Compact Course Python

Michaela Regneri & Andreas Eisele
Lecture

2010-04-07

Overview

e Functions
e Recursion

e Collection types:
- Lists, Tuples
- Sets
- Dictionaries

e for loops

e list comprehensions

Functions

e [unctions are reusable blocks
of code belonging together

e When a function is called,
its code is executed

e Functions have parameters
(= arguments) they can access

e Functions can return values:
In:x = fun()
x is bound to the value
returned by fun ()
via a return statement

\

def factorial (n):

fac =1

i=n —

while i> 0:
fac *=i
i-=1

return fac

Function body

>>> factorial (4)
24

Syntax of Function Definitions

e Function definitions begin
with the keyword def

e an arbitrary number (possibly 0) of
parameters are separated by commas

e Return value is specified using a
return statement; functions with no
such statement or with an isolated
return statement do not return any
value

def fun (n, m, k):

return ret

Function Calls

e Call with parameters p1-pn:
function name(pi,p2,.-.-)

e Function calls are expressions that
evaluate to the return value of the
function

e When calling the function,
parameter variables are instantiate
with the values from the call (in the
order listed):

def fun(n, m, k):
—>» print (‘var’, n, m, k)
return m

> fun(1,2,3)
var123
I?I Return Value

Functions - Variables

e Functions can introduce or access local

variables
- the parameters
- variables defined in the function

e | ocal variables are not visible outside

the function

e Variables that are written to are

assumed to be local; variables that are
only read are assumed to be global

e Manipulation of variables within a

method or function can use only local

variables

def factorial(n):
fak = 1
i=n
while(i > 0):
fac *=i
i-=1
return fak

counter =0
def countup():

will not work! ————p counter + =1

Recursion

e Functions can call other functions

e |n particular, functions can also call themselves; this is
called Recursion

e |n arecursive call, local variables can have different values
on each incarnation of the function

e Recursion is a powerful tool which can be used to express
many algorithms in an elegant way

e (Caution: As with loops you have to pay attention to the fact
that the recursion needs to end somewhere!

Recursion - factorial function

e the factorial function can be defined recursively:

Base case for 0 and 1
def factorial (n):

if n<=1: . :
Recursion with
return 1 .
decreasing n
else:

return n * factorial (n-1)

Recursion - Fibonacci

e The Fibonacci numbers is a sequence of numbers, defined
recursively for natural numbers:
fibonacci (0) =0
fibonacci (1) = 1
fibonacci (n) = fib (n-1) + fib (n-2)

def fibonacci (n):

ifn<=1:
return n
else:
return fibonacci (n-1) + fibonacci (n-2)

Sequence types

e Sequence types are built-in data structures that combine
multiple objects to one complex object

Lists: a collection of elements, fixed order, modifiable
Tuples: a collection of elements, fixed order, not modifiable
Sets: unordered collection of elements

Strings: sequence of characters (not modifiable)
Dictionaries: maps from keys to values

e for objects s from any sequence:

= len(s):Number of elementsin s

- s.clear():Removes all elements from (modifiable) s

sl == s2:(Value) equality of s1 and s2

Lists

e Alistis an ordered collection of values

e You can write it as literal:
list = ['a', 'Hello', 1, 3.0,[1,2,3]]

e the list items do not have to have the same type (so)

e Access to list items with indices:

> list[0] > list[-1] > list[-1][1]
a' [1,2,3] 2

> list[5]

IndexError: list index out of range

Lists - methods and operators (1)

e Add items:

- append an element: 1ist.append(elem)

- insert element at positioni: list.insert(i,elem)
e Concatenating lists:

- either: newlist = listl + list2

- or:listl.extend(list2)

e Delete elements:
- li.remove(el) deletes the first el in the list 1i

- del li[n] deletes the element with index n

e Membership and non-membership (slow for long lists):
elem in list oOr elem not in list

Lists - methods and operators (2)

e Index of the first occurrence of elem in list:
list.index(elem)

e How often is elem in list?

list.count(elem) o Li=[527]
e Reverse alist: list.reverse() > Li.reverse ()
e Sort: list.sort () >Li
(Only with same type) [7, 2, 5]
> Li =[5,2,7] > Li =[[1,2],[1,2,3],[3,2],[1,3]]
> Li.sort() > Li.sort()
> Li > Li
[2, 5, 7] [[1, 2,1, 2, 3],[1, 3],[3, 2]]

Lists - methods and operators (3)

e lists can be “multiplied” >Li=[1,2,3]
by integer numbers: >Li=Li*3
> Li
1,2,3,1,2,3,1,2,3]

e list * n specifies a list containing n repetitions of the
contents of 1ist;n <= 0 is the empty list

e Warning: this will not generate SLi=[]"*3
so-called deep copies of the list!

Li[O]. 1
(More on this later) > Li[0]. append(1)

> Li

[M1L0OL0T

lists - slicing (1)

e the slicing operator can return a part of a given list
- list[i:] isthe partiallistofitotheendof 1ist
= list[i:]] isthe partial list of i to (but excluding) j
- list[i:j:k] makes steps of size k

>numbers =[0,1,2,3,4,5,6,7, 8, 9]
> numbers[2:8]

[2,3,4,5,6,7]

> numbers[2:8:2]

[2, 4, 6],

> numbers[8:2: -1]

[8,7,6,5,4,3]

> numbers|[::-1]
[9,8,7,6,5,4,3,2,1, 0]

Lists - slicing (2)

e Using slicing, lists can be modified in an elegant way

del list[0:3] deletes the first 3 elements in 1ist

del list[0:5:2] deletes every second entry from first to 5th

elementin 1ist

list1[0:3] = list2 replace the first 3 elements of 1ist1l

by the elements of 1ist2

list1[0:5:2] = list2 replace every second entry from 1

and up to the 5th element in 1ist by
successive entries of 1ist2 (list2 must contain as many elements
as listl[0:5:2]))

Lists - slicing (3)

> numbers[2:5] = [2,2,3,3,4,4]
> numbers

> numbers

>numbers=[0,1,2,3,4,5,6,7,8,9, 10]

[0,1,2,2,3,3,4,4,5,6,7,8,9, 10]
> numbers[0:9:2] = ['a’, 'a', 'a’, 'a,

Ial]

['a', 1,'a', 2, 'a', 3, 'a', 4,'a', 6,7, 8,9, 10]

Tuple: tuple

e similartolists: ('a', 1,
e |[nitializing:
- Oitems: tuple = ()

'b') but not modifiable

- litem: tuple = elem,

- more items: tuple =eleml, elem2, elem3

e access to elements with [] and slices

e more efficient than lists

® Ssequence unpacking:
(Also works well
with lists)

>t="a', 2,[2,3]
>X, Y, z=t
>z

[2,3]

Sets

e Sets are unordered collections
of items that cannot contain
any duplicate element

> numbers =1, 2, 3, 1, 1]
> nSet = set(humbers)

> nSet

{1, 2, 3}

e asaliteral: nset = {1,2,4,5} (Emptyset:set())

e or defined indirectly via a different sequence type: set (myList)
e duplicate items are eliminated

o efficient test of values for set membership (much faster than lists!)

® sets may only contain immutable types! (Numbers, strings, tuples of
immutable values, booleans, ...)

Sets - methods and operators (1)

® Add elem: mySet.add(elem)

® Remove elem
- set.remove(elem) (Errorif elem not available)
- set.discard(elem) (Removed elem if available)

e Add all elements from set2 to setl:
setl.update(set2)

e Membership and non-membership:
elem in set Or elem not in set

20

I Methods can have other

SetS i methOdS aggregate types as 2nd
and OperatOrS (2) argument; operators require
two sets.

e Subset / superset (Return: True / False):
- setl.issubset(set2) or setl.issuperset(set2)
- setl <= set2 or setl >= set2
e Union / intersection
(Returns: the new set)
- setl.union(set2) orsetl.intersection(set2)

- setl | set2 or setl & set2

21

Sets - methods and operators (3)

e Difference set (return: new set with elements from set1 but
not in set2)

- setl.difference(set2)
- setl - set2
set1 set2

e Symmetric set difference (return: new set with elements that
are either in set1 or set2, But not both)

- setl.symmetric difference(set2)

- setl Aset2
set1 ”setz

22

Sets - methods and operators (4)

all set operations are also available as 'update' method /
operator
no return value, set1 will obtain the resulting set:

- setl.difference update(set2)
setl -= set2

- setl.symmetric difference update(set2)
setl "= set2

- setl.intersection update(set2)
setl &= set2

- setl |= set2

23

Invariant sets:
frozenset

there is a constant set variation, the frozenset
works like set: fs = frozenset(collection)

But all the methods that add elements, delete, modify or are
forbidden (add, remove, discard, all update methods)

All other methods and operators work in set (and give back
frozenset instead set)

Motivation: frozensets can be used in places where only
immutable values are allowed, e.g. as members of other
sets or keys of dictionaries

24

Initialization of lists, sets, etc.

e the collection types which are not ditionaries can directly
convert into each other

e Achieved via typename(collection instance) - See
sets

mySet = set([1,2])
myList = list(mySet)
myTuple = tuple(mySet)
tuple2 = tuple(myList)

V V. V V V

set2 = set(myList * 5)

25

Dictionaries: dict
(aka maps, hashes, associative arrays)

e Dictionaries are mappings from (unique) keys to values; the
key must have an immutable type

e Access to values via the key

e For example, a phone book:

> Tel = {'Mueller': 7234, 'Meier": 8093}

> Tel['Meier']

8093

> Tel['Smith'] = 2104

> Tel

{'Mueller': 7234, 'Meier': 8093, 'Smith': 2104}

26

Dictionaries as literals

e {} is an empty dictionary (!), the same as dict ()
==> hence {} cannot be used for an empty set

e some alternative spellings with the same result:

> Tel = {'Mueller': 7234, 'Meier': 8093}

> Tel = dict([['Mueller', 7234],['Meier', 8093]])

> Tel = dict([('Mueller', 7234), ('Meier', 8093)])

only with a valid
variable name as

> Tel = dict(Mueller = 7234, Meier = 8093) {(/

key

27

Dictionaries - keys (1)

e Keys must have constant values (see sets)

e frozenset is therefore permitted (as in sets)

>Tel ={}

> Tel[['Peter’, 'Sophie']] = 7473

Traceback (most recent call last):
File <stdin>", Line 1, in <module>

TypeError: unhashable type

> Tel[frozenset(['Peter', 'Sophie")] = 7473
> Tel
{frozenset (['Peter', 'Sophie']): 7473}

28

Dictionaries - keys (2)

e keys for which the comparison with "==" gives True are
considered equal

e if a key is used that it is already in
the dictionary, it obtains the new
value, the old one is deleted

> Tel['Peter'] = 7473
> Tel['Peter’] = 9999
> Tel

{'Peter': 9999}

e Caution: 1 and 1.0 are therefore the same key!

29

Dictionaries - methods (1)

e Test whether a key key exists in dict:
- key in dict

e Deleting a key / value pair (key: value):
- del dict[key] (Returns nothing)
- dict.pop(key) (returns value)

e Setting the key key to the value value, if key does not
exist:

dict.setdefault(key, value)
(If xey exists, the old value of key is returned, otherwise value)

30

Dictionaries - methods (2)

e complement dict1l with keys/values from dict2
dictl.update(dict2)
(Keys that are in both, get the value from dict2)

e "View" of all key: dict.keys ()
e "View" of all values: dict.values ()

e "View" of all key-value pairs: dict.items ()

Caution: the order is not deterministic! The only guarantee: two calls in
succession on the same system without any change of dict deliver the
same sequence, corresponding to keys and values.

31

Dictionaries - "views"

o Views look like this:

>>>map

(‘A 1,'93,'0" 4)
>>> map.keys()
dict_keys(['a', 'I', '0")

e they both reflect the current state of the dictionary

e we regard them as a collection types that we cannot change
(not as immutable)

e further manipulation is possible after conversion to list:
list = list (map.keys ())

32

Lists — tuples — sets
— when to use what?

e fixed order, with methods to change elements: 1ist
e fixed order, no methods or manipulation (fixed): tuple

e no particular order, manipulated: set (Much more efficient
for membership testing compared to lists)

® jnvariant sets: frozenset

e immutable types as keys (in dict) and elements of sets (in
set and frozenset)

for

® sis a collection type foriins:

e iterates over every element block
ins

® i jsthe element > list = [1, 'a', True]

currently considered > foriin list:

e at each iteration .. print (i)
block is executed

® break, continue and
else function as for

while True

for

e Average of all list items using for:

def average (list):
result = 0.0
for number in list:
result += number

return results / len(list)

e Alphabetical key-value pairs:

def sortedprint(map) sorted (map) and

key = sorted(map.keys()) sortec (encl:]a:ﬁ\;g%ﬁ ()

for key in key:

print(str(key) + "' + str(map[key]))

35

f or with dictionaries

e for can iterate also over the "View" objects of dictionaries
(keys,items,values)

e you often want to iterate over all pairs in a dictionary, thanks
to "sequence unpacking" it simply goes like this:

def oneLinePerEntry(map):
for key, val in map.items():

print (str(key) + ":' + str(val))

36

Function/method definitions —
some advanced features

e Functions can have optional arguments, arbitrary numbers
of arguments, and arguments specified via keywords

e The exact functionality may depend on the function call:
- max(ai,az,...,an) -->return maximum of n arguments
- max(sequence) -->return maximal element of one argument

e Optional arguments are specified by giving a default value in
the function definition (Value is shared between calls !!!)

e Arbitrary numbers of arguments are matched against a
(tuple) parameter preceded by an asterisk in the definition

e Arbitrary keyword arguments are matched against a (dict)
parameter preceded by a double asterisk in the definition

37

Function/method definitions —
some advanced features

def test(a,b,c=33,d=44,*e,**f): print (a,b,c,d,e,f)

>>>test(1,2)

1 2 33 44 () {}

>>>test(1,2,3,4,5,6)

1234 (5, 6) {}

>>>test(kl=1,k2=2,b=3,a=4)

4 3 33 44 () {'k2': 2, 'kl': 1}

>>>test (999)

TypeError: test() takes at least 2 positional arguments

(1 given)

38

Building sequences (1): range

The type range is used to create sequences of consecutive
numbers

range does not (longer) return a list, but an iterator-like
collection type

lterators can be used with for loops

- range(m) corresponds tothe elements [0,1 ,..., m-1]
- range(n, m)=|[n, n+l, ..., m-1]

- range(n, m, k) does steps of size k (as in slicing)

39

I Building sequences (2):
enumerate

Sometimes, we want to iterate over sequence elements and
indices at the same time, e.g. in order to

- remember the location of certain elements
- check constraints between neighbouring elements
- compute statistics over the location of elements

enumerate (sequence) returns pairs (index,value)
where index is from range(0,len(sequence))

for i,

val in enumerate(seq): foriin range(len(seq)):

do_something(i,val) do_something(i,seq[i])

enumerate iS more general, also works with sequences that
can be traversed only once (e.g. while reading a file)

40

Building sequences (3): z1ip

e Sometimes, we want to iterate over several sequences in
parallel and generate tuples

® zip(seql,seq2,...,seqN) iterates over n-tuples of
corresponding values (vall,val2,...,valN) where val iis
taken from seq i

e A snippet from http://norvig.com/python-iag.html :

Q: Hey, can you write code to transpose a matrix in 0.007KB or less?
A: | thought you'd never ask. If you represent a matrix as a sequence of
sequences, then zip can do the job

>>>m = [(1,2,3), (4,5,6)]

>>> zip(*m)

[(1,4), (2, 5), (3, 6)]

To understand this, you need to know that £ (*m) islike apply(f,m)...
41

Dictionaries with default values —
collections.defaultdict

® defaultdicts are very convenient for counting/collecting
events found in streams of data

® You need to specify the type of the default values

e Useful options include: int, list, set, as well as embedded
defaultdicts

>>> from collections import defaultdict

>>> di = defaultdict(int)

>>> for ¢ in “Hello”: di[c] += 1

>>> di

defaultdict(<class 'int'>, {'H': 1, 'e': 1, '1': 2,
'o': 1})

>>> di[‘a’]
0 42

List comprehensions

e \Very compact, yet readable way to generate lists from
simpler list, inspired by the set builder notation in
mathematics and similar constructs e.g. in Haskell

e General form:
[expression for_loops ... for_loopn if_clauses ... if_clausex]

e Often used to create auxiliary representations for sorting,
extracting interesting cases etc.

e Can be nested to build nested lists
(at the cost of reduced readability!)

43

List comprehensions — examples

e Build a table of powers of small integers:
[[i**n for n in range(l,5)] for i in range(ll)]

e Build strings with certain properties:
s = [""]
for i in range(5):
s = [x+c for x in s for x in ‘abc’]
s = [x for x in s if ‘aba’ in x]

e Find key with largest value in a dict:
_,key = max([(val,key) for key,val in d.items()])

44

Summary

Functions

Recursion

Collection types: lists, tuples, sets, dictionaries

New control structure: for loop

List comprehensions

45

