
Compact Course Python

Michaela Regneri & Andreas Eisele

Lecture 3

Object-oriented programming
• Procedural / imperative programming: data is kept

separate from operations

• Object oriented programming: data and operations are
combined to objects (or classes)
- data is stored in fields (≈ variables)
- methods (≈ functions) define operations on the fields
- fields and methods are also called attributes

• Objects are instances of classes: classes define
objects with similar properties

2

A first example: rational
numbers
• Data
- Numerator and denominator

• Operations
- add
- multiply
- convert to a string
- [...]

3

Rational numbers: Imperative

4

def rat_make(num, den):
return (num, den)

def rat_tostring(rat):
return str(rat[0]) + "/" + str(rat[1])

def rat_mul(rat1, rat2):
num = rat1[0] * rat2[0]
den = rat2[1] * rat2[1]
return rat_make(num, den)

...

Rational numbers: Object

5

class Rat:

 def __init__(self, num, den):

 self.num = num

 self.den = den

def toString(self):

return str(self.num) + "/" + str(self.den)

def mul(self, other):

num = self.num * other.num

den = self.den * othder.den

return Rat(num, den)

Rational numbers: Object

6

• Instatiate two new Rat objects and bind them to r1
and r2

• multiply to r1 and r2, bind the result to r3

• Output as String

r3 = r1.mul(r2)

r1 = Rat(1,2)

r2 = Rat(2,3)

print(r3.toString())

Why OOP?

7

• Object-oriented programming (OOP) encourages the
programmer to divide programs into classes.

• for many projects, the class level is an appropriate
level of granularity, and classes correspond to intuitive
concepts

• in a good class hierarchy, the complexity of individual
classes is manageable, which makes the code more
readable and handable

Why OOP?
• You can hide implementation details of classes (and

just show functions with their parameters and return
values)

• Other programmers (users of the classes) may
continue to use the classes directly, or expand, without
changing it

• The implementation can be changed at any point in
time, it wonʻt affect the remainder of the program

8

Why OOP?
• Classes can be derived from other classes.

• Derived classes inherit all the attributes of the base
class, can add new attributes and may override the
inherited methods

• Objects of the derived class can be used anywhere
where objects of the base class are accepted

9

Overview
• Namespaces and scope

• Classes, methods, objects

• Special methods for operator overloading

10

Scopes and Namespaces
• A namespace is a mapping of identifiers (names) to

objects

• the same names in different namespaces can refer to
different objects

• One can think of namespaces as dictionaries, whereas
the keys are restricted to valid variable (or function)
names

• Direct access to names (or objects) in a namespace:
namespace.attr

11

Functions and namespaces
• with each function call , a local namespace is created

in which there are local variables (only)

• when the function is exited, the namespace is deleted
(resp. „forgotten“)

• in the case of recursion, each recursive call to the
function has its own namespace

12

Scope
• scope is the part of a program in which you can access

certain names directly ("directly" means without other
keywords)

• there are 3 (nested) namespaces:
- built-in names (eg. print)
- global names
- local names

• within functions, we refer to local names in separate
namespaces

• outside of functions: global = local
13

Classes

14

• Classes in Python need nothing
other than a name. They are defined
with the keyword class

• classes can define
methods; they are
functions within the
class, that have self
as their first argument (self will be the object calling the
function)

• The class has its own namespace

class <name>:

[Statement1]

...

[Statementn]

class <name>:

def fun1(self[,...]):

 ...

Classes

15

• The class definition in the Python program must
happen before you can use the class

• In the global name space, there will be a class object
that has the name of the class

• classes (more precisely, class objects) support
exactly two operations:
- referencing attributes
- instantiation (creation of instance objects)

Classes

• Instantiation: with k = K() instance object of K is
created (and bound to k).

• assignments from „outside“ are allowed (as k.a = 8)

16

class K:

def fun(self):

 self.x = 2

...

k = K()

k.fun()

print(k.x)

Instance objects
• Instance objects can use attributes of the class

• We distinguish:
- data attributes ("instance variables")
- methods

• methods are called directly (without self)

• Namespace resolution: if the attribute is not found in
the instance, python looks for it in the class definition

17

Method calls
• The body functions defined in the class are the

methods of the instance

• The first argument (self) Of the function is bound to
the instance:
- In the example, k.f() is equivalent to
MyClass.f(k)

18

class MyClass:

i = 123

def f(self):

 print(MyClass.i)

>>> k = K()

>>> k.f()

123

>>> MyClass.f(k)

123

A simple example

19

class MyClass:

i = 123

def f(self):

print(MyClass.i)

>>> k = MyClass()

>>> k.f()

123

>>> k.f

<bound method MyClass.f of ...>

A simple example

20

class MyClass:

i = 123

def f(self):

print(MyClass.i)

>>> k = MyClass ()

>>> print(k.i)

123

>>> k.i = 321

>>> MyClass.i = 17

>>> k.f()

17

__init__

• Instantiation first generates an "empty" object.

• The method __init__ is automatically called with the
arguments used in the instantiation.

• Typical code:

21

class SomeClass:
def __init__(self, x, y):

self.x = x
self.y = y

...
inst = SomeClass(1, 2)

2 underscores!

corresponds to a so
called constructor

Inheritance
• In object oriented languages, classes can inherit from

other classes

• The derived class inherits attributes from the base
class

• All class automatically have a base class (object) In
Python, the inherited things
- object inherited a method that one Hash code

generated - that is, one may use self-generated
classes in standard quantities and Dictionaries

- what else of object is inherited, we see in later
lectures

22

class Person:
def __init__(self, name):

self.name = name

class FrenchGuy(Person):
def sayHello(self):

print("Bonjour " + self.name)

class GermanGuy(Person):
def sayHello(self):

print("Hallo " + self.name)

Inheritance: an example

23

>>> g = GermanGuy('Stefan')

>>> g.sayHello()

Hallo Stefan

>>> f = FrenchGuy('Romain')

>>> f.sayHello()

Bonjour Romain

Inheritance: override methods

24

• Sometimes you want not only add new methods to the
base class, but also modify existing ones (most often:
__init__).

• You can override methods simply by redefining them

• If you want to access the corresponding method of the
base class, you can use the built-in method super :

super().method(...) does the same as
BaseClass.method(self,...)

Override methods: Example

25

class Person:

def __init__(self, name):

self.name = name

...

class Employee(Person):

def __init__(self, name, salary):

 super().__ init__(name)

self.salary = salary

...

Abstract Classes
• abstract classes are a popular concept in object-

oriented programming are

• abstract classes contain unimplemented methods
(without body) and must be implemented in derived
classes to make them work

• Python has no abstract classes - but you can simulate
them: the base class defines a "placeholder" method,
which does nothing, or throws an exception.

• Python keyword for "doing nothing" is pass

26

An "abstract" class
class Xmlparser:

 def parse(self):
...
self.handleElement(someElement)
...

 def handleElement(self, someElement):
pass
alternative: raise NotImplementedError

class MyXmlParser(Xmlparser):
def handleElement(self, someElement):

... 27

Private variables (name
mangling)
• In Python there is no "real" private variables and

methods that are accessible only within the class

• To avoid naming conflicts, names can be "mantled":
identifiers of the form __foo are automaticall replaced
by __klassenname_foo (for calls outside the class)

28

Name conflicts & convention
• data attributes override method attributes with the

same name.

• Common convention for the avoidance of conflict: data
attributes start with an underscore: _foo.

29

Hooks
• In the last few lectures were presented to operators: +,

-, ...

• Strictly speaking, there are no operators in Python,
just operations:
- The "+" operator, for example, calls internally the
__add__ method of the first operand

- you can define those special methods ("hooks")
yourself in order to change or extend the
functionality.

30

class Rat:
def __init__(self, num, den):

self.num = num
self.den = den

def __mul__(self, other):
num = self.num * other.num
den = self.den * other.den
return Rat(num, den)

def __repr__(self):
return "Rat(" + str (self.num)+","+ str
(self.den) + ")"

def __str__(self):
return str(self.num) + "/" + str (self.den)

Rational numbers with
operators

31

>>> r1 = Rat(1,2)
>>> r2 = Rat(3,4)
>>> r1 * r2
Rat(3, 8)
>>> print(r1 * r2)
3 / 8

Some special methods
• relational operators:
-__eq__! ! ==

-__ge__! ! >=

-__gt__! ! >

-__le__! ! <=

-__lt__! ! <

-__ne__! ! !=

• __bool__ : :is the object as True or False?

32

with 2 underscores!

Some special methods
• Numerical operations:
- __add__, __iadd__! ! +, + =

- __truediv__, __itruediv__! ! /, /=

- __mul__, __imul__! ! *, *=

- __sub__, __isub__! ! -, -=

- __mod__, __imod__! ! %,%=

33

For example: dict with default
value

class Defaultdict(dict):
def __init__(self, default):

self.default = default

def __getitem__ (self, key):
if key in self:

return super().__getitem__(key)
else:

return self.default
34

>>> d = Defaultdict(0)
>>> d[17]
0

>>> d[17] + = 1
>>> d[17]
1

Classes, modules, functions
• Classes should be used if you want to manage multiple

states simultaneously.

• If any one condition is sufficient: Module (= a Python
file)

• If you need no state: Features

35

Summary
• Classes & Objects

• Inheritance

• Methods & Operator Overloading

• Multiple inheritance

• Example

36

