
Compact Course Python

Michaela Regneri & Andreas Eisele

Lecture 4

Overview
• More on Strings

• Modules

• Exceptions

• Input and Output in Python

• Encodings

2

Strings: Methods
http://docs.python.org/3.1/library/stdtypes.html # string-methods

• s1.count(s2): count occurrences of s2 in s1

• Index of the first (last) occurrence of s2 in s1:

- s1.index(s2 [, start [, end]])! (rindex)

- s1.find(s2 [, start [, end]]) ! (rfind)
(Error if s1 is not in s2)

• Properties of s1 (False for empty s1):

- Digits? !! s1.isdigit()

- Letters? ! s1.isalpha()

- Digits or letters (+'_'): s1.isalnum()
- whitespaces: s1.isspace()

3

Strings: Methods
http://docs.python.org/3.1/library/stdtypes.html # string-methods

• Methods for case sensitivity:

- s1.isupper() / s1.islower(): all upper / lower
case? (False for strings without case)

s1.upper() / s1.lower(): a copy of s1 with all
charachters upper / lower case
- s1.capitalize(): copy of s1 with first character

in upper case
- s1.swapcase(): copy of s1, upper and lower case

exchanged
- s1.title() (also: s1.istitle()): A copy of s1

each letter after a whitespace or punctuation is
upper case 4

Strings: Methods
http://docs.python.org/3.1/library/stdtypes.html # string-methods

• strip whitespaces [characters of s2] on the left and right:
s1.strip([s2]) (lstrip, rstrip)

• Splitting strings: s1.split([sep1, sep2,...])

- Return: an array of strings that are left when one
cuts s1 around all occurrences of sepx
- If no delimiters are specified, whitespaces are

assumed as delimiters
- consecutive delimiters separate the empty String

5

>>> 'aa,,a.b'.split([','])
['Aa','', a.b ']

Modules
• Modules are collections of classes / functions, or code in general

(= *. py files)

• Modules are reusable, one can access code from other modules

• Python has (besides "builtins") some standard modules, which
one can resort to when necessary (such as sys)

• In order to use a module and their elements, you have to import
it (with import <modulname>)

6

import sys

[...]

a = sys.argv[0]

module
name

Modules
• To use a file foo.py a module, you import the module "foo"

• One can also import
single slasses or
functions of a module
with from

• Python finds a module (without any additional information) only
if
- they are in the same folder as the current module
- they are in the Python library directory

(e.g. under UNIX often /usr/local/lib/python/)

7

from math import sqrt

[...]

a = sqrt(25)

FunctionModule

Modules
• You can import modules by specifiying the path to a

subdirectory explicitly:

if module is in the subfolder foo/baar of the current directory

• using the keyword as one can bind variables to module name
and use them later instead of the full name (handy for long
names)

8

import foo.bar.module

import foo.bar.blah.blubb.module as fb

i = fb.method()

Exceptions
• Exceptions are errors that occur during a program run

• up to know we simply tried avoid exceptions

• There are ways to handle exceptions, so the program will
continue after the exception

• It may also be useful to raise exceptions (in contrast to empty
return values, etc.)

9

Exceptions
• There are a number of exceptions that can occur in

Python's standard modules
(http://docs.python.org/3.1/library/exceptions.html)

• An Example: accessing a nonexistent list index

10

> l = [1,2]

> print(l [3])

Traceback (most recent call last):

 File <stdin> ", Line 1, in <module>

IndexError: list index out of range

The point where
the error
occurredName and

description of the
exception

• Exceptions can be caught with
"try ... except"

• If an exception occurs in block1, the
execution of block1 is canceled and
block2 is executed

• afterwards, the program flow is resumed
after the try construct

• there can be a else statement
after except; block3 will be executed
if there was no exception in block1

try:

 block1

except:

 block2

else:

 block3

Catching exceptions

11

try:

 block1

except:

 block2

Catching exceptions
• except:catches everything

• To react to specific exceptions, you write
their class names after except (except
IndexError: ...)

• If you expect several exceptions and want
to treat each of them in a different way, can
you can define more except blocks

• else always comes after the last except
block

12

try:

 block1

except <Error1>:

 block2

except <Error2>:

 block3

[...]

else:

 blockx

Exceptions: finally

• finally guarantees that the
following code will be execute
in any (!) case

• if an exception is caught,
first block2 will be executed,
after that block3

• If an unhandled exception occurs, first block3 is executed
and then the exception is raised again

• else comes before finally (in notation and in the execution)

13

try:

 block1

except <Exc>:

 block2

finally:

 block3

Exceptions as classes
• All built-in Python exceptions are derived from Exception (or

BaseException)

• ie except Exception (except BaseException) catches all
exceptions (equivalent to except without argument)

• If we need to access the specific instance of an exception, wee
need to them to a variable using as

14

try:

 block1

except Exception as e:

 print(e)

Defining and throwing
exceptions
• we can define our

own exceptions

• Exceptions should
inherit from
Exception (and
have to inherit
BaseException)

• The default message
is defined in the
__str__ method

15

class MyIndexError(Exception):

 def __init__(self, length, index):

 self.length = length

 self.index = index

 def __str__(self):

 ret = 'Only ' + str(self.length)

 ret += ' items in the list, '

 ret += 'index ' + str(self.index)

 ret += ' is invalid."

 return ret

Defining and throwing
exceptions
• Exceptions are „thrown“ with raise<Exception>

• <Exception> is an instance of an Exception class

• if the __init__ Method of the Exception class does not
need any additional arguments, you can simply write the class
name

16

> raise MyIndexError(2, 5)

Traceback (most recent call last):

 File <stdin> ", Line 1, in <module>

__main__.MyIndexError: Only 2 items in the

list, index 5 is invalid.

Defining and throwing
exceptions

• The base class has an Exception optional String argument

17

> raise Exception

Traceback (most recent call last):

 File <stdin> , Line 1, in <module>

Exception

> raise Exception('Moep.')

Traceback (most recent call last):

 File <stdin> , Line 1, in <module>

Exception: Moep.

Defining and throwing
exceptions
• If one wants to re-throw an

exception but needs to
do something beforehand
one can use raise
without parameters

• raise is looking for
"active" exceptions and
raises the most recent one

• after the try-except block, the exception is no longer
active (not even in finally)

18

try:

 block1

except:

 # Do something

raise

Input and output:
console
• output: already seen (print)

• Command line arguments (input): sys.argv[i]

• Interaction during the program run:
input([string])

- string is printed right before the user input is read
- the return value contains the user input that followed

after the method execution (sent by pressing Return)
- input returns the entered string

19

Input and output:
Console
• an example:

20

> trainMultiplication(15,7)

15 * 7 = ?

Correct!

105 output of
input

output of
print

User
Input

def trainMultiplication(x, y):
 i = input(str(x) + '*' + str(y) + '= ? \n')
 if int(i) == (x * y):
 print('Correct!')
 else:
 print('Wrong.')

Input and output: files
• Working with files in Python means

works with file objects

• you get them e.g. open(string)

21

f = open('hello')

print(f.read())

f.close()

'I am a file - containing wonderful \n text!'⇒

Input and output:
File Handling
• all operations on files start at the current "position" in the file

• The position changes when reading / writing. Right after opening
the file it is 0

• print the current position: f.tell()

• set the current position: ! f.seek(index)

• To avoid errors, you have to close opened files if they are no
longer needed: f.close()

22

Short interlude:
the with statement
• with ensures (among other things) that objects follow a

certain "life cycle"

• for file objects, this means that they are closed right
before the with block ends

• internally: when starting the with block, the __enter__
method (of foo) is called, and at its end the __exit__
method is called

23

with open('hello.txt') as f:
 f.read()

with foo as var:
 block

Input and output:
reading files
• f.read(): returns the (text) content of f

• f.readline(): returns f line by line (new call - next line)

• f.readlines(): returns the list of lines in f

• iterating over the lines in f directly:

24

with open(file) as f:
 i = 1
 for l in f:
 print(i + '. line:' + l)

The position after
the last read

character in the file
is stored, read all

the reading methods
from the current

position!

Input and output:
writing files
• Writing access to files can be obtained with additional

parameters (flags) In open:

- open(f, 'w'): ! writing access

- open(f, 'a'): ! writing access, text is appended

- open(f, 'r+'): ! reading and writing access

- open(f, 'r+a'):!reading and writing (text appended)

- open(f, 'r'):! reading

• Without the second parameter: read only

• you can read the variable f.mode to retrieve those rights again

25

Input and output:
writing files
• f.write(string): writes string to f

• f.writelines(seq)
writes all the elements in seq (some sequence type) to f (no
automatic line break!)

• f.flush():
writes everything that was previously passed to write actually to
file. This is executed automatically when calling f.close()
(and before exiting a with statement)

26

Input and output: URLs
• urllib.request allows to open URLs

• reading web pages (their source code) works like reading files:

• objects returned by urlopen support the reading methods
read() and readlines()

• Copy a web page to a local file:

27

import urllib.request as url
hp = 'http://www.coli.uni-saarland.de'
for line in url.urlopen(hp):
 print(line)

[...]

url.urlretrieve(hp, 'filename.html')

unicode strings vs.
byte strings
• Python knows two types of strings: unicode and byte strings

(str and bytes)

- Standard string literals ("X", 'y') Are Unicode
strings

- b"word" creates a byte string

• byte strings are internally encoded as a sequence of bytes
(restriction to a maximum of 255 different characters)

• unicode strings are internally represented as a sequence of 2
or 4 bytes (they cover virtually all alphabets)

28

unicode strings vs.
byte strings
• One must not mix the two (with concatenation, etc.), but has to

convert:

- String ➞ Byte: str.encode(unicodeString)
- Byte ➞ String: bytes.decode(byteString)

• urlopen returns byte strings, open by default unicode strings
(!!!) - in consequence you may only write those then, too!

• If no encoding is specified explicitly, ASCII is assumed

29

unicode strings vs.
byte strings
• if you know nothing about the file youʻre processing, it might be

easier to work with byte strings only (as long as you donʻt need
a readable output)

• (Reading and writing) file content as byte strings:
open(f, 'br')

- b can be put right before the other Flags are in open
- if you use b as a flag, you need a second parameter

indicating whether you need reading or writing
access (etc.) to the file

30

Encodings
• Strings are sequences of characters

• computers donʻt know characters: internally, strings are
represented as sequences of numbers

• we need a mapping from numbers to characters

• such mappings are called encodings

31

Encodings
• ASCII is a simple (7-bit) encoding, which maps latin

characters to numbers from 32 to 127 (numbers ≤ 31
are control characters).

• ASCII does not cover umlauts etc.

• Some extensions of ASCII
- ISO-8859-1 ("latin1") - Western European languages
- ISO-8859-2 ("latin2") - Eastern European Languages

32

for c in 'python':
print(ord(c), end =" ")

112 121 116 104 111 110

Declaring encodings
• If the source code contains non-ascii characters, the

encoding for string literals has to be defined explicitly:

• Without explicitly specifying the encoding, the example
above wonʻt compile. However, the same result is
achieved like this:

33

-*- coding: latin1 -*-
print("Hällo, Wörld!")

print("H\xe4llo, W\xf6rld!")

Unicode
• How do we handle several texts with different

encodings at the same time?

• Or languages with more than 256 characters?

• Unicode!
- discards the restriction that characters must be

represented as exactly one byte
- includes all (most) characters of most languages

34

Unicode and encodings
• unicode defines how characters are represented as

code points
- The code points 0-256 are identical to latin-1

• code points are numbers (hex numbers here)

35

0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
...
007B '{'; LEFT CURLY BRACKET

Unicode and encodings
• an encoding defines how unicode characters are

represented in memory.

• encodings can be incomplete (eg, ASCII).

• A "naive" complete encoding would represent each
character as a sequence of 32-bit numbers (4 bytes).
- but: os dependendy (byte order), uses a lot of

memory, representations contain zeros

36

Unicode Transformation Format
• UTF-8 is a commonly used, compact (8-bit) encoding

for Unicode:
- can represent all Unicode code points
- most characters (ASCII) are represented by a single

byte.

• encoding:
- code-Point <128 ⇒ 1 byte

- code-Point ≥ 128 ⇒ 2-4 bytes

• Note: UTF-8 is not Unicode!

37

Unicode & files
• Stream objects (files, URLs) always do have some

encoding

• If you do not know which one, you can simply work with
byte strings, as long as possible

• If you need a string, you have to decode it again, either
like this:

... or like that:

38

with open(file, encoding="UTF-8") as f:

with open(file, 'br') as f:
for line in f.readlines():

astring = str(line, encoding="UTF-8")

Summary
• More Basics: Modules & Exceptions

• Input / output: console, files, URLs

• String Handling: Byte-vs. Unicdoe strings, encodings

39

