1)(researcher′)
→∗

β λP∀x.(researcher′(x) ∧ of∗(x1)(x)) → P (x)

We abbreviate this term as AR (see table above).

Now we can turn to the retrieval steps. We can generate three readings of the sentence by
retrieving quantifiers from the store in different orders.

Reading 1:

〈see∗(x2)(x3), {〈ER, {〈AC, ∅〉1}〉3, 〈AS, ∅〉2}〉
⇒R2 〈AS(λx2.see

∗(x2)(x3)), {〈ER, {〈AC, ∅〉1}〉3}〉
⇒R3 〈ER(λx3.AS(λx2.see

∗(x2)(x3))), {〈AC, ∅〉1}〉
⇒R1 〈AC(λx1.ER(λx3.AS(λx2.see

∗(x2)(x3)))), ∅〉
→∗

β ∃x.company′(x) ∧ ∀y.(researcher′(y) ∧ of∗(x)(y)) → ∃z.(sample′(z) ∧ see∗(z)(y))

Reading 2:

〈see∗(x2)(x3), {〈ER, {〈AC, ∅〉1}〉3, 〈AS, ∅〉2}〉
⇒R3 〈ER(λx3.see

∗(x2)(x3)), {〈AC, ∅〉1, 〈AS, ∅〉2}〉
⇒R1 〈AC(λx1.ER(λx3.see

∗(x2)(x3))), {〈AS, ∅〉2}〉
⇒R2 〈AS(λx2.AC(λx1.ER(λx3.see

∗(x2)(x3)))), ∅〉
→∗

β ∃z.sample′(z) ∧ (∃x.company′(x) ∧ ∀y.(researcher′(y) ∧ of∗(x)(y)) → see∗(z)(y))

Reading 3:

〈see∗(x2)(x3), {〈ER, {〈AC, ∅〉1}〉3, 〈AS, ∅〉2}〉
⇒R3 〈ER(λx3.see

∗(x2)(x3)), {〈AC, ∅〉1, 〈AS, ∅〉2}〉
⇒R2 〈AS(λx2.ER(λx3.see

∗(x2)(x3))), {〈AC, ∅〉1}〉
⇒R1 〈AC(λx1.AS(λx2.ER(λx3.see

∗(x2)(x3)))), ∅〉
→∗

β ∃x.company′(x) ∧ (∃z.sample′(z) ∧ ∀y.(researcher′(y) ∧ of∗(x)(y)) → see∗(z)(y))
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Notice that the readings 2 and 3 are logically equivalent; they only differ in the relative
scope of the two existential quantifiers. The ambiguity between these two different but
equivalent readings is called spurious.

Notice also that in all three readings, “a company” takes scope over “every researcher”,
i.e. all three readings say that there is one specific company, and we are only talking
about researchers who are working for this particular company. This is because the nesting
structure of the quantifier store forces us to retrieve and apply the entry 3 before we can
access the entry 1. The (quite plausible) reading in which, say, each researcher who works
for any company saw some (different) sample (i.e. “every researcher” outscopes both “a
company” and “a sample”) can’t be generated by the version of Nested Cooper Storage
we presented in the course.

The problem is that because we analysed of ′ as a term of type 〈e, 〈〈e, t〉, 〈e, t〉〉〉, we must
combine it with the NP “a company” by applying the Store rule. We can get the two
missing readings if we assume the following semantic representation for the word “of”:

of ′2 = λQλFλy.F (y) ∧Q(of∗(y))

This term is of type 〈〈〈e, t〉, t〉, 〈〈e, t〉, 〈e, t〉〉〉, i.e. it is a type-raised version of of ′ above.
Now we can apply Functional Application to combine the semantic representations of “of”
and “a company”, and this gives us the two other readings. (Please check this yourself!)
But because we now actually must combine these constituents by Functional Application
and cannot apply the Store rule, we miss the three readings that we got with the original
analysis of “of”.

The original version of Nested Cooper Storage, as presented by Keller (1988) doesn’t have
this problem. It only occurs because we have (over-)simplified the presentation of NCS in
the lecture.
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