
Compact Course Python
Michaela Regneri & Andreas Eisele

Lecture II

2010-04-07

Overview
• Functions

• Recursion

• Collection types:
- Lists, Tuples
- Sets
- Dictionaries

• for loops

• list comprehensions

2

Functions
• Functions are reusable blocks

of code belonging together

• When a function is called,
its code is executed

• Functions have parameters
(= arguments) they can access

• Functions can return values:
In: x = fun()
x is bound to the value
returned by fun()
via a return statement

3

def factorial (n):
fac = 1
i = n
while i> 0:

fac *= i
i -= 1

return fac

>>> factorial (4)
24

Function body

Syntax of Function Definitions
• Function definitions begin

with the keyword def

• an arbitrary number (possibly 0) of
parameters are separated by commas

• Return value is specified using a
return statement; functions with no
such statement or with an isolated
return statement do not return any
value

4

def fun (n, m, k):
....
return ret

Function Calls
• Call with parameters p1-pn:
function_name(p1,p2,...)

• Function calls are expressions that
evaluate to the return value of the
function

• When calling the function,
parameter variables are instantiated
with the values from the call (in the
order listed):

5

def fun(n, m, k):
print ('var', n, m, k)
return m

> fun(1,2,3)
var 1 2 3
2 Return Value

Functions - Variables
• Functions can introduce or access local

variables
- the parameters
- variables defined in the function

• Local variables are not visible outside
the function

• Variables that are written to are
assumed to be local; variables that are
only read are assumed to be global

• Manipulation of variables within a
method or function can use only local
variables

6

counter = 0
def countup():

counter + = 1will not work!

def factorial(n):
fak = 1
i = n
while(i > 0):

fac *= i
i -= 1

return fak

Recursion
• Functions can call other functions

• In particular, functions can also call themselves; this is
called Recursion

• In a recursive call, local variables can have different values
on each incarnation of the function

• Recursion is a powerful tool which can be used to express
many algorithms in an elegant way

• Caution: As with loops you have to pay attention to the fact
that the recursion needs to end somewhere!

7

Recursion - factorial function
• the factorial function can be defined recursively:

8

def factorial (n):
if n <= 1:

return 1
else:

return n * factorial (n-1)

Base case for 0 and 1

Recursion with
decreasing n

Recursion - Fibonacci
• The Fibonacci numbers is a sequence of numbers, defined

recursively for natural numbers:
fibonacci (0) = 0
fibonacci (1) = 1
fibonacci (n) = fib (n-1) + fib (n-2)

9

def fibonacci (n):
if n <= 1:

return n
else:

return fibonacci (n-1) + fibonacci (n-2)

Sequence types
• Sequence types are built-in data structures that combine

multiple objects to one complex object
- Lists: a collection of elements, fixed order, modifiable
- Tuples: a collection of elements, fixed order, not modifiable
- Sets: unordered collection of elements
- Strings: sequence of characters (not modifiable)
- Dictionaries: maps from keys to values

• for objects s from any sequence:

- len(s): Number of elements in s

- s.clear(): Removes all elements from (modifiable) s

- s1 == s2: (Value) equality of s1 and s2

10

Lists
• A list is an ordered collection of values

• You can write it as literal:
list = ['a', 'Hello', 1, 3.0,[1,2,3]]

• the list items do not have to have the same type (so)

• Access to list items with indices:

11

> list[0]
'a'

> list[-1]
[1,2,3]

> list[5]
IndexError: list index out of range

> list[-1][1]
2

Lists - methods and operators (1)
• Add items:

- append an element: list.append(elem)

- insert element at position i: list.insert(i,elem)

• Concatenating lists:
- either: newlist = list1 + list2

- or: list1.extend(list2)

• Delete elements:
- li.remove(el) deletes the first el in the list li
- del li[n] deletes the element with index n

• Membership and non-membership (slow for long lists):
elem in list or elem not in list

12

Lists - methods and operators (2)
• Index of the first occurrence of elem in list:

list.index(elem)

• How often is elem in list?
list.count(elem)

• Reverse a list: list.reverse()

• Sort: list.sort ()
(Only with same type)

13

> Li = [5,2,7]
> Li.reverse ()
> Li
[7, 2, 5]

> Li = [5,2,7]
> Li.sort()
> Li
[2, 5, 7]

> Li = [[1,2],[1,2,3],[3,2],[1,3]]
> Li.sort()
> Li
[[1, 2],[1, 2, 3],[1, 3],[3, 2]]

Lists - methods and operators (3)
• lists can be “multiplied”

by integer numbers:

• list * n specifies a list containing n repetitions of the
contents of list; n <= 0 is the empty list

• Warning: this will not generate
so-called deep copies of the list!
(More on this later)

14

> Li = [1,2,3]
> Li = Li * 3
> Li
[1,2,3,1,2,3,1,2,3]

> Li = [[]] * 3
> Li[0]. append(1)
> Li
[[1],[1],[1]]

lists - slicing (1)
• the slicing operator can return a part of a given list

- list[i:] is the partial list of i to the end of list

- list[i:j] is the partial list of i to (but excluding) j

- list[i:j:k] makes steps of size k

15

> numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
> numbers[2:8]
[2, 3, 4, 5, 6, 7]
> numbers[2:8:2]
[2, 4, 6],
> numbers[8:2: -1]
[8, 7, 6, 5, 4, 3]
> numbers[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Lists - slicing (2)
• Using slicing, lists can be modified in an elegant way
 deletes the first 3 elements in list

 deletes every second entry from first to 5th
 element in list

 replace the first 3 elements of list1
 by the elements of list2

 replace every second entry from 1
 and up to the 5th element in list by
successive entries of list2 (list2 must contain as many elements
as list1[0:5:2]!)

16

del list[0:3]

del list[0:5:2]

list1[0:3] = list2

list1[0:5:2] = list2

Lists - slicing (3)

17

> numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> numbers[2:5] = [2,2,3,3,4,4]
> numbers
[0, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 8, 9, 10]
> numbers[0:9:2] = ['a', 'a', 'a', 'a', 'a']
> numbers
['a', 1, 'a', 2, 'a', 3, 'a', 4, 'a', 6, 7, 8, 9, 10]

Tuple: tuple
• similar to lists: ('a', 1, 'b') but not modifiable

• Initializing:
- 0 items: tuple = ()

- 1 item: tuple = elem,

- more items: tuple = elem1, elem2, elem3

• access to elements with [] and slices

• more efficient than lists

• sequence unpacking:
(Also works well
 with lists)

18

> t = 'a', 2,[2,3]
> x, y, z = t
> z
[2,3]

Sets

• Sets are unordered collections
of items that cannot contain
any duplicate element

• as a literal: nSet = {1,2,4,5} (Empty set: set())

• or defined indirectly via a different sequence type: set(myList)

• duplicate items are eliminated

• efficient test of values for set membership (much faster than lists!)

• sets may only contain immutable types! (Numbers, strings, tuples of
immutable values, booleans, ...)

19

> numbers = [1, 2, 3, 1, 1]
> nSet = set(numbers)
> nSet
{1, 2, 3}

Sets - methods and operators (1)
• Add elem: mySet.add(elem)

• Remove elem
- set.remove(elem) (Error if elem not available)

- set.discard(elem) (Removed elem if available)

• Add all elements from set2 to set1:
set1.update(set2)

• Membership and non-membership:
elem in set or elem not in set

20

Sets - methods
and operators (2)

• Subset / superset (Return: True / False):
- set1.issubset(set2) or set1.issuperset(set2)

- set1 <= set2 or set1 >= set2

• Union / intersection
(Returns: the new set)
- set1.union(set2) or set1.intersection(set2)

- set1 | set2 or set1 & set2

21

Methods can have other
aggregate types as 2nd
argument; operators require
two sets.

Sets - methods and operators (3)
• Difference set (return: new set with elements from set1 but

not in set2)
- set1.difference(set2)

- set1 - set2

• Symmetric set difference (return: new set with elements that
are either in set1 or set2, But not both)
- set1.symmetric_difference(set2)

- set1 ^ set2

22

set1 set2

set1 set2

Sets - methods and operators (4)
• all set operations are also available as 'update' method /

operator

• no return value, set1 will obtain the resulting set:
- set1.difference_update(set2)

set1 -= set2

- set1.symmetric_difference_update(set2)
set1 ^= set2

- set1.intersection_update(set2)
set1 &= set2

- set1 |= set2

23

Invariant sets:
frozenset
• there is a constant set variation, the frozenset

• works like set: fs = frozenset(collection)

• But all the methods that add elements, delete, modify or are
forbidden (add, remove, discard, all update methods)

• All other methods and operators work in set (and give back
frozenset instead set)

• Motivation: frozensets can be used in places where only
immutable values are allowed, e.g. as members of other
sets or keys of dictionaries

24

Initialization of lists, sets, etc.
• the collection types which are not ditionaries can directly

convert into each other

• Achieved via typename(collection_instance) - See
sets

25

> mySet = set([1,2])

> myList = list(mySet)

> myTuple = tuple(mySet)

> tuple2 = tuple(myList)

> set2 = set(myList * 5)

...

Dictionaries: dict
(aka maps, hashes, associative arrays)
• Dictionaries are mappings from (unique) keys to values; the

key must have an immutable type

• Access to values via the key

• For example, a phone book:

26

> Tel = {'Mueller': 7234, 'Meier': 8093}
> Tel['Meier']
8093
> Tel['Smith'] = 2104
> Tel
{'Mueller': 7234, 'Meier': 8093, 'Smith': 2104}

Dictionaries as literals
• {} is an empty dictionary (!), the same as dict()

==> hence {} cannot be used for an empty set

• some alternative spellings with the same result:

27

> Tel = {'Mueller': 7234, 'Meier': 8093}

> Tel = dict([['Mueller', 7234],['Meier', 8093]])

> Tel = dict([('Mueller', 7234), ('Meier', 8093)])

> Tel = dict(Mueller = 7234, Meier = 8093)

only with a valid
variable name as
key

Dictionaries - keys (1)
• Keys must have constant values (see sets)

• frozenset is therefore permitted (as in sets)

28

> Tel = {}
> Tel[['Peter', 'Sophie']] = 7473
Traceback (most recent call last):
 File <stdin> ", Line 1, in <module>
TypeError: unhashable type

> Tel[frozenset(['Peter', 'Sophie'])] = 7473
> Tel
{frozenset (['Peter', 'Sophie']): 7473}

Dictionaries - keys (2)
• keys for which the comparison with "==" gives True are

considered equal

• if a key is used that it is already in
the dictionary, it obtains the new
value, the old one is deleted

• Caution: 1 and 1.0 are therefore the same key!

29

> Tel['Peter'] = 7473
> Tel['Peter'] = 9999
> Tel
{'Peter': 9999}

Dictionaries - methods (1)
• Test whether a key key exists in dict:

- key in dict

• Deleting a key / value pair (key: value):
- del dict[key] (Returns nothing)

- dict.pop(key) (returns value)

• Setting the key key to the value value, if key does not
exist:
dict.setdefault(key, value)
(If key exists, the old value of key is returned, otherwise value)

30

Dictionaries - methods (2)
• complement dict1 with keys/values from dict2

dict1.update(dict2)
(Keys that are in both, get the value from dict2)

• "View" of all key: dict.keys ()

• "View" of all values: dict.values ()

• "View" of all key-value pairs: dict.items ()

31

Caution: the order is not deterministic! The only guarantee: two calls in
succession on the same system without any change of dict deliver the
same sequence, corresponding to keys and values.

Dictionaries - "views"
• Views look like this:

• they both reflect the current state of the dictionary

• we regard them as a collection types that we cannot change
(not as immutable)

• further manipulation is possible after conversion to list:
list = list (map.keys ())

32

>>> map
('A': 1, 'l': 3, 'o': 4)
>>> map.keys()
dict_keys(['a', 'l', 'o'])

Lists – tuples – sets
– when to use what?
• fixed order, with methods to change elements: list

• fixed order, no methods or manipulation (fixed): tuple

• no particular order, manipulated: set (Much more efficient
for membership testing compared to lists)

• invariant sets: frozenset

• immutable types as keys (in dict) and elements of sets (in
set and frozenset)

33

for

• S is a collection type

• iterates over every element
in S

• i is the element
currently considered

• at each iteration
block is executed

• break, continue and
else function as for
while

34

for i in s:
block

> list = [1, 'a', True]
> for i in list:
.. print (i)
..
1
a
True

for
• Average of all list items using for:

• Alphabetical key-value pairs:

35

def average (list):
 result = 0.0
for number in list:

result += number
return results / len(list)

def sortedprint(map)
key = sorted(map.keys())
for key in key:

 print(str(key) + ':' + str(map[key]))

sorted (map) and
sorted (map.keys ())

are equivalent

for with dictionaries
• for can iterate also over the "View" objects of dictionaries

(keys,items,values)

• you often want to iterate over all pairs in a dictionary, thanks
to "sequence unpacking" it simply goes like this:

36

def oneLinePerEntry(map):
for key, val in map.items():

 print (str(key) + ':' + str(val))

Function/method definitions –
some advanced features
• Functions can have optional arguments, arbitrary numbers

of arguments, and arguments specified via keywords

• The exact functionality may depend on the function call:
- max(a1,a2,...,an) --> return maximum of n arguments
- max(sequence) --> return maximal element of one argument

• Optional arguments are specified by giving a default value in
the function definition (Value is shared between calls !!!)

• Arbitrary numbers of arguments are matched against a
(tuple) parameter preceded by an asterisk in the definition

• Arbitrary keyword arguments are matched against a (dict)
parameter preceded by a double asterisk in the definition

37

Function/method definitions –
some advanced features

38

def test(a,b,c=33,d=44,*e,**f): print (a,b,c,d,e,f)

>>>test(1,2)

1 2 33 44 () {}

>>>test(1,2,3,4,5,6)

1 2 3 4 (5, 6) {}

>>>test(k1=1,k2=2,b=3,a=4)

4 3 33 44 () {'k2': 2, 'k1': 1}

>>>test(999)

TypeError: test() takes at least 2 positional arguments

(1 given)

Building sequences (1): range
• The type range is used to create sequences of consecutive

numbers

• range does not (longer) return a list, but an iterator-like
collection type

• Iterators can be used with for loops
- range(m) corresponds to the elements [0,1 ,..., m-1]
- range(n, m) ≈ [n, n+1, ..., m-1]
- range(n, m, k) does steps of size k (as in slicing)

39

Building sequences (2):
enumerate

• Sometimes, we want to iterate over sequence elements and
indices at the same time, e.g. in order to
- remember the location of certain elements
- check constraints between neighbouring elements
- compute statistics over the location of elements

• enumerate(sequence) returns pairs (index,value)
where index is from range(0,len(sequence))

 <~>

• enumerate is more general, also works with sequences that
can be traversed only once (e.g. while reading a file)

40

for i, val in enumerate(seq):
 do_something(i,val)

for i in range(len(seq)):
 do_something(i,seq[i])

Building sequences (3): zip
• Sometimes, we want to iterate over several sequences in

parallel and generate tuples

• zip(seq1,seq2,...,seqN) iterates over n-tuples of
corresponding values (val1,val2,...,valN) where val_i is
taken from seq_i

• A snippet from http://norvig.com/python-iaq.html :

Q: Hey, can you write code to transpose a matrix in 0.007KB or less?
A: I thought you'd never ask. If you represent a matrix as a sequence of
sequences, then zip can do the job:
>>> m = [(1,2,3), (4,5,6)]
>>> zip(*m)
[(1, 4), (2, 5), (3, 6)]
To understand this, you need to know that f(*m) is like apply(f,m)...

41

Dictionaries with default values –
collections.defaultdict

• defaultdicts are very convenient for counting/collecting
events found in streams of data

• You need to specify the type of the default values

• Useful options include: int, list, set, as well as embedded
defaultdicts

42

>>> from collections import defaultdict

>>> di = defaultdict(int)

>>> for c in “Hello”: di[c] += 1

>>> di

defaultdict(<class 'int'>, {'H': 1, 'e': 1, 'l': 2,

'o': 1})

>>> di[‘a’]

0

List comprehensions
• Very compact, yet readable way to generate lists from

simpler list, inspired by the set builder notation in
mathematics and similar constructs e.g. in Haskell

• General form:
[expression for_loop1 ... for_loopn if_clause1 ... if_clausek]

• Often used to create auxiliary representations for sorting,
extracting interesting cases etc.

• Can be nested to build nested lists
(at the cost of reduced readability!)

43

List comprehensions – examples
• Build a table of powers of small integers:

[[i**n for n in range(1,5)] for i in range(11)]

• Build strings with certain properties:
s = [‘’]
for i in range(5):
 s = [x+c for x in s for x in ‘abc’]
s = [x for x in s if ‘aba’ in x]

• Find key with largest value in a dict:
_,key = max([(val,key) for key,val in d.items()])

44

Summary
• Functions

• Recursion

• Collection types: lists, tuples, sets, dictionaries

• New control structure: for loop

• List comprehensions

45

