
Compact Course Python

Michaela Regneri & Andreas Eisele

Lecture I

Overview
• What is programming?

• variables

• data types

• values

• operators and expressions

• control structures: if, while

2

Programming
• a programmer wants to solve a problem in a systematic

way

• an algorithm is an abstract, detailled computing
instruction that solves the problem

• a program is is a realization of the algorithm in a
specific programming language

• a program can be executed with different inputs

3

An algorithm for the maximum
number

• given a list list of n integers - we look for the
maximum number in list

• possible algorithm:
- store the first number in list as current maximum
- look at every following number one after another

- compare the currently considered number with the
current maximum

- if the number is greater, change the maximum to
the numberʻs value

- after looking at all numbers in list, the stored
maximum is the maximum number in list

4

Programs ...
• are concrete implementations of an algorithm in a

programming language

• use constructs of the programming language to make
intuitive concepts of an algorithm precise
- Loops, conditions, variables, ...

• the exact steps depend on the programming language
and its available functions.

5

Simplest Python Program

6

print(”Hello, Duckling!“)

...outputs:

the program with this code:

Hello, Duckling!

Some technical notes
• you can use python interpreted or compiled

• without going into the technical details, the two
possibilities in practice look like this:

7

dhcp104-212:~ Michaela$ python

Python 3.1.1 (r311:74543, Aug 24 2009, 18:44:04)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license"

for more information.

>>> print(”Hello, Duckling!“)

Hello, Duckling!

interpreted

Some technical notes

8

dhcp104-212:~ Michaela$ python myProgram.py

Hello, Duckling!

dhcp104-212:~ Michaela$

→ save as
 „myProgram.py“

compiled

max = list [0]

i = 1

while i < len(list):

if list[i] > max:

max = list[i]

i = i + 1

"maximum number" in Python

9

• store the first number in
list as the current
maximum number

• check the second to last
number in list

• if the current number is
greater than the previous
maximum (max), store it as
the current maximum

• at the end, the stored value
of max is the maximum
number in list

caution: we have ignored the
special case of an empty list

Imperative programming

• Python is (basically) an imperative programming
language

• programs are sequential lists of instructions

• expressions have values

• values can be assigned to variables

• the main tool to organize the program flow are so-
called control structures

10

• Given a list lis of integers, find the greatest number in
lis.

lis = [17,23,2,19]

max = lis[0]

i = 1

while i < len(lis):

if lis[i] > max:

max = lis[i]

i = i + 1

Elements of imperative programs

11

variables

assignments

expressions

control structures
(loops, branches)

Variables, values, data types

• Values in Python may have different data types:
numbers, lists, strings, ...

• Variables point to positions of the memory where
values are stored

• Dynamic typing: variables donʻt have fixed data types
- The type of a variable is the assigned valueʻs type
- During the programʻs runtime, a variable can take

values of different types

12

Some data types

• Truth values: bool
(Type of the constants True and False)

• Numbers: int, long, float, complex

• Strings: str, Unicode

• Collections: tuple, list, set, dict

• [...]

13

Expressions

• Expressions are constructs describing a value

• We distinguish:
- Literals: Expressions from / in which the value can

be directly read / written
- Variables
- complex expressions with operators
- calls of functions or methods

14

Integers

• int (plain integers)
- Value range: -2b, ..., +2b-1, B ≥ 31 (system

dependent)

• long (long integers)
- (in Python:) arbitrarily large integers

• Integer literals (i = 3)
- denote values of type int
- Exceptions: The number exceeds the range of

acceptable values, or the literal ends with "L"

15

Integer literals

• "standard" numbers written as 17, 0, -23 in the source
code are interpreted as decimal (base 10)

• Literals starting with 0o (or 0O) are interpreted as octal
(base 8) integers
(Example: 0o13 represents value 11)

• Literals that start with 0x are interpreted as a
hexadecimal (base 16) integers
(Example: 0x1ca represents 458)

16

Floating point numbers

• Floats are represented as decimal numbers (1.1,
47.11)

• Range depends on the system

• Often, the internal representation of decimal numbers
is imprecise

17

>>> 0.1

0.1

>>> 0.1 * 100000000000000000000000000000000

1.0000000000000001e +31

Operators

• Elementary (arithmetic) operations are represented by
operators.

• Arithmetic operators (selection):

#

• If a, b do not have the same type, the operations result
in a value of the more general type

18

a + b

a - b

a * b

a / b

a % b
(Modulo / remainder
with integer division)

Precedence

• an expression may contain more than one operator:
2 * 3 + 4

• The order in which the operators are evaluated is
called Precedence

• With parentheses, precedence can be indicated
directly:

19

>>> (2 * 3) + 4

10

>>> 2 * (3 + 4)

14

Precedence

• Without parentheses, standard precedence rules are
applied (multiplication/division before addition/
subtraction): 2 * 3 + 4 = (2 * 3) + 4

• a question of style: somtimes it is recommendable to
use parentheses even if they are redundant (legibility)

• Donʻt use parentheses when precedence is irrelevant:
2 + 3 + 4 is better than 2 + (3 + 4)

20

Relational operators

• relational operators:
a < b!! a > b# (less / greater)
a <= b! a >= b# (greater than or equal to)
a == b! a != b# (equal or not equal)

• The result of such a comparison is a boolean (bool)

21

>>> 3 > 2

True

>>> (2 * 3) + 4 != 2 * 3 + 4

False

Truth values

• The type bool represents the two truth values True
and False

• Operations:
 not a# # # (Negation)
 a and b! # (Conjunction)
 a or b# # (Disjunction)

• Precedence: not ⋙ and ⋙ or
a and not b or c = (a and (not b)) or c

• Short-circuit evaluation: the evaluation stops as soon
as the result is evident (.: True or something).

22

String literals

• Note: strings may not contain any special characters
(umlauts etc. etc.) if no encoding is specified.

• encoding is specified in the first code line:
 # -*- Coding: utf-8 -*-
 # -*- Coding: latin-1 -*-

23

'This is a String.'

"That, too."

"He said \" Hello \"."

'He said "hello". '

String operators (selection)

• Concatenation:

• Access to individual characters with list indices:

• Test whether a substring occurs:

24

>>> 'Hello' + 'World'

'HelloWorld'

>>> 'Hello'[0]

'H'

>>> 'Hello'[1]

'e'

>>> 'He' in 'Hello'

True

>>> 'Ha' in 'Hello'

False

String operators (selection)

• Length:

• Convert to a different data type (number):

25

>>> len('Hello')

5

>>> float('123')

123.0

>>> int('123')

123

Variables

• one can assign the value
of an expression to variables

• variables can be evaluated
in order to use their value in
an expression

• print is a function that prints the value of an expression
to the screen (actually: the standard output)

26

>>> number = 123

>>> number = number + 2

>>> print(number)

125

Variables

• variables (more generally, all identifiers) must start with
a letter or "_". The remainder may include digits.

• umlauts etc. are not allowed (ASCII encoding)

• the name must not be a keyword (if, while, etc.)

• the names are case-sensitive

• Examples:
 √ OK: Foo, foo12, _foo
 X wrong: 2foo, if, überzwerg

27

Assignments

• the expression expr is evaluated, then
 its value is stored in var.

•
the value of expr is assigned to all vari

•
- all expri are evaluated, then the corresponding

values are assigned to vari
- Example: a, b = 'a', 'b'

28

var = expr

var1 = Var2 = ... = expr

var1, ..., varn = expr1, ..., exprn

Assignments

• Assignments of the form x = x + y are very
common: the value of a variable x is combined with
another value and then immediately re-assigned to x

• Shorthand syntax:

29

x += expr

x -= expr

x *= expr

x /= expr

x %= expr

Statements

• a Python program is a sequence of statements

• Seen so far: assignments, print

• a statement roughly corresponds to a step in the
underlying algorithm

• statements are separated by line breaks: each line is
(usually) exactly one statement

• it is possible to separate (short) statements with
semicolons (and write them in the same line)

30

Control Structures

• Sometimes one wants to execute statements
repeatedly, or only under certain conditions

• This is the purpose of control structures
- conditions: if
- loops: while, for

31

if - else

• if expr1 evaluates to True,
block1 will be executed.

• otherwise block2 will be
executed.

• Values evaluating to False:
False, 0, empty string, empty
list, empty sets, ...

• All other values evaluate to
True

32

if expr1:

block1
[else:

block2]

a „block“ consists of
one or more
statements (~lines)

if - elif - else

• expressions are evaluated in the
given order, until one is found to
be True

• then the corresponding block is
executed.

• If none of the expressions is
true, the else block is executed
(in case there is one)

33

if expr1:

block1
[elif expr2:

block2]

...

[else:

blockk]

Indentation

• Spaces are important: blocks of a if-statement must be
indented!

34

if a < b:

if a < c:

print("foo")

else:

print("bar")

if a < b:

if a < c:

print("foo")

else:

print("bar")

Blocks
• several statements can be

grouped into a block by
indenting the respective
statements equally

• Instructions in the same block
have the same number of the
same type of whitespace
character

• best practice: always stick to
one type of whitespace
character (either tab or space)

35

if a < 10:

print("foo")

a = a + 1

while
1. The expression expr is

evaluated.

2. If it evaluates to True, block is
executed. After that, go to 1.

3. Otherwise, the program flow
resumes after the loop (next
statement with same indent as
„while“)

36

while expr:

block

Greatest common divisor

• The greatest common divisor of two integers m and n
is the largest integer by which both m and n are
divisible without remainder

• Euclidean algorithm: in each step, a division with
remainder is done. In the next step, the remainder is
the new divisor.

• The first divisor giving a remainder of 0 is the greatest
common divisor of the two input numbers

37

Greatest common divisor

• Example: Calculate the greatest common divisor of
1071 and 1029

• Thus, 21 is the greatest common divisor of 1071 and
1029

38

1071 / 1029 = 1, remainder: 42

1029 / 42 = 24, remainder: 21

 42 / 21 = 2, remainder: 0

Greatest common divisor in
Python

• the variables x and y contain
the input numbers

• when the coputation finishes,
the variable g stores the
greatest common divisor of x
and y.

39

g = y

while x > 0:

g = x

x = y%x

y = g

break & continue

• The break statement exits the current loop without
evaluating the condition

• The continue statement skips the remainder of the
current iteration, evaluates the condition again and
continues the loop (if the condition is True)

40

while - else

• loops may have else-statements

• the else-statements is executed as soon as the loopʻs
condition evaluates to false...

• ...but not if the loop was aborted by a break statement

41

Example: prime numbers from 2 ... 100

42

n = 2

while n < 100:

! m = 2

! while m < n:

! ! if n%m == 0:

! ! ! break

! ! m += 1

! else:

! ! print(n, 'is a prime number')

! n += 1

Summary

• expressions are constructs that have a value

• values have types.

• variables are expressions to which values can be
assigned

• with if-statements, you can decide at runtime which
parts of a program shall be executed.

• with while loops, the same statement can be
executed repeatedly (under certain conditions)

43

Command line arguments

• you can pass command line arguments to Python
programs

• the i-th argument is accessed with sys.argv[i]
(count starts at 1); the value is a string

• python echo.py bla blub ⇒ output: bla

44

import sys

print(sys.argv[1])

file: echo.py

